Properties

Label 95.11.n
Level $95$
Weight $11$
Character orbit 95.n
Rep. character $\chi_{95}(21,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $396$
Newform subspaces $1$
Sturm bound $110$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 95 = 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 95.n (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 19 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(110\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{11}(95, [\chi])\).

Total New Old
Modular forms 612 396 216
Cusp forms 588 396 192
Eisenstein series 24 0 24

Trace form

\( 396 q + 132 q^{3} - 1830 q^{4} + 3066 q^{6} - 95436 q^{9} - 93750 q^{10} + 2985984 q^{12} - 2110026 q^{13} + 1224960 q^{14} - 6809430 q^{16} + 532380 q^{17} - 7959948 q^{19} - 9580518 q^{21} - 31211136 q^{22}+ \cdots - 91369111794 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{11}^{\mathrm{new}}(95, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
95.11.n.a 95.n 19.f $396$ $60.359$ None 95.11.n.a \(0\) \(132\) \(0\) \(0\) $\mathrm{SU}(2)[C_{18}]$

Decomposition of \(S_{11}^{\mathrm{old}}(95, [\chi])\) into lower level spaces

\( S_{11}^{\mathrm{old}}(95, [\chi]) \simeq \) \(S_{11}^{\mathrm{new}}(19, [\chi])\)\(^{\oplus 2}\)