Properties

Label 95.11.d.a
Level $95$
Weight $11$
Character orbit 95.d
Analytic conductor $60.359$
Analytic rank $0$
Dimension $2$
CM discriminant -19
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [95,11,Mod(94,95)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(95, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 11, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("95.94");
 
S:= CuspForms(chi, 11);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 95 = 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 95.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(60.3589390040\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-19}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 11 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(-1 + 11\sqrt{-19})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 1024 q^{4} + (101 \beta + 2026) q^{5} + (354 \beta + 177) q^{7} - 59049 q^{9} - 203523 q^{11} + 1048576 q^{16} + ( - 77546 \beta - 38773) q^{17} - 2476099 q^{19} + ( - 103424 \beta - 2074624) q^{20}+ \cdots + 12017829627 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2048 q^{4} + 3951 q^{5} - 118098 q^{9} - 407046 q^{11} + 2097152 q^{16} - 4952198 q^{19} - 4045824 q^{20} - 3920849 q^{25} - 41099223 q^{35} + 120932352 q^{36} + 416815104 q^{44} - 233302599 q^{45}+ \cdots + 24035659254 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/95\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
94.1
0.500000 2.17945i
0.500000 + 2.17945i
0 0 −1024.00 1975.50 2421.37i 0 8486.78i 0 −59049.0 0
94.2 0 0 −1024.00 1975.50 + 2421.37i 0 8486.78i 0 −59049.0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 CM by \(\Q(\sqrt{-19}) \)
5.b even 2 1 inner
95.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 95.11.d.a 2
5.b even 2 1 inner 95.11.d.a 2
19.b odd 2 1 CM 95.11.d.a 2
95.d odd 2 1 inner 95.11.d.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
95.11.d.a 2 1.a even 1 1 trivial
95.11.d.a 2 5.b even 2 1 inner
95.11.d.a 2 19.b odd 2 1 CM
95.11.d.a 2 95.d odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} \) acting on \(S_{11}^{\mathrm{new}}(95, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 3951 T + 9765625 \) Copy content Toggle raw display
$7$ \( T^{2} + 72025371 \) Copy content Toggle raw display
$11$ \( (T + 203523)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 3456191371171 \) Copy content Toggle raw display
$19$ \( (T + 2476099)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 139298265532096 \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 41\!\cdots\!71 \) Copy content Toggle raw display
$47$ \( T^{2} + 18\!\cdots\!71 \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( (T - 1606836977)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 73\!\cdots\!71 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 57\!\cdots\!96 \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less