Properties

Label 95.11.o
Level $95$
Weight $11$
Character orbit 95.o
Rep. character $\chi_{95}(14,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $588$
Newform subspaces $1$
Sturm bound $110$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 95 = 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 95.o (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 95 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(110\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{11}(95, [\chi])\).

Total New Old
Modular forms 612 612 0
Cusp forms 588 588 0
Eisenstein series 24 24 0

Trace form

\( 588 q - 1842 q^{4} - 6 q^{5} - 7302 q^{6} - 12 q^{9} + O(q^{10}) \) \( 588 q - 1842 q^{4} - 6 q^{5} - 7302 q^{6} - 12 q^{9} + 314787 q^{10} + 343644 q^{11} - 1769646 q^{14} + 2373333 q^{15} + 6815562 q^{16} + 12524508 q^{19} - 5795274 q^{20} + 3990534 q^{21} - 48233604 q^{24} + 54962148 q^{25} + 159714 q^{26} - 51260712 q^{29} - 73197330 q^{30} - 18 q^{31} - 142070532 q^{34} - 153871836 q^{35} - 143737566 q^{36} + 249898896 q^{39} - 162362148 q^{40} + 329731368 q^{41} + 43247604 q^{44} - 343666425 q^{45} - 2934201618 q^{46} + 11044492350 q^{49} - 5706705726 q^{50} - 479014572 q^{51} - 3435679536 q^{54} + 2281950426 q^{55} + 4872445248 q^{59} - 3353868486 q^{60} - 1563443832 q^{61} - 38093728782 q^{64} + 2760985836 q^{65} + 9000466164 q^{66} + 7642077822 q^{69} + 18561088251 q^{70} - 15771730512 q^{71} + 13695176790 q^{74} - 8678922192 q^{76} + 15824124468 q^{79} + 11740810599 q^{80} - 3403661598 q^{81} - 109354282758 q^{84} - 3017143236 q^{85} + 1995559458 q^{86} + 37596576408 q^{89} + 21441348066 q^{90} + 51398917794 q^{91} + 18379983615 q^{95} - 166641665256 q^{96} - 138152381466 q^{99} + O(q^{100}) \)

Decomposition of \(S_{11}^{\mathrm{new}}(95, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
95.11.o.a 95.o 95.o $588$ $60.359$ None \(0\) \(0\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{18}]$