Properties

Label 95.11.d.a.94.1
Level $95$
Weight $11$
Character 95.94
Analytic conductor $60.359$
Analytic rank $0$
Dimension $2$
CM discriminant -19
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [95,11,Mod(94,95)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(95, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 11, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("95.94");
 
S:= CuspForms(chi, 11);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 95 = 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 95.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(60.3589390040\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-19}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 11 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 94.1
Root \(0.500000 - 2.17945i\) of defining polynomial
Character \(\chi\) \(=\) 95.94
Dual form 95.11.d.a.94.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1024.00 q^{4} +(1975.50 - 2421.37i) q^{5} -8486.78i q^{7} -59049.0 q^{9} +O(q^{10})\) \(q-1024.00 q^{4} +(1975.50 - 2421.37i) q^{5} -8486.78i q^{7} -59049.0 q^{9} -203523. q^{11} +1.04858e6 q^{16} +1.85908e6i q^{17} -2.47610e6 q^{19} +(-2.02291e6 + 2.47948e6i) q^{20} -1.18025e7i q^{23} +(-1.96042e6 - 9.56683e6i) q^{25} +8.69046e6i q^{28} +(-2.05496e7 - 1.67656e7i) q^{35} +6.04662e7 q^{36} +2.03243e8i q^{43} +2.08408e8 q^{44} +(-1.16651e8 + 1.42979e8i) q^{45} -4.28715e7i q^{47} +2.10450e8 q^{49} +(-4.02060e8 + 4.92804e8i) q^{55} +1.60684e9 q^{61} +5.01136e8i q^{63} -1.07374e9 q^{64} -1.90370e9i q^{68} +2.70383e9i q^{73} +2.53553e9 q^{76} +1.72725e9i q^{77} +(2.07146e9 - 2.53899e9i) q^{80} +3.48678e9 q^{81} +7.57882e9i q^{83} +(4.50153e9 + 3.67262e9i) q^{85} +1.20857e10i q^{92} +(-4.89153e9 + 5.99555e9i) q^{95} +1.20178e10 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2048 q^{4} + 3951 q^{5} - 118098 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2048 q^{4} + 3951 q^{5} - 118098 q^{9} - 407046 q^{11} + 2097152 q^{16} - 4952198 q^{19} - 4045824 q^{20} - 3920849 q^{25} - 41099223 q^{35} + 120932352 q^{36} + 416815104 q^{44} - 233302599 q^{45} + 420899756 q^{49} - 804119373 q^{55} + 3213673954 q^{61} - 2147483648 q^{64} + 5071050752 q^{76} + 4142923776 q^{80} + 6973568802 q^{81} + 9003051827 q^{85} - 9783067149 q^{95} + 24035659254 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/95\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) −1024.00 −1.00000
\(5\) 1975.50 2421.37i 0.632160 0.774838i
\(6\) 0 0
\(7\) 8486.78i 0.504955i −0.967603 0.252477i \(-0.918755\pi\)
0.967603 0.252477i \(-0.0812453\pi\)
\(8\) 0 0
\(9\) −59049.0 −1.00000
\(10\) 0 0
\(11\) −203523. −1.26372 −0.631859 0.775083i \(-0.717708\pi\)
−0.631859 + 0.775083i \(0.717708\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.04858e6 1.00000
\(17\) 1.85908e6i 1.30935i 0.755912 + 0.654673i \(0.227194\pi\)
−0.755912 + 0.654673i \(0.772806\pi\)
\(18\) 0 0
\(19\) −2.47610e6 −1.00000
\(20\) −2.02291e6 + 2.47948e6i −0.632160 + 0.774838i
\(21\) 0 0
\(22\) 0 0
\(23\) 1.18025e7i 1.83372i −0.399206 0.916861i \(-0.630714\pi\)
0.399206 0.916861i \(-0.369286\pi\)
\(24\) 0 0
\(25\) −1.96042e6 9.56683e6i −0.200747 0.979643i
\(26\) 0 0
\(27\) 0 0
\(28\) 8.69046e6i 0.504955i
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.05496e7 1.67656e7i −0.391258 0.319212i
\(36\) 6.04662e7 1.00000
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 2.03243e8i 1.38252i 0.722605 + 0.691262i \(0.242945\pi\)
−0.722605 + 0.691262i \(0.757055\pi\)
\(44\) 2.08408e8 1.26372
\(45\) −1.16651e8 + 1.42979e8i −0.632160 + 0.774838i
\(46\) 0 0
\(47\) 4.28715e7i 0.186930i −0.995623 0.0934651i \(-0.970206\pi\)
0.995623 0.0934651i \(-0.0297943\pi\)
\(48\) 0 0
\(49\) 2.10450e8 0.745021
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) −4.02060e8 + 4.92804e8i −0.798872 + 0.979176i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 1.60684e9 1.90249 0.951246 0.308435i \(-0.0998051\pi\)
0.951246 + 0.308435i \(0.0998051\pi\)
\(62\) 0 0
\(63\) 5.01136e8i 0.504955i
\(64\) −1.07374e9 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 1.90370e9i 1.30935i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 2.70383e9i 1.30426i 0.758106 + 0.652131i \(0.226125\pi\)
−0.758106 + 0.652131i \(0.773875\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 2.53553e9 1.00000
\(77\) 1.72725e9i 0.638120i
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 2.07146e9 2.53899e9i 0.632160 0.774838i
\(81\) 3.48678e9 1.00000
\(82\) 0 0
\(83\) 7.57882e9i 1.92403i 0.273003 + 0.962013i \(0.411983\pi\)
−0.273003 + 0.962013i \(0.588017\pi\)
\(84\) 0 0
\(85\) 4.50153e9 + 3.67262e9i 1.01453 + 0.827716i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 1.20857e10i 1.83372i
\(93\) 0 0
\(94\) 0 0
\(95\) −4.89153e9 + 5.99555e9i −0.632160 + 0.774838i
\(96\) 0 0
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 0 0
\(99\) 1.20178e10 1.26372
\(100\) 2.00747e9 + 9.79643e9i 0.200747 + 0.979643i
\(101\) 9.98470e9 0.950010 0.475005 0.879983i \(-0.342446\pi\)
0.475005 + 0.879983i \(0.342446\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 8.89903e9i 0.504955i
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) −2.85781e10 2.33158e10i −1.42084 1.15921i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.57776e10 0.661160
\(120\) 0 0
\(121\) 1.54842e10 0.596982
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −2.70376e10 1.41524e10i −0.885969 0.463744i
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.71148e10 1.99885 0.999427 0.0338381i \(-0.0107731\pi\)
0.999427 + 0.0338381i \(0.0107731\pi\)
\(132\) 0 0
\(133\) 2.10141e10i 0.504955i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 9.21504e10i 1.90939i 0.297587 + 0.954695i \(0.403818\pi\)
−0.297587 + 0.954695i \(0.596182\pi\)
\(138\) 0 0
\(139\) −7.41705e10 −1.42941 −0.714705 0.699426i \(-0.753439\pi\)
−0.714705 + 0.699426i \(0.753439\pi\)
\(140\) 2.10428e10 + 1.71680e10i 0.391258 + 0.319212i
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −6.19174e10 −1.00000
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −5.61929e9 −0.0765156 −0.0382578 0.999268i \(-0.512181\pi\)
−0.0382578 + 0.999268i \(0.512181\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 1.09777e11i 1.30935i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 1.88364e11i 1.97469i −0.158590 0.987344i \(-0.550695\pi\)
0.158590 0.987344i \(-0.449305\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1.00165e11 −0.925947
\(162\) 0 0
\(163\) 7.73148e10i 0.671931i −0.941874 0.335966i \(-0.890937\pi\)
0.941874 0.335966i \(-0.109063\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −1.37858e11 −1.00000
\(170\) 0 0
\(171\) 1.46211e11 1.00000
\(172\) 2.08120e11i 1.38252i
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) −8.11915e10 + 1.66377e10i −0.494676 + 0.101368i
\(176\) −2.13409e11 −1.26372
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 1.19451e11 1.46411e11i 0.632160 0.774838i
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 3.78366e11i 1.65464i
\(188\) 4.39004e10i 0.186930i
\(189\) 0 0
\(190\) 0 0
\(191\) −4.79090e11 −1.88473 −0.942367 0.334582i \(-0.891405\pi\)
−0.942367 + 0.334582i \(0.891405\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −2.15501e11 −0.745021
\(197\) 2.41155e11i 0.812765i 0.913703 + 0.406382i \(0.133210\pi\)
−0.913703 + 0.406382i \(0.866790\pi\)
\(198\) 0 0
\(199\) 6.66096e10 0.213438 0.106719 0.994289i \(-0.465966\pi\)
0.106719 + 0.994289i \(0.465966\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 6.96924e11i 1.83372i
\(208\) 0 0
\(209\) 5.03943e11 1.26372
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.92125e11 + 4.01506e11i 1.07123 + 0.873976i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 4.11709e11 5.04631e11i 0.798872 0.979176i
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 1.15761e11 + 5.64912e11i 0.200747 + 0.979643i
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 2.32468e11 0.369136 0.184568 0.982820i \(-0.440911\pi\)
0.184568 + 0.982820i \(0.440911\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4.41959e11i 0.643580i −0.946811 0.321790i \(-0.895715\pi\)
0.946811 0.321790i \(-0.104285\pi\)
\(234\) 0 0
\(235\) −1.03808e11 8.46927e10i −0.144841 0.118170i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 8.33246e10 0.106852 0.0534261 0.998572i \(-0.482986\pi\)
0.0534261 + 0.998572i \(0.482986\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) −1.64540e12 −1.90249
\(245\) 4.15744e11 5.09577e11i 0.470972 0.577270i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 5.29646e11 0.531639 0.265820 0.964023i \(-0.414357\pi\)
0.265820 + 0.964023i \(0.414357\pi\)
\(252\) 5.13163e11i 0.504955i
\(253\) 2.40207e12i 2.31731i
\(254\) 0 0
\(255\) 0 0
\(256\) 1.09951e12 1.00000
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 7.87999e11i 0.626249i 0.949712 + 0.313124i \(0.101376\pi\)
−0.949712 + 0.313124i \(0.898624\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 2.83576e12 1.94010 0.970049 0.242910i \(-0.0781019\pi\)
0.970049 + 0.242910i \(0.0781019\pi\)
\(272\) 1.94939e12i 1.30935i
\(273\) 0 0
\(274\) 0 0
\(275\) 3.98991e11 + 1.94707e12i 0.253688 + 1.23799i
\(276\) 0 0
\(277\) 3.15403e12i 1.93405i 0.254683 + 0.967024i \(0.418029\pi\)
−0.254683 + 0.967024i \(0.581971\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 2.72803e12i 1.50286i −0.659815 0.751428i \(-0.729365\pi\)
0.659815 0.751428i \(-0.270635\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −1.44020e12 −0.714386
\(290\) 0 0
\(291\) 0 0
\(292\) 2.76872e12i 1.30426i
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 1.72487e12 0.698112
\(302\) 0 0
\(303\) 0 0
\(304\) −2.59638e12 −1.00000
\(305\) 3.17431e12 3.89074e12i 1.20268 1.47412i
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 1.76871e12i 0.638120i
\(309\) 0 0
\(310\) 0 0
\(311\) −1.89531e12 −0.651446 −0.325723 0.945465i \(-0.605608\pi\)
−0.325723 + 0.945465i \(0.605608\pi\)
\(312\) 0 0
\(313\) 5.95513e12i 1.98230i 0.132744 + 0.991150i \(0.457621\pi\)
−0.132744 + 0.991150i \(0.542379\pi\)
\(314\) 0 0
\(315\) 1.21343e12 + 9.89993e11i 0.391258 + 0.319212i
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −2.12118e12 + 2.59992e12i −0.632160 + 0.774838i
\(321\) 0 0
\(322\) 0 0
\(323\) 4.60327e12i 1.30935i
\(324\) −3.57047e12 −1.00000
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −3.63841e11 −0.0943913
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 7.76071e12i 1.92403i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) −4.60956e12 3.76076e12i −1.01453 0.827716i
\(341\) 0 0
\(342\) 0 0
\(343\) 4.18335e12i 0.881157i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 9.27491e12i 1.84358i −0.387687 0.921791i \(-0.626726\pi\)
0.387687 0.921791i \(-0.373274\pi\)
\(348\) 0 0
\(349\) −9.39511e12 −1.81457 −0.907287 0.420512i \(-0.861851\pi\)
−0.907287 + 0.420512i \(0.861851\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6.86062e12i 1.25167i 0.779955 + 0.625835i \(0.215242\pi\)
−0.779955 + 0.625835i \(0.784758\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.17823e13 −1.97587 −0.987935 0.154871i \(-0.950504\pi\)
−0.987935 + 0.154871i \(0.950504\pi\)
\(360\) 0 0
\(361\) 6.13107e12 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 6.54696e12 + 5.34141e12i 1.01059 + 0.824502i
\(366\) 0 0
\(367\) 1.25495e13i 1.88493i 0.334301 + 0.942466i \(0.391500\pi\)
−0.334301 + 0.942466i \(0.608500\pi\)
\(368\) 1.23758e13i 1.83372i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 5.00893e12 6.13944e12i 0.632160 0.774838i
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 4.18232e12 + 3.41219e12i 0.494440 + 0.403394i
\(386\) 0 0
\(387\) 1.20013e13i 1.38252i
\(388\) 0 0
\(389\) −1.48910e13 −1.67177 −0.835884 0.548906i \(-0.815044\pi\)
−0.835884 + 0.548906i \(0.815044\pi\)
\(390\) 0 0
\(391\) 2.19418e13 2.40098
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) −1.23063e13 −1.26372
\(397\) 1.93498e13i 1.96211i 0.193732 + 0.981054i \(0.437941\pi\)
−0.193732 + 0.981054i \(0.562059\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −2.05565e12 1.00315e13i −0.200747 0.979643i
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −1.02243e13 −0.950010
\(405\) 6.88814e12 8.44279e12i 0.632160 0.774838i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 1.83511e13 + 1.49720e13i 1.49081 + 1.21629i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −1.40486e13 −1.08783 −0.543916 0.839140i \(-0.683059\pi\)
−0.543916 + 0.839140i \(0.683059\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 2.53152e12i 0.186930i
\(424\) 0 0
\(425\) 1.77855e13 3.64459e12i 1.28269 0.262848i
\(426\) 0 0
\(427\) 1.36369e13i 0.960672i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.92241e13i 1.83372i
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) −1.24269e13 −0.745021
\(442\) 0 0
\(443\) 3.30278e13i 1.93580i 0.251335 + 0.967900i \(0.419130\pi\)
−0.251335 + 0.967900i \(0.580870\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 9.11261e12i 0.504955i
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3.23713e13i 1.62397i −0.583675 0.811987i \(-0.698386\pi\)
0.583675 0.811987i \(-0.301614\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 2.92640e13 + 2.38754e13i 1.42084 + 1.15921i
\(461\) 2.38839e13 1.14710 0.573548 0.819172i \(-0.305566\pi\)
0.573548 + 0.819172i \(0.305566\pi\)
\(462\) 0 0
\(463\) 2.30301e12i 0.108241i 0.998534 + 0.0541204i \(0.0172355\pi\)
−0.998534 + 0.0541204i \(0.982765\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3.76252e13i 1.69393i 0.531652 + 0.846963i \(0.321571\pi\)
−0.531652 + 0.846963i \(0.678429\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4.13645e13i 1.74712i
\(474\) 0 0
\(475\) 4.85421e12 + 2.36884e13i 0.200747 + 0.979643i
\(476\) −1.61563e13 −0.661160
\(477\) 0 0
\(478\) 0 0
\(479\) 3.07491e13 1.21942 0.609711 0.792624i \(-0.291285\pi\)
0.609711 + 0.792624i \(0.291285\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −1.58558e13 −0.596982
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1.38065e13 0.483811 0.241905 0.970300i \(-0.422228\pi\)
0.241905 + 0.970300i \(0.422228\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 2.37412e13 2.90996e13i 0.798872 0.979176i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −2.31588e13 −0.748536 −0.374268 0.927321i \(-0.622106\pi\)
−0.374268 + 0.927321i \(0.622106\pi\)
\(500\) 2.76865e13 + 1.44920e13i 0.885969 + 0.463744i
\(501\) 0 0
\(502\) 0 0
\(503\) 5.96791e13i 1.85345i 0.375734 + 0.926727i \(0.377391\pi\)
−0.375734 + 0.926727i \(0.622609\pi\)
\(504\) 0 0
\(505\) 1.97248e13 2.41766e13i 0.600558 0.736104i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 2.29468e13 0.658593
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 8.72534e12i 0.236227i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) −7.89655e13 −1.99885
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −9.78718e13 −2.36254
\(530\) 0 0
\(531\) 0 0
\(532\) 2.15184e13i 0.504955i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −4.28314e13 −0.941496
\(540\) 0 0
\(541\) 7.59982e13 1.63990 0.819949 0.572436i \(-0.194001\pi\)
0.819949 + 0.572436i \(0.194001\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 9.43620e13i 1.90939i
\(549\) −9.48821e13 −1.90249
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 7.59505e13 1.42941
\(557\) 8.56199e13i 1.59698i −0.602010 0.798488i \(-0.705633\pi\)
0.602010 0.798488i \(-0.294367\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −2.15478e13 1.75800e13i −0.391258 0.319212i
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 2.95916e13i 0.504955i
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) −1.06969e14 −1.76229 −0.881143 0.472850i \(-0.843225\pi\)
−0.881143 + 0.472850i \(0.843225\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.12912e14 + 2.31378e13i −1.79639 + 0.368115i
\(576\) 6.34034e13 1.00000
\(577\) 7.48265e13i 1.16998i 0.811042 + 0.584988i \(0.198901\pi\)
−0.811042 + 0.584988i \(0.801099\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 6.43197e13 0.971546
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.38365e14i 1.98535i −0.120823 0.992674i \(-0.538554\pi\)
0.120823 0.992674i \(-0.461446\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.45486e14i 1.98402i −0.126152 0.992011i \(-0.540263\pi\)
0.126152 0.992011i \(-0.459737\pi\)
\(594\) 0 0
\(595\) 3.11687e13 3.82034e13i 0.417959 0.512292i
\(596\) 5.75415e12 0.0765156
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 3.05890e13 3.74929e13i 0.377388 0.462565i
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 1.12412e14i 1.30935i
\(613\) 6.02984e13i 0.696632i 0.937377 + 0.348316i \(0.113246\pi\)
−0.937377 + 0.348316i \(0.886754\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 8.47903e13i 0.948244i 0.880459 + 0.474122i \(0.157234\pi\)
−0.880459 + 0.474122i \(0.842766\pi\)
\(618\) 0 0
\(619\) 5.72825e13 0.630332 0.315166 0.949037i \(-0.397940\pi\)
0.315166 + 0.949037i \(0.397940\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −8.76809e13 + 3.75101e13i −0.919401 + 0.393322i
\(626\) 0 0
\(627\) 0 0
\(628\) 1.92884e14i 1.97469i
\(629\) 0 0
\(630\) 0 0
\(631\) −1.98866e14 −1.98799 −0.993994 0.109430i \(-0.965097\pi\)
−0.993994 + 0.109430i \(0.965097\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 1.11824e14i 1.01737i −0.860952 0.508686i \(-0.830131\pi\)
0.860952 0.508686i \(-0.169869\pi\)
\(644\) 1.02569e14 0.925947
\(645\) 0 0
\(646\) 0 0
\(647\) 5.95300e13i 0.525066i 0.964923 + 0.262533i \(0.0845579\pi\)
−0.964923 + 0.262533i \(0.915442\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 7.91704e13i 0.671931i
\(653\) 2.71577e13i 0.228732i −0.993439 0.114366i \(-0.963516\pi\)
0.993439 0.114366i \(-0.0364837\pi\)
\(654\) 0 0
\(655\) 1.52340e14 1.86723e14i 1.26360 1.54879i
\(656\) 0 0
\(657\) 1.59658e14i 1.30426i
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 5.08829e13 + 4.15134e13i 0.391258 + 0.319212i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −3.27028e14 −2.40421
\(672\) 0 0
\(673\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 1.41167e14 1.00000
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) −1.49720e14 −1.00000
\(685\) 2.23130e14 + 1.82043e14i 1.47947 + 1.20704i
\(686\) 0 0
\(687\) 0 0
\(688\) 2.13115e14i 1.38252i
\(689\) 0 0
\(690\) 0 0
\(691\) 1.69827e14 1.07799 0.538997 0.842307i \(-0.318803\pi\)
0.538997 + 0.842307i \(0.318803\pi\)
\(692\) 0 0
\(693\) 1.01993e14i 0.638120i
\(694\) 0 0
\(695\) −1.46524e14 + 1.79594e14i −0.903616 + 1.10756i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 8.31401e13 1.70370e13i 0.494676 0.101368i
\(701\) 3.30849e14 1.95452 0.977258 0.212054i \(-0.0680151\pi\)
0.977258 + 0.212054i \(0.0680151\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 2.18531e14 1.26372
\(705\) 0 0
\(706\) 0 0
\(707\) 8.47379e13i 0.479712i
\(708\) 0 0
\(709\) 1.12103e14 0.625729 0.312864 0.949798i \(-0.398711\pi\)
0.312864 + 0.949798i \(0.398711\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1.93381e14 1.00640 0.503199 0.864170i \(-0.332156\pi\)
0.503199 + 0.864170i \(0.332156\pi\)
\(720\) −1.22318e14 + 1.49925e14i −0.632160 + 0.774838i
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 3.88917e14i 1.91507i 0.288312 + 0.957536i \(0.406906\pi\)
−0.288312 + 0.957536i \(0.593094\pi\)
\(728\) 0 0
\(729\) −2.05891e14 −1.00000
\(730\) 0 0
\(731\) −3.77845e14 −1.81020
\(732\) 0 0
\(733\) 2.12619e14i 1.00480i 0.864634 + 0.502402i \(0.167550\pi\)
−0.864634 + 0.502402i \(0.832450\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 4.17769e14 1.89546 0.947728 0.319080i \(-0.103374\pi\)
0.947728 + 0.319080i \(0.103374\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) −1.11009e13 + 1.36064e13i −0.0483701 + 0.0592872i
\(746\) 0 0
\(747\) 4.47522e14i 1.92403i
\(748\) 3.87447e14i 1.65464i
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 4.49540e13i 0.186930i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 4.54743e14i 1.82931i 0.404241 + 0.914653i \(0.367536\pi\)
−0.404241 + 0.914653i \(0.632464\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −3.58961e14 −1.40645 −0.703224 0.710968i \(-0.748257\pi\)
−0.703224 + 0.710968i \(0.748257\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 4.90588e14 1.88473
\(765\) −2.65811e14 2.16865e14i −1.01453 0.827716i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 3.35620e14 1.24800 0.624002 0.781423i \(-0.285506\pi\)
0.624002 + 0.781423i \(0.285506\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 2.20673e14 0.745021
\(785\) −4.56098e14 3.72112e14i −1.53006 1.24832i
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 2.46942e14i 0.812765i
\(789\) 0 0
\(790\) 0 0