Properties

Label 95.11.m
Level $95$
Weight $11$
Character orbit 95.m
Rep. character $\chi_{95}(7,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $392$
Newform subspaces $1$
Sturm bound $110$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 95 = 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 95.m (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 95 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(110\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{11}(95, [\chi])\).

Total New Old
Modular forms 408 408 0
Cusp forms 392 392 0
Eisenstein series 16 16 0

Trace form

\( 392 q - 2 q^{2} - 2 q^{3} + 2220 q^{5} + 4856 q^{6} + 7780 q^{7} - 142356 q^{8} - 2 q^{10} + 32064 q^{11} - 232108 q^{12} - 818490 q^{13} - 1141388 q^{15} + 49026272 q^{16} + 2072126 q^{17} + 4464336 q^{18}+ \cdots - 535132524 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{11}^{\mathrm{new}}(95, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
95.11.m.a 95.m 95.m $392$ $60.359$ None 95.11.m.a \(-2\) \(-2\) \(2220\) \(7780\) $\mathrm{SU}(2)[C_{12}]$