Newspace parameters
Level: | \( N \) | \(=\) | \( 95 = 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 11 \) |
Character orbit: | \([\chi]\) | \(=\) | 95.d (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(60.3589390040\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Coefficient field: | 4.4.462080.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} - 16x^{2} + 45 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{11}]\) |
Coefficient ring index: | \( 5 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{U}(1)[D_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} - 16x^{2} + 45 \)
:
\(\beta_{1}\) | \(=\) |
\( 5\nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{3} - 10\nu ) / 3 \)
|
\(\beta_{3}\) | \(=\) |
\( \nu^{2} - 8 \)
|
\(\nu\) | \(=\) |
\( ( \beta_1 ) / 5 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{3} + 8 \)
|
\(\nu^{3}\) | \(=\) |
\( 3\beta_{2} + 2\beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/95\mathbb{Z}\right)^\times\).
\(n\) | \(21\) | \(77\) |
\(\chi(n)\) | \(-1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
94.1 |
|
−50.7487 | 285.422 | 1551.43 | −3125.00 | −14484.8 | 0 | −26766.2 | 22416.8 | 158590. | ||||||||||||||||||||||||||||||
94.2 | −38.9945 | −393.358 | 496.573 | −3125.00 | 15338.8 | 0 | 20566.8 | 95681.2 | 121858. | |||||||||||||||||||||||||||||||
94.3 | 38.9945 | 393.358 | 496.573 | −3125.00 | 15338.8 | 0 | −20566.8 | 95681.2 | −121858. | |||||||||||||||||||||||||||||||
94.4 | 50.7487 | −285.422 | 1551.43 | −3125.00 | −14484.8 | 0 | 26766.2 | 22416.8 | −158590. | |||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
95.d | odd | 2 | 1 | CM by \(\Q(\sqrt{-95}) \) |
5.b | even | 2 | 1 | inner |
19.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 95.11.d.b | ✓ | 4 |
5.b | even | 2 | 1 | inner | 95.11.d.b | ✓ | 4 |
19.b | odd | 2 | 1 | inner | 95.11.d.b | ✓ | 4 |
95.d | odd | 2 | 1 | CM | 95.11.d.b | ✓ | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
95.11.d.b | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
95.11.d.b | ✓ | 4 | 5.b | even | 2 | 1 | inner |
95.11.d.b | ✓ | 4 | 19.b | odd | 2 | 1 | inner |
95.11.d.b | ✓ | 4 | 95.d | odd | 2 | 1 | CM |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{4} - 4096T_{2}^{2} + 3916125 \)
acting on \(S_{11}^{\mathrm{new}}(95, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} - 4096 T^{2} + \cdots + 3916125 \)
$3$
\( T^{4} - 236196 T^{2} + \cdots + 12605220500 \)
$5$
\( (T + 3125)^{4} \)
$7$
\( T^{4} \)
$11$
\( (T^{2} - 101795433904)^{2} \)
$13$
\( T^{4} - 551433967396 T^{2} + \cdots + 53\!\cdots\!00 \)
$17$
\( T^{4} \)
$19$
\( (T - 2476099)^{4} \)
$23$
\( T^{4} \)
$29$
\( T^{4} \)
$31$
\( T^{4} \)
$37$
\( T^{4} + \cdots + 56\!\cdots\!00 \)
$41$
\( T^{4} \)
$43$
\( T^{4} \)
$47$
\( T^{4} \)
$53$
\( T^{4} + \cdots + 51\!\cdots\!00 \)
$59$
\( T^{4} \)
$61$
\( (T^{2} - 12\!\cdots\!04)^{2} \)
$67$
\( T^{4} + \cdots + 39\!\cdots\!00 \)
$71$
\( T^{4} \)
$73$
\( T^{4} \)
$79$
\( T^{4} \)
$83$
\( T^{4} \)
$89$
\( T^{4} \)
$97$
\( T^{4} + \cdots + 21\!\cdots\!00 \)
show more
show less