Properties

Label 95.11.o
Level $95$
Weight $11$
Character orbit 95.o
Rep. character $\chi_{95}(14,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $588$
Newform subspaces $1$
Sturm bound $110$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 95 = 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 95.o (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 95 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(110\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{11}(95, [\chi])\).

Total New Old
Modular forms 612 612 0
Cusp forms 588 588 0
Eisenstein series 24 24 0

Trace form

\( 588 q - 1842 q^{4} - 6 q^{5} - 7302 q^{6} - 12 q^{9} + 314787 q^{10} + 343644 q^{11} - 1769646 q^{14} + 2373333 q^{15} + 6815562 q^{16} + 12524508 q^{19} - 5795274 q^{20} + 3990534 q^{21} - 48233604 q^{24}+ \cdots - 138152381466 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{11}^{\mathrm{new}}(95, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
95.11.o.a 95.o 95.o $588$ $60.359$ None 95.11.o.a \(0\) \(0\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{18}]$