Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [95,11,Mod(94,95)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(95, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1]))
N = Newforms(chi, 11, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("95.94");
S:= CuspForms(chi, 11);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 95 = 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 11 \) |
Character orbit: | \([\chi]\) | \(=\) | 95.d (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(60.3589390040\) |
Analytic rank: | \(0\) |
Dimension: | \(88\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
94.1 | −61.7115 | −173.365 | 2784.31 | −2056.39 | − | 2353.05i | 10698.6 | − | 21560.7i | −108631. | −28993.5 | 126903. | + | 145211.i | |||||||||||||
94.2 | −61.7115 | −173.365 | 2784.31 | −2056.39 | + | 2353.05i | 10698.6 | 21560.7i | −108631. | −28993.5 | 126903. | − | 145211.i | ||||||||||||||
94.3 | −57.7069 | 289.850 | 2306.09 | −1944.80 | − | 2446.10i | −16726.4 | 11532.1i | −73985.6 | 24964.1 | 112228. | + | 141157.i | ||||||||||||||
94.4 | −57.7069 | 289.850 | 2306.09 | −1944.80 | + | 2446.10i | −16726.4 | − | 11532.1i | −73985.6 | 24964.1 | 112228. | − | 141157.i | |||||||||||||
94.5 | −56.0719 | −445.973 | 2120.05 | −62.3147 | − | 3124.38i | 25006.5 | 25024.8i | −61457.8 | 139843. | 3494.10 | + | 175190.i | ||||||||||||||
94.6 | −56.0719 | −445.973 | 2120.05 | −62.3147 | + | 3124.38i | 25006.5 | − | 25024.8i | −61457.8 | 139843. | 3494.10 | − | 175190.i | |||||||||||||
94.7 | −55.8101 | 433.253 | 2090.76 | 1961.95 | − | 2432.36i | −24179.9 | − | 30878.8i | −59536.0 | 128660. | −109496. | + | 135750.i | |||||||||||||
94.8 | −55.8101 | 433.253 | 2090.76 | 1961.95 | + | 2432.36i | −24179.9 | 30878.8i | −59536.0 | 128660. | −109496. | − | 135750.i | ||||||||||||||
94.9 | −53.9549 | −315.189 | 1887.14 | 2668.83 | − | 1625.72i | 17006.0 | − | 17879.0i | −46570.4 | 40295.1 | −143997. | + | 87715.5i | |||||||||||||
94.10 | −53.9549 | −315.189 | 1887.14 | 2668.83 | + | 1625.72i | 17006.0 | 17879.0i | −46570.4 | 40295.1 | −143997. | − | 87715.5i | ||||||||||||||
94.11 | −52.2594 | 37.2886 | 1707.05 | 2000.35 | − | 2400.88i | −1948.68 | 18651.6i | −35695.7 | −57658.6 | −104537. | + | 125469.i | ||||||||||||||
94.12 | −52.2594 | 37.2886 | 1707.05 | 2000.35 | + | 2400.88i | −1948.68 | − | 18651.6i | −35695.7 | −57658.6 | −104537. | − | 125469.i | |||||||||||||
94.13 | −49.2250 | 44.2796 | 1399.10 | 616.697 | − | 3063.55i | −2179.66 | 8879.95i | −18464.4 | −57088.3 | −30356.9 | + | 150803.i | ||||||||||||||
94.14 | −49.2250 | 44.2796 | 1399.10 | 616.697 | + | 3063.55i | −2179.66 | − | 8879.95i | −18464.4 | −57088.3 | −30356.9 | − | 150803.i | |||||||||||||
94.15 | −48.2121 | −193.876 | 1300.41 | −2707.21 | − | 1560.98i | 9347.15 | 7555.06i | −13326.1 | −21461.2 | 130520. | + | 75258.1i | ||||||||||||||
94.16 | −48.2121 | −193.876 | 1300.41 | −2707.21 | + | 1560.98i | 9347.15 | − | 7555.06i | −13326.1 | −21461.2 | 130520. | − | 75258.1i | |||||||||||||
94.17 | −39.9079 | 24.7349 | 568.644 | −348.110 | − | 3105.55i | −987.121 | − | 29317.3i | 18172.3 | −58437.2 | 13892.3 | + | 123936.i | |||||||||||||
94.18 | −39.9079 | 24.7349 | 568.644 | −348.110 | + | 3105.55i | −987.121 | 29317.3i | 18172.3 | −58437.2 | 13892.3 | − | 123936.i | ||||||||||||||
94.19 | −39.2205 | 299.547 | 514.248 | 2852.87 | − | 1275.44i | −11748.4 | 6661.49i | 19992.7 | 30679.7 | −111891. | + | 50023.2i | ||||||||||||||
94.20 | −39.2205 | 299.547 | 514.248 | 2852.87 | + | 1275.44i | −11748.4 | − | 6661.49i | 19992.7 | 30679.7 | −111891. | − | 50023.2i | |||||||||||||
See all 88 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
19.b | odd | 2 | 1 | inner |
95.d | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 95.11.d.d | ✓ | 88 |
5.b | even | 2 | 1 | inner | 95.11.d.d | ✓ | 88 |
19.b | odd | 2 | 1 | inner | 95.11.d.d | ✓ | 88 |
95.d | odd | 2 | 1 | inner | 95.11.d.d | ✓ | 88 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
95.11.d.d | ✓ | 88 | 1.a | even | 1 | 1 | trivial |
95.11.d.d | ✓ | 88 | 5.b | even | 2 | 1 | inner |
95.11.d.d | ✓ | 88 | 19.b | odd | 2 | 1 | inner |
95.11.d.d | ✓ | 88 | 95.d | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{44} - 33584 T_{2}^{42} + 522287389 T_{2}^{40} - 4993908210438 T_{2}^{38} + \cdots + 21\!\cdots\!00 \)
acting on \(S_{11}^{\mathrm{new}}(95, [\chi])\).