Properties

Label 95.11.h
Level $95$
Weight $11$
Character orbit 95.h
Rep. character $\chi_{95}(69,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $196$
Newform subspaces $1$
Sturm bound $110$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 95 = 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 95.h (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 95 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(110\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{11}(95, [\chi])\).

Total New Old
Modular forms 204 204 0
Cusp forms 196 196 0
Eisenstein series 8 8 0

Trace form

\( 196 q - 48544 q^{4} - 1112 q^{5} + 6524 q^{6} - 1850204 q^{9} + O(q^{10}) \) \( 196 q - 48544 q^{4} - 1112 q^{5} + 6524 q^{6} - 1850204 q^{9} - 314796 q^{10} - 213068 q^{11} + 3607068 q^{14} + 465384 q^{15} - 24515188 q^{16} + 4733396 q^{19} + 19628028 q^{20} + 2526708 q^{21} + 25784146 q^{24} + 2396384 q^{25} - 66927172 q^{26} + 51260694 q^{29} - 100952916 q^{30} + 142070514 q^{34} - 51319676 q^{35} - 829288052 q^{36} - 384252652 q^{39} + 875823864 q^{40} - 329731386 q^{41} + 966857082 q^{44} + 457201812 q^{45} - 7045011312 q^{49} + 2434599804 q^{51} + 2592949836 q^{54} + 415896124 q^{55} - 4872445266 q^{59} - 2319080274 q^{60} + 1636469048 q^{61} + 17884092636 q^{64} + 4107010578 q^{66} - 12384717444 q^{70} - 9591268956 q^{71} - 9770187120 q^{74} - 9402631914 q^{76} + 9876538494 q^{79} - 9138687352 q^{80} - 15506290458 q^{81} - 3743847174 q^{85} - 21594282036 q^{86} + 18798288204 q^{89} + 27226287060 q^{90} - 27553181472 q^{91} + 26371782018 q^{95} - 55043776340 q^{96} - 3826747138 q^{99} + O(q^{100}) \)

Decomposition of \(S_{11}^{\mathrm{new}}(95, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
95.11.h.a 95.h 95.h $196$ $60.359$ None \(0\) \(0\) \(-1112\) \(0\) $\mathrm{SU}(2)[C_{6}]$