Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [95,11,Mod(69,95)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(95, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 5]))
N = Newforms(chi, 11, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("95.69");
S:= CuspForms(chi, 11);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 95 = 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 11 \) |
Character orbit: | \([\chi]\) | \(=\) | 95.h (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(60.3589390040\) |
Analytic rank: | \(0\) |
Dimension: | \(196\) |
Relative dimension: | \(98\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
69.1 | −31.0972 | − | 53.8620i | 141.463 | + | 245.021i | −1422.08 | + | 2463.11i | 2370.23 | − | 2036.58i | 8798.20 | − | 15238.9i | − | 24743.9i | 113204. | −10498.9 | + | 18184.6i | −183402. | − | 64333.1i | |||
69.2 | −30.5593 | − | 52.9303i | −145.722 | − | 252.398i | −1355.74 | + | 2348.22i | −3041.00 | + | 719.688i | −8906.32 | + | 15426.2i | 6339.92i | 103137. | −12945.2 | + | 22421.7i | 131024. | + | 138968.i | ||||
69.3 | −30.1860 | − | 52.2837i | −44.5939 | − | 77.2389i | −1310.39 | + | 2269.66i | −536.928 | − | 3078.53i | −2692.22 | + | 4663.07i | 1063.31i | 96401.0 | 25547.3 | − | 44249.2i | −144749. | + | 121001.i | ||||
69.4 | −30.1474 | − | 52.2168i | 183.751 | + | 318.267i | −1305.73 | + | 2261.59i | −2287.13 | − | 2129.47i | 11079.3 | − | 19189.8i | 27908.2i | 95715.7 | −38004.7 | + | 65826.1i | −42243.0 | + | 183625.i | ||||
69.5 | −29.6998 | − | 51.4415i | 38.6395 | + | 66.9256i | −1252.15 | + | 2168.79i | −1777.71 | + | 2570.09i | 2295.17 | − | 3975.35i | 3017.28i | 87929.4 | 26538.5 | − | 45966.0i | 185007. | + | 15116.7i | ||||
69.6 | −29.6027 | − | 51.2733i | −175.958 | − | 304.768i | −1240.63 | + | 2148.84i | 3075.45 | + | 554.288i | −10417.6 | + | 18043.9i | 28006.3i | 86278.0 | −32397.8 | + | 56114.7i | −62621.3 | − | 174097.i | ||||
69.7 | −28.9573 | − | 50.1555i | −99.3809 | − | 172.133i | −1165.05 | + | 2017.93i | 2278.49 | + | 2138.72i | −5755.60 | + | 9969.00i | − | 25373.5i | 75642.4 | 9771.39 | − | 16924.5i | 41289.9 | − | 176210.i | |||
69.8 | −27.2030 | − | 47.1170i | −214.985 | − | 372.364i | −968.006 | + | 1676.64i | 498.372 | − | 3085.00i | −11696.4 | + | 20258.8i | − | 16403.3i | 49618.9 | −62912.2 | + | 108967.i | −158913. | + | 60439.6i | |||
69.9 | −27.1737 | − | 47.0662i | 229.028 | + | 396.688i | −964.816 | + | 1671.11i | 882.048 | + | 2997.94i | 12447.1 | − | 21559.0i | − | 9710.93i | 49218.7 | −75383.3 | + | 130568.i | 117133. | − | 122980.i | |||
69.10 | −26.9081 | − | 46.6062i | 161.496 | + | 279.720i | −936.091 | + | 1621.36i | 3001.11 | − | 871.185i | 8691.11 | − | 15053.4i | 26377.2i | 45645.9 | −22637.5 | + | 39209.3i | −121357. | − | 116428.i | ||||
69.11 | −26.6844 | − | 46.2187i | −6.98703 | − | 12.1019i | −912.114 | + | 1579.83i | 2971.32 | − | 967.934i | −372.889 | + | 645.863i | 7051.48i | 42707.2 | 29426.9 | − | 50968.8i | −124024. | − | 111502.i | ||||
69.12 | −26.6569 | − | 46.1711i | 90.8504 | + | 157.358i | −909.179 | + | 1574.74i | 1236.97 | + | 2869.76i | 4843.58 | − | 8389.32i | 6004.35i | 42350.2 | 13016.9 | − | 22545.9i | 99526.1 | − | 133611.i | ||||
69.13 | −25.9569 | − | 44.9586i | 134.905 | + | 233.663i | −835.518 | + | 1447.16i | −3106.25 | − | 341.819i | 7003.43 | − | 12130.3i | − | 20025.3i | 33590.0 | −6874.35 | + | 11906.7i | 65260.8 | + | 148525.i | |||
69.14 | −23.6126 | − | 40.8982i | −82.5829 | − | 143.038i | −603.111 | + | 1044.62i | −3123.84 | − | 85.0498i | −3900.00 | + | 6754.99i | − | 29811.8i | 8605.49 | 15884.6 | − | 27513.0i | 70283.7 | + | 129768.i | |||
69.15 | −23.6124 | − | 40.8978i | 8.67290 | + | 15.0219i | −603.089 | + | 1044.58i | −1663.86 | − | 2645.22i | 409.575 | − | 709.405i | 3668.45i | 8603.30 | 29374.1 | − | 50877.4i | −68896.1 | + | 130508.i | ||||
69.16 | −23.3148 | − | 40.3824i | −199.526 | − | 345.589i | −575.160 | + | 996.207i | −582.168 | + | 3070.29i | −9303.81 | + | 16114.7i | − | 8841.39i | 5890.30 | −50096.6 | + | 86769.8i | 137559. | − | 48073.9i | |||
69.17 | −22.9027 | − | 39.6686i | −186.130 | − | 322.386i | −537.064 | + | 930.222i | −2851.95 | − | 1277.51i | −8525.73 | + | 14767.0i | 18942.0i | 2296.10 | −39764.0 | + | 68873.2i | 14640.3 | + | 142391.i | ||||
69.18 | −22.4656 | − | 38.9116i | −44.1029 | − | 76.3884i | −497.410 | + | 861.540i | 579.286 | − | 3070.84i | −1981.60 | + | 3432.23i | 14758.8i | −1311.06 | 25634.4 | − | 44400.0i | −132505. | + | 46447.4i | ||||
69.19 | −21.6887 | − | 37.5659i | −95.0552 | − | 164.640i | −428.799 | + | 742.702i | 904.938 | + | 2991.11i | −4123.25 | + | 7141.67i | 25401.6i | −7218.06 | 11453.5 | − | 19838.1i | 92736.7 | − | 98868.0i | ||||
69.20 | −20.6104 | − | 35.6982i | 208.009 | + | 360.282i | −337.577 | + | 584.700i | −985.086 | − | 2965.68i | 8574.29 | − | 14851.1i | 939.631i | −14379.7 | −57010.9 | + | 98745.7i | −85566.4 | + | 96289.6i | ||||
See next 80 embeddings (of 196 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
19.d | odd | 6 | 1 | inner |
95.h | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 95.11.h.a | ✓ | 196 |
5.b | even | 2 | 1 | inner | 95.11.h.a | ✓ | 196 |
19.d | odd | 6 | 1 | inner | 95.11.h.a | ✓ | 196 |
95.h | odd | 6 | 1 | inner | 95.11.h.a | ✓ | 196 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
95.11.h.a | ✓ | 196 | 1.a | even | 1 | 1 | trivial |
95.11.h.a | ✓ | 196 | 5.b | even | 2 | 1 | inner |
95.11.h.a | ✓ | 196 | 19.d | odd | 6 | 1 | inner |
95.11.h.a | ✓ | 196 | 95.h | odd | 6 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{11}^{\mathrm{new}}(95, [\chi])\).