Defining parameters
Level: | \( N \) | \(=\) | \( 95 = 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 11 \) |
Character orbit: | \([\chi]\) | \(=\) | 95.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 95 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(110\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{11}(95, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 102 | 102 | 0 |
Cusp forms | 98 | 98 | 0 |
Eisenstein series | 4 | 4 | 0 |
Trace form
Decomposition of \(S_{11}^{\mathrm{new}}(95, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
95.11.d.a | $2$ | $60.359$ | \(\Q(\sqrt{-19}) \) | \(\Q(\sqrt{-19}) \) | \(0\) | \(0\) | \(3951\) | \(0\) | \(q-2^{10}q^{4}+(2026+101\beta )q^{5}+(177+\cdots)q^{7}+\cdots\) |
95.11.d.b | $4$ | $60.359$ | 4.4.462080.1 | \(\Q(\sqrt{-95}) \) | \(0\) | \(0\) | \(-12500\) | \(0\) | \(q+(\beta _{1}+12\beta _{2})q^{2}+(-23\beta _{1}+43\beta _{2}+\cdots)q^{3}+\cdots\) |
95.11.d.c | $4$ | $60.359$ | 4.4.7600.1 | \(\Q(\sqrt{-95}) \) | \(0\) | \(0\) | \(12500\) | \(0\) | \(q+(\beta _{1}+2\beta _{2})q^{2}+(-6\beta _{1}+17\beta _{2})q^{3}+\cdots\) |
95.11.d.d | $88$ | $60.359$ | None | \(0\) | \(0\) | \(-2842\) | \(0\) |