Properties

Label 95.11.d.b
Level $95$
Weight $11$
Character orbit 95.d
Self dual yes
Analytic conductor $60.359$
Analytic rank $0$
Dimension $4$
CM discriminant -95
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [95,11,Mod(94,95)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(95, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 11, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("95.94");
 
S:= CuspForms(chi, 11);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 95 = 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 95.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.3589390040\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.462080.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 16x^{2} + 45 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (12 \beta_{2} + \beta_1) q^{2} + (43 \beta_{2} - 23 \beta_1) q^{3} + (121 \beta_{3} + 1024) q^{4} - 3125 q^{5} + ( - 3421 \beta_{3} + 427) q^{6} + ( - 1089 \beta_{2} + 1694 \beta_1) q^{8} + ( - 8404 \beta_{3} + 59049) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (12 \beta_{2} + \beta_1) q^{2} + (43 \beta_{2} - 23 \beta_1) q^{3} + (121 \beta_{3} + 1024) q^{4} - 3125 q^{5} + ( - 3421 \beta_{3} + 427) q^{6} + ( - 1089 \beta_{2} + 1694 \beta_1) q^{8} + ( - 8404 \beta_{3} + 59049) q^{9} + ( - 37500 \beta_{2} - 3125 \beta_1) q^{10} - 73196 \beta_{3} q^{11} + ( - 8119 \beta_{2} - 23915 \beta_1) q^{12} + (127953 \beta_{2} + 16963 \beta_1) q^{13} + ( - 134375 \beta_{2} + 71875 \beta_1) q^{15} + (123904 \beta_{3} - 770397) q^{16} + (784224 \beta_{2} - 58607 \beta_1) q^{18} + 2476099 q^{19} + ( - 378125 \beta_{3} - 3200000) q^{20} + (658764 \beta_{2} - 1024744 \beta_1) q^{22} + (51667 \beta_{3} - 7864879) q^{24} + 9765625 q^{25} + (2203729 \beta_{3} + 23475377) q^{26} + (3622124 \beta_{2} + 25212 \beta_1) q^{27} + (10690625 \beta_{3} - 1334375) q^{30} + ( - 9244764 \beta_{2} - 770397 \beta_1) q^{32} + (31547476 \beta_{2} + 219588 \beta_1) q^{33} + ( - 1460767 \beta_{3} + 41145380) q^{36} + (26508987 \beta_{2} - 3184919 \beta_1) q^{37} + (29713188 \beta_{2} + 2476099 \beta_1) q^{38} + ( - 37390804 \beta_{3} - 23073602) q^{39} + (3403125 \beta_{2} - 5293750 \beta_1) q^{40} + ( - 74952704 \beta_{3} - 168277604) q^{44} + (26262500 \beta_{3} - 184528125) q^{45} + ( - 86529695 \beta_{2} + 17347419 \beta_1) q^{48} + 282475249 q^{49} + (117187500 \beta_{2} + 9765625 \beta_1) q^{50} + (130847091 \beta_{2} + 36957471 \beta_1) q^{52} + (24605283 \beta_{2} + 40772401 \beta_1) q^{53} + ( - 3588508 \beta_{3} + 546251596) q^{54} + 228737500 \beta_{3} q^{55} + (106472257 \beta_{2} - 56950277 \beta_1) q^{57} + (25371875 \beta_{2} + 74734375 \beta_1) q^{60} + 254662804 \beta_{3} q^{61} + ( - 220095733 \beta_{3} - 788886528) q^{64} + ( - 399853125 \beta_{2} - 53009375 \beta_1) q^{65} + ( - 31254692 \beta_{3} + 4757666804) q^{66} + ( - 391750743 \beta_{2} + 105272443 \beta_1) q^{67} + ( - 296153913 \beta_{2} + 80708210 \beta_1) q^{72} + ( - 514831229 \beta_{3} + 3121760123) q^{74} + (419921875 \beta_{2} - 224609375 \beta_1) q^{75} + (299607979 \beta_{3} + 2535525376) q^{76} + (59634012 \beta_{2} - 546544858 \beta_1) q^{78} + ( - 387200000 \beta_{3} + 2407490625) q^{80} + ( - 496247796 \beta_{3} - 2144867297) q^{81} + ( - 2019331248 \beta_{2} - 168277604 \beta_1) q^{88} + ( - 2450700000 \beta_{2} + 183146875 \beta_1) q^{90} - 7737809375 q^{95} + (2635528137 \beta_{3} - 328959519) q^{96} + (852514827 \beta_{2} - 854542415 \beta_1) q^{97} + (3389702988 \beta_{2} + 282475249 \beta_1) q^{98} + ( - 4322150604 \beta_{3} + 11687644496) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4096 q^{4} - 12500 q^{5} + 1708 q^{6} + 236196 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4096 q^{4} - 12500 q^{5} + 1708 q^{6} + 236196 q^{9} - 3081588 q^{16} + 9904396 q^{19} - 12800000 q^{20} - 31459516 q^{24} + 39062500 q^{25} + 93901508 q^{26} - 5337500 q^{30} + 164581520 q^{36} - 92294408 q^{39} - 673110416 q^{44} - 738112500 q^{45} + 1129900996 q^{49} + 2185006384 q^{54} - 3155546112 q^{64} + 19030667216 q^{66} + 12487040492 q^{74} + 10142101504 q^{76} + 9629962500 q^{80} - 8579469188 q^{81} - 30951237500 q^{95} - 1315838076 q^{96} + 46750577984 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 16x^{2} + 45 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 5\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 10\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - 8 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 5 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 8 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{2} + 2\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/95\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
94.1
−3.51552
1.90817
−1.90817
3.51552
−50.7487 285.422 1551.43 −3125.00 −14484.8 0 −26766.2 22416.8 158590.
94.2 −38.9945 −393.358 496.573 −3125.00 15338.8 0 20566.8 95681.2 121858.
94.3 38.9945 393.358 496.573 −3125.00 15338.8 0 −20566.8 95681.2 −121858.
94.4 50.7487 −285.422 1551.43 −3125.00 −14484.8 0 26766.2 22416.8 −158590.
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
95.d odd 2 1 CM by \(\Q(\sqrt{-95}) \)
5.b even 2 1 inner
19.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 95.11.d.b 4
5.b even 2 1 inner 95.11.d.b 4
19.b odd 2 1 inner 95.11.d.b 4
95.d odd 2 1 CM 95.11.d.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
95.11.d.b 4 1.a even 1 1 trivial
95.11.d.b 4 5.b even 2 1 inner
95.11.d.b 4 19.b odd 2 1 inner
95.11.d.b 4 95.d odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 4096T_{2}^{2} + 3916125 \) acting on \(S_{11}^{\mathrm{new}}(95, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 4096 T^{2} + \cdots + 3916125 \) Copy content Toggle raw display
$3$ \( T^{4} - 236196 T^{2} + \cdots + 12605220500 \) Copy content Toggle raw display
$5$ \( (T + 3125)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} - 101795433904)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} - 551433967396 T^{2} + \cdots + 53\!\cdots\!00 \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( (T - 2476099)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 56\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 51\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} - 12\!\cdots\!04)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 39\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 21\!\cdots\!00 \) Copy content Toggle raw display
show more
show less