Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [95,11,Mod(31,95)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(95, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 5]))
N = Newforms(chi, 11, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("95.31");
S:= CuspForms(chi, 11);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 95 = 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 11 \) |
Character orbit: | \([\chi]\) | \(=\) | 95.j (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(60.3589390040\) |
Analytic rank: | \(0\) |
Dimension: | \(136\) |
Relative dimension: | \(68\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
31.1 | −55.1125 | + | 31.8192i | −163.702 | + | 94.5131i | 1512.93 | − | 2620.47i | −698.771 | − | 1210.31i | 6014.67 | − | 10417.7i | −7297.48 | 127395.i | −11659.0 | + | 20194.1i | 77022.1 | + | 44468.7i | ||||
31.2 | −54.7601 | + | 31.6158i | 384.837 | − | 222.186i | 1487.11 | − | 2575.75i | −698.771 | − | 1210.31i | −14049.1 | + | 24333.8i | −21417.1 | 123316.i | 69208.4 | − | 119872.i | 76529.5 | + | 44184.4i | ||||
31.3 | −54.0957 | + | 31.2322i | −104.277 | + | 60.2044i | 1438.90 | − | 2492.25i | 698.771 | + | 1210.31i | 3760.63 | − | 6513.60i | 25452.5 | 115796.i | −22275.4 | + | 38582.1i | −75601.1 | − | 43648.3i | ||||
31.4 | −49.4043 | + | 28.5236i | −389.179 | + | 224.692i | 1115.19 | − | 1931.56i | 698.771 | + | 1210.31i | 12818.1 | − | 22201.5i | −22520.4 | 68820.2i | 71448.8 | − | 123753.i | −69044.5 | − | 39862.9i | ||||
31.5 | −49.4010 | + | 28.5217i | 283.434 | − | 163.641i | 1114.97 | − | 1931.19i | 698.771 | + | 1210.31i | −9334.62 | + | 16168.0i | 14256.8 | 68791.2i | 24032.1 | − | 41624.8i | −69040.0 | − | 39860.3i | ||||
31.6 | −46.9206 | + | 27.0896i | −55.2676 | + | 31.9088i | 955.692 | − | 1655.31i | 698.771 | + | 1210.31i | 1728.79 | − | 2994.35i | −16956.0 | 48077.8i | −27488.2 | + | 47610.9i | −65573.5 | − | 37858.9i | ||||
31.7 | −46.8725 | + | 27.0619i | −321.755 | + | 185.765i | 952.688 | − | 1650.10i | −698.771 | − | 1210.31i | 10054.3 | − | 17414.6i | 6325.06 | 47703.3i | 39493.1 | − | 68404.0i | 65506.3 | + | 37820.1i | ||||
31.8 | −45.4180 | + | 26.2221i | 256.648 | − | 148.176i | 863.197 | − | 1495.10i | 698.771 | + | 1210.31i | −7770.95 | + | 13459.7i | −12801.3 | 36836.5i | 14387.5 | − | 24919.8i | −63473.6 | − | 36646.5i | ||||
31.9 | −45.3886 | + | 26.2051i | 21.9013 | − | 12.6447i | 861.416 | − | 1492.02i | −698.771 | − | 1210.31i | −662.712 | + | 1147.85i | −8328.10 | 36625.9i | −29204.7 | + | 50584.1i | 63432.5 | + | 36622.8i | ||||
31.10 | −44.7004 | + | 25.8078i | 159.805 | − | 92.2637i | 820.085 | − | 1420.43i | −698.771 | − | 1210.31i | −4762.24 | + | 8248.45i | 20604.6 | 31804.0i | −12499.3 | + | 21649.5i | 62470.7 | + | 36067.5i | ||||
31.11 | −43.8877 | + | 25.3386i | −295.608 | + | 170.669i | 772.088 | − | 1337.30i | 698.771 | + | 1210.31i | 8649.03 | − | 14980.6i | 7938.17 | 26361.1i | 28731.4 | − | 49764.2i | −61335.0 | − | 35411.8i | ||||
31.12 | −39.2612 | + | 22.6675i | −120.396 | + | 69.5106i | 515.630 | − | 893.097i | −698.771 | − | 1210.31i | 3151.26 | − | 5458.15i | 5360.19 | 329.105i | −19861.0 | + | 34400.3i | 54869.2 | + | 31678.8i | ||||
31.13 | −36.2096 | + | 20.9056i | 226.838 | − | 130.965i | 362.088 | − | 627.155i | −698.771 | − | 1210.31i | −5475.81 | + | 9484.39i | −22249.6 | − | 12536.0i | 4779.29 | − | 8277.98i | 50604.4 | + | 29216.5i | |||
31.14 | −36.0213 | + | 20.7969i | −273.691 | + | 158.015i | 353.024 | − | 611.455i | −698.771 | − | 1210.31i | 6572.46 | − | 11383.8i | −23836.7 | − | 13224.9i | 20413.2 | − | 35356.7i | 50341.3 | + | 29064.6i | |||
31.15 | −35.1665 | + | 20.3034i | 343.273 | − | 198.189i | 312.457 | − | 541.192i | 698.771 | + | 1210.31i | −8047.81 | + | 13939.2i | −10159.9 | − | 16205.6i | 49032.9 | − | 84927.5i | −49146.7 | − | 28374.9i | |||
31.16 | −34.3476 | + | 19.8306i | −103.917 | + | 59.9967i | 274.503 | − | 475.453i | 698.771 | + | 1210.31i | 2379.54 | − | 4121.48i | 10548.9 | − | 18838.8i | −22325.3 | + | 38668.5i | −48002.2 | − | 27714.1i | |||
31.17 | −33.8581 | + | 19.5480i | 406.250 | − | 234.548i | 252.249 | − | 436.908i | −698.771 | − | 1210.31i | −9169.90 | + | 15882.7i | 18342.0 | − | 20310.4i | 80501.3 | − | 139432.i | 47318.2 | + | 27319.2i | |||
31.18 | −32.4277 | + | 18.7221i | 7.34597 | − | 4.24120i | 189.037 | − | 327.422i | 698.771 | + | 1210.31i | −158.809 | + | 275.065i | 3275.68 | − | 24186.2i | −29488.5 | + | 51075.6i | −45319.1 | − | 26165.0i | |||
31.19 | −28.0175 | + | 16.1759i | −84.0928 | + | 48.5510i | 11.3205 | − | 19.6077i | −698.771 | − | 1210.31i | 1570.71 | − | 2720.56i | 29146.1 | − | 32395.8i | −24810.1 | + | 42972.3i | 39155.7 | + | 22606.5i | |||
31.20 | −27.4928 | + | 15.8730i | 225.371 | − | 130.118i | −8.09708 | + | 14.0246i | −698.771 | − | 1210.31i | −4130.72 | + | 7154.62i | −22928.7 | − | 33022.0i | 4336.90 | − | 7511.74i | 38422.4 | + | 22183.2i | |||
See next 80 embeddings (of 136 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.d | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 95.11.j.a | ✓ | 136 |
19.d | odd | 6 | 1 | inner | 95.11.j.a | ✓ | 136 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
95.11.j.a | ✓ | 136 | 1.a | even | 1 | 1 | trivial |
95.11.j.a | ✓ | 136 | 19.d | odd | 6 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{11}^{\mathrm{new}}(95, [\chi])\).