Properties

Label 95.11.j
Level $95$
Weight $11$
Character orbit 95.j
Rep. character $\chi_{95}(31,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $136$
Newform subspaces $1$
Sturm bound $110$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 95 = 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 95.j (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 19 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(110\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{11}(95, [\chi])\).

Total New Old
Modular forms 204 136 68
Cusp forms 196 136 60
Eisenstein series 8 0 8

Trace form

\( 136 q - 132 q^{3} + 37474 q^{4} - 1022 q^{6} - 76620 q^{7} + 1448988 q^{9} + 93750 q^{10} + 418144 q^{11} - 1256574 q^{13} + 612480 q^{14} - 20575630 q^{16} + 3635834 q^{17} + 10572814 q^{19} + 8494308 q^{21}+ \cdots - 8878413234 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{11}^{\mathrm{new}}(95, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
95.11.j.a 95.j 19.d $136$ $60.359$ None 95.11.j.a \(0\) \(-132\) \(0\) \(-76620\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{11}^{\mathrm{old}}(95, [\chi])\) into lower level spaces

\( S_{11}^{\mathrm{old}}(95, [\chi]) \simeq \) \(S_{11}^{\mathrm{new}}(19, [\chi])\)\(^{\oplus 2}\)