Properties

Label 95.11.c.a.56.4
Level $95$
Weight $11$
Character 95.56
Analytic conductor $60.359$
Analytic rank $0$
Dimension $68$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [95,11,Mod(56,95)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("95.56"); S:= CuspForms(chi, 11); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(95, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 11, names="a")
 
Level: \( N \) \(=\) \( 95 = 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 95.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(60.3589390040\)
Analytic rank: \(0\)
Dimension: \(68\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 56.4
Character \(\chi\) \(=\) 95.56
Dual form 95.11.c.a.56.65

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-59.4439i q^{2} +262.238i q^{3} -2509.58 q^{4} +1397.54 q^{5} +15588.5 q^{6} +13097.9 q^{7} +88308.7i q^{8} -9719.86 q^{9} -83075.4i q^{10} -257013. q^{11} -658108. i q^{12} -480775. i q^{13} -778594. i q^{14} +366489. i q^{15} +2.67961e6 q^{16} -2.30537e6 q^{17} +577787. i q^{18} +(2.04841e6 + 1.39107e6i) q^{19} -3.50724e6 q^{20} +3.43478e6i q^{21} +1.52778e7i q^{22} +1.00911e7 q^{23} -2.31579e7 q^{24} +1.95312e6 q^{25} -2.85791e7 q^{26} +1.29360e7i q^{27} -3.28704e7 q^{28} -2.35488e6i q^{29} +2.17855e7 q^{30} -1.61056e7i q^{31} -6.88582e7i q^{32} -6.73985e7i q^{33} +1.37040e8i q^{34} +1.83049e7 q^{35} +2.43928e7 q^{36} +8.27351e7i q^{37} +(8.26908e7 - 1.21766e8i) q^{38} +1.26077e8 q^{39} +1.23415e8i q^{40} +1.48154e8i q^{41} +2.04177e8 q^{42} -9.28064e7 q^{43} +6.44994e8 q^{44} -1.35839e7 q^{45} -5.99856e8i q^{46} +3.43656e8 q^{47} +7.02695e8i q^{48} -1.10919e8 q^{49} -1.16101e8i q^{50} -6.04555e8i q^{51} +1.20654e9i q^{52} +1.66273e8i q^{53} +7.68966e8 q^{54} -3.59186e8 q^{55} +1.15666e9i q^{56} +(-3.64792e8 + 5.37171e8i) q^{57} -1.39983e8 q^{58} -4.49521e8i q^{59} -9.19733e8i q^{60} +9.11025e8 q^{61} -9.57379e8 q^{62} -1.27310e8 q^{63} -1.34928e9 q^{64} -6.71903e8i q^{65} -4.00643e9 q^{66} +1.85954e9i q^{67} +5.78550e9 q^{68} +2.64628e9i q^{69} -1.08812e9i q^{70} -5.24579e8i q^{71} -8.58349e8i q^{72} +2.59195e9 q^{73} +4.91810e9 q^{74} +5.12184e8i q^{75} +(-5.14065e9 - 3.49101e9i) q^{76} -3.36634e9 q^{77} -7.49454e9i q^{78} -4.48832e9i q^{79} +3.74486e9 q^{80} -3.96626e9 q^{81} +8.80686e9 q^{82} +5.02264e9 q^{83} -8.61986e9i q^{84} -3.22185e9 q^{85} +5.51677e9i q^{86} +6.17539e8 q^{87} -2.26964e10i q^{88} -9.39863e8i q^{89} +8.07482e8i q^{90} -6.29716e9i q^{91} -2.53245e10 q^{92} +4.22350e9 q^{93} -2.04283e10i q^{94} +(2.86274e9 + 1.94408e9i) q^{95} +1.80572e10 q^{96} +6.09834e9i q^{97} +6.59346e9i q^{98} +2.49813e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q - 35644 q^{4} - 2044 q^{6} + 76620 q^{7} - 1353552 q^{9} - 418144 q^{11} + 21763300 q^{16} - 10023236 q^{17} + 518264 q^{19} + 4962204 q^{23} + 2604244 q^{24} + 132812500 q^{25} + 32178588 q^{26} - 109025284 q^{28}+ \cdots + 76070139768 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/95\mathbb{Z}\right)^\times\).

\(n\) \(21\) \(77\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 59.4439i 1.85762i −0.370553 0.928811i \(-0.620832\pi\)
0.370553 0.928811i \(-0.379168\pi\)
\(3\) 262.238i 1.07917i 0.841931 + 0.539585i \(0.181419\pi\)
−0.841931 + 0.539585i \(0.818581\pi\)
\(4\) −2509.58 −2.45076
\(5\) 1397.54 0.447214
\(6\) 15588.5 2.00469
\(7\) 13097.9 0.779315 0.389658 0.920960i \(-0.372593\pi\)
0.389658 + 0.920960i \(0.372593\pi\)
\(8\) 88308.7i 2.69497i
\(9\) −9719.86 −0.164607
\(10\) 83075.4i 0.830754i
\(11\) −257013. −1.59585 −0.797923 0.602760i \(-0.794068\pi\)
−0.797923 + 0.602760i \(0.794068\pi\)
\(12\) 658108.i 2.64479i
\(13\) 480775.i 1.29487i −0.762123 0.647433i \(-0.775843\pi\)
0.762123 0.647433i \(-0.224157\pi\)
\(14\) 778594.i 1.44767i
\(15\) 366489.i 0.482619i
\(16\) 2.67961e6 2.55547
\(17\) −2.30537e6 −1.62366 −0.811831 0.583893i \(-0.801529\pi\)
−0.811831 + 0.583893i \(0.801529\pi\)
\(18\) 577787.i 0.305777i
\(19\) 2.04841e6 + 1.39107e6i 0.827273 + 0.561800i
\(20\) −3.50724e6 −1.09601
\(21\) 3.43478e6i 0.841013i
\(22\) 1.52778e7i 2.96448i
\(23\) 1.00911e7 1.56784 0.783918 0.620865i \(-0.213218\pi\)
0.783918 + 0.620865i \(0.213218\pi\)
\(24\) −2.31579e7 −2.90833
\(25\) 1.95312e6 0.200000
\(26\) −2.85791e7 −2.40537
\(27\) 1.29360e7i 0.901531i
\(28\) −3.28704e7 −1.90992
\(29\) 2.35488e6i 0.114810i −0.998351 0.0574049i \(-0.981717\pi\)
0.998351 0.0574049i \(-0.0182826\pi\)
\(30\) 2.17855e7 0.896524
\(31\) 1.61056e7i 0.562559i −0.959626 0.281280i \(-0.909241\pi\)
0.959626 0.281280i \(-0.0907588\pi\)
\(32\) 6.88582e7i 2.05213i
\(33\) 6.73985e7i 1.72219i
\(34\) 1.37040e8i 3.01615i
\(35\) 1.83049e7 0.348520
\(36\) 2.43928e7 0.403412
\(37\) 8.27351e7i 1.19311i 0.802571 + 0.596556i \(0.203465\pi\)
−0.802571 + 0.596556i \(0.796535\pi\)
\(38\) 8.26908e7 1.21766e8i 1.04361 1.53676i
\(39\) 1.26077e8 1.39738
\(40\) 1.23415e8i 1.20523i
\(41\) 1.48154e8i 1.27877i 0.768885 + 0.639387i \(0.220812\pi\)
−0.768885 + 0.639387i \(0.779188\pi\)
\(42\) 2.04177e8 1.56228
\(43\) −9.28064e7 −0.631300 −0.315650 0.948876i \(-0.602222\pi\)
−0.315650 + 0.948876i \(0.602222\pi\)
\(44\) 6.44994e8 3.91104
\(45\) −1.35839e7 −0.0736144
\(46\) 5.99856e8i 2.91245i
\(47\) 3.43656e8 1.49842 0.749212 0.662330i \(-0.230432\pi\)
0.749212 + 0.662330i \(0.230432\pi\)
\(48\) 7.02695e8i 2.75779i
\(49\) −1.10919e8 −0.392668
\(50\) 1.16101e8i 0.371525i
\(51\) 6.04555e8i 1.75221i
\(52\) 1.20654e9i 3.17341i
\(53\) 1.66273e8i 0.397596i 0.980041 + 0.198798i \(0.0637037\pi\)
−0.980041 + 0.198798i \(0.936296\pi\)
\(54\) 7.68966e8 1.67470
\(55\) −3.59186e8 −0.713684
\(56\) 1.15666e9i 2.10023i
\(57\) −3.64792e8 + 5.37171e8i −0.606278 + 0.892768i
\(58\) −1.39983e8 −0.213273
\(59\) 4.49521e8i 0.628768i −0.949296 0.314384i \(-0.898202\pi\)
0.949296 0.314384i \(-0.101798\pi\)
\(60\) 9.19733e8i 1.18278i
\(61\) 9.11025e8 1.07865 0.539326 0.842097i \(-0.318679\pi\)
0.539326 + 0.842097i \(0.318679\pi\)
\(62\) −9.57379e8 −1.04502
\(63\) −1.27310e8 −0.128281
\(64\) −1.34928e9 −1.25662
\(65\) 6.71903e8i 0.579082i
\(66\) −4.00643e9 −3.19918
\(67\) 1.85954e9i 1.37731i 0.725089 + 0.688656i \(0.241799\pi\)
−0.725089 + 0.688656i \(0.758201\pi\)
\(68\) 5.78550e9 3.97921
\(69\) 2.64628e9i 1.69196i
\(70\) 1.08812e9i 0.647419i
\(71\) 5.24579e8i 0.290750i −0.989377 0.145375i \(-0.953561\pi\)
0.989377 0.145375i \(-0.0464388\pi\)
\(72\) 8.58349e8i 0.443610i
\(73\) 2.59195e9 1.25029 0.625146 0.780508i \(-0.285039\pi\)
0.625146 + 0.780508i \(0.285039\pi\)
\(74\) 4.91810e9 2.21635
\(75\) 5.12184e8i 0.215834i
\(76\) −5.14065e9 3.49101e9i −2.02745 1.37684i
\(77\) −3.36634e9 −1.24367
\(78\) 7.49454e9i 2.59580i
\(79\) 4.48832e9i 1.45864i −0.684173 0.729320i \(-0.739837\pi\)
0.684173 0.729320i \(-0.260163\pi\)
\(80\) 3.74486e9 1.14284
\(81\) −3.96626e9 −1.13751
\(82\) 8.80686e9 2.37548
\(83\) 5.02264e9 1.27509 0.637546 0.770413i \(-0.279950\pi\)
0.637546 + 0.770413i \(0.279950\pi\)
\(84\) 8.61986e9i 2.06112i
\(85\) −3.22185e9 −0.726123
\(86\) 5.51677e9i 1.17272i
\(87\) 6.17539e8 0.123899
\(88\) 2.26964e10i 4.30075i
\(89\) 9.39863e8i 0.168312i −0.996453 0.0841559i \(-0.973181\pi\)
0.996453 0.0841559i \(-0.0268194\pi\)
\(90\) 8.07482e8i 0.136748i
\(91\) 6.29716e9i 1.00911i
\(92\) −2.53245e10 −3.84239
\(93\) 4.22350e9 0.607097
\(94\) 2.04283e10i 2.78351i
\(95\) 2.86274e9 + 1.94408e9i 0.369968 + 0.251245i
\(96\) 1.80572e10 2.21460
\(97\) 6.09834e9i 0.710155i 0.934837 + 0.355077i \(0.115545\pi\)
−0.934837 + 0.355077i \(0.884455\pi\)
\(98\) 6.59346e9i 0.729429i
\(99\) 2.49813e9 0.262687
\(100\) −4.90152e9 −0.490152
\(101\) 1.27170e10 1.20998 0.604991 0.796232i \(-0.293177\pi\)
0.604991 + 0.796232i \(0.293177\pi\)
\(102\) −3.59371e10 −3.25494
\(103\) 1.93526e10i 1.66937i 0.550728 + 0.834685i \(0.314350\pi\)
−0.550728 + 0.834685i \(0.685650\pi\)
\(104\) 4.24566e10 3.48962
\(105\) 4.80025e9i 0.376112i
\(106\) 9.88390e9 0.738583
\(107\) 5.13896e9i 0.366401i 0.983076 + 0.183200i \(0.0586457\pi\)
−0.983076 + 0.183200i \(0.941354\pi\)
\(108\) 3.24639e10i 2.20944i
\(109\) 2.51223e10i 1.63278i 0.577502 + 0.816389i \(0.304028\pi\)
−0.577502 + 0.816389i \(0.695972\pi\)
\(110\) 2.13514e10i 1.32576i
\(111\) −2.16963e10 −1.28757
\(112\) 3.50973e10 1.99152
\(113\) 7.95635e9i 0.431839i 0.976411 + 0.215919i \(0.0692749\pi\)
−0.976411 + 0.215919i \(0.930725\pi\)
\(114\) 3.19316e10 + 2.16847e10i 1.65843 + 1.12624i
\(115\) 1.41028e10 0.701157
\(116\) 5.90976e9i 0.281371i
\(117\) 4.67306e9i 0.213144i
\(118\) −2.67213e10 −1.16801
\(119\) −3.01956e10 −1.26534
\(120\) −3.23642e10 −1.30064
\(121\) 4.01180e10 1.54672
\(122\) 5.41549e10i 2.00373i
\(123\) −3.88516e10 −1.38001
\(124\) 4.04183e10i 1.37870i
\(125\) 2.72958e9 0.0894427
\(126\) 7.56782e9i 0.238297i
\(127\) 1.07829e10i 0.326375i 0.986595 + 0.163188i \(0.0521776\pi\)
−0.986595 + 0.163188i \(0.947822\pi\)
\(128\) 9.69595e9i 0.282189i
\(129\) 2.43374e10i 0.681279i
\(130\) −3.99405e10 −1.07571
\(131\) −4.37851e9 −0.113493 −0.0567466 0.998389i \(-0.518073\pi\)
−0.0567466 + 0.998389i \(0.518073\pi\)
\(132\) 1.69142e11i 4.22067i
\(133\) 2.68300e10 + 1.82202e10i 0.644706 + 0.437819i
\(134\) 1.10539e11 2.55852
\(135\) 1.80786e10i 0.403177i
\(136\) 2.03584e11i 4.37572i
\(137\) 1.50354e10 0.311539 0.155769 0.987793i \(-0.450214\pi\)
0.155769 + 0.987793i \(0.450214\pi\)
\(138\) 1.57305e11 3.14302
\(139\) 4.27580e10 0.824030 0.412015 0.911177i \(-0.364825\pi\)
0.412015 + 0.911177i \(0.364825\pi\)
\(140\) −4.59377e10 −0.854140
\(141\) 9.01198e10i 1.61705i
\(142\) −3.11831e10 −0.540103
\(143\) 1.23565e11i 2.06641i
\(144\) −2.60454e10 −0.420648
\(145\) 3.29104e9i 0.0513445i
\(146\) 1.54075e11i 2.32257i
\(147\) 2.90872e10i 0.423755i
\(148\) 2.07630e11i 2.92403i
\(149\) 5.62686e10 0.766187 0.383094 0.923710i \(-0.374859\pi\)
0.383094 + 0.923710i \(0.374859\pi\)
\(150\) 3.04462e10 0.400938
\(151\) 3.77210e10i 0.480505i 0.970710 + 0.240253i \(0.0772303\pi\)
−0.970710 + 0.240253i \(0.922770\pi\)
\(152\) −1.22844e11 + 1.80892e11i −1.51403 + 2.22947i
\(153\) 2.24079e10 0.267266
\(154\) 2.00108e11i 2.31026i
\(155\) 2.25082e10i 0.251584i
\(156\) −3.16401e11 −3.42464
\(157\) 4.56175e10 0.478226 0.239113 0.970992i \(-0.423143\pi\)
0.239113 + 0.970992i \(0.423143\pi\)
\(158\) −2.66803e11 −2.70960
\(159\) −4.36031e10 −0.429073
\(160\) 9.62322e10i 0.917742i
\(161\) 1.32173e11 1.22184
\(162\) 2.35770e11i 2.11307i
\(163\) 6.24608e10 0.542837 0.271419 0.962461i \(-0.412507\pi\)
0.271419 + 0.962461i \(0.412507\pi\)
\(164\) 3.71804e11i 3.13397i
\(165\) 9.41923e10i 0.770186i
\(166\) 2.98565e11i 2.36864i
\(167\) 1.96268e11i 1.51101i −0.655141 0.755506i \(-0.727391\pi\)
0.655141 0.755506i \(-0.272609\pi\)
\(168\) −3.03321e11 −2.26650
\(169\) −9.32857e10 −0.676677
\(170\) 1.91519e11i 1.34886i
\(171\) −1.99103e10 1.35210e10i −0.136175 0.0924761i
\(172\) 2.32905e11 1.54716
\(173\) 2.38984e11i 1.54219i −0.636719 0.771096i \(-0.719709\pi\)
0.636719 0.771096i \(-0.280291\pi\)
\(174\) 3.67090e10i 0.230158i
\(175\) 2.55819e10 0.155863
\(176\) −6.88692e11 −4.07814
\(177\) 1.17882e11 0.678547
\(178\) −5.58692e10 −0.312660
\(179\) 3.61356e11i 1.96639i 0.182553 + 0.983196i \(0.441564\pi\)
−0.182553 + 0.983196i \(0.558436\pi\)
\(180\) 3.40899e10 0.180411
\(181\) 2.17295e11i 1.11856i 0.828980 + 0.559278i \(0.188922\pi\)
−0.828980 + 0.559278i \(0.811078\pi\)
\(182\) −3.74328e11 −1.87454
\(183\) 2.38905e11i 1.16405i
\(184\) 8.91134e11i 4.22527i
\(185\) 1.15626e11i 0.533576i
\(186\) 2.51061e11i 1.12776i
\(187\) 5.92508e11 2.59111
\(188\) −8.62433e11 −3.67228
\(189\) 1.69435e11i 0.702577i
\(190\) 1.15564e11 1.70172e11i 0.466718 0.687260i
\(191\) −2.02384e11 −0.796175 −0.398087 0.917348i \(-0.630326\pi\)
−0.398087 + 0.917348i \(0.630326\pi\)
\(192\) 3.53834e11i 1.35610i
\(193\) 4.66910e10i 0.174360i −0.996193 0.0871800i \(-0.972214\pi\)
0.996193 0.0871800i \(-0.0277855\pi\)
\(194\) 3.62509e11 1.31920
\(195\) 1.76199e11 0.624927
\(196\) 2.78360e11 0.962335
\(197\) −2.25267e11 −0.759219 −0.379609 0.925147i \(-0.623942\pi\)
−0.379609 + 0.925147i \(0.623942\pi\)
\(198\) 1.48498e11i 0.487973i
\(199\) 3.69923e11 1.18535 0.592674 0.805442i \(-0.298072\pi\)
0.592674 + 0.805442i \(0.298072\pi\)
\(200\) 1.72478e11i 0.538994i
\(201\) −4.87643e11 −1.48635
\(202\) 7.55951e11i 2.24769i
\(203\) 3.08441e10i 0.0894729i
\(204\) 1.51718e12i 4.29424i
\(205\) 2.07052e11i 0.571886i
\(206\) 1.15039e12 3.10106
\(207\) −9.80844e10 −0.258076
\(208\) 1.28829e12i 3.30899i
\(209\) −5.26467e11 3.57523e11i −1.32020 0.896546i
\(210\) 2.85346e11 0.698675
\(211\) 1.60082e11i 0.382764i −0.981516 0.191382i \(-0.938703\pi\)
0.981516 0.191382i \(-0.0612970\pi\)
\(212\) 4.17275e11i 0.974412i
\(213\) 1.37565e11 0.313768
\(214\) 3.05480e11 0.680635
\(215\) −1.29701e11 −0.282326
\(216\) −1.14236e12 −2.42960
\(217\) 2.10950e11i 0.438411i
\(218\) 1.49337e12 3.03309
\(219\) 6.79707e11i 1.34928i
\(220\) 9.01406e11 1.74907
\(221\) 1.10836e12i 2.10242i
\(222\) 1.28971e12i 2.39182i
\(223\) 1.51101e11i 0.273995i −0.990571 0.136997i \(-0.956255\pi\)
0.990571 0.136997i \(-0.0437452\pi\)
\(224\) 9.01901e11i 1.59926i
\(225\) −1.89841e10 −0.0329213
\(226\) 4.72957e11 0.802194
\(227\) 3.98163e11i 0.660589i 0.943878 + 0.330294i \(0.107148\pi\)
−0.943878 + 0.330294i \(0.892852\pi\)
\(228\) 9.15476e11 1.34807e12i 1.48584 2.18796i
\(229\) 3.85348e10 0.0611894 0.0305947 0.999532i \(-0.490260\pi\)
0.0305947 + 0.999532i \(0.490260\pi\)
\(230\) 8.38325e11i 1.30249i
\(231\) 8.82782e11i 1.34213i
\(232\) 2.07956e11 0.309408
\(233\) −9.22953e11 −1.34400 −0.672001 0.740550i \(-0.734565\pi\)
−0.672001 + 0.740550i \(0.734565\pi\)
\(234\) 2.77785e11 0.395940
\(235\) 4.80274e11 0.670116
\(236\) 1.12811e12i 1.54096i
\(237\) 1.17701e12 1.57412
\(238\) 1.79494e12i 2.35053i
\(239\) −1.15557e12 −1.48186 −0.740930 0.671582i \(-0.765615\pi\)
−0.740930 + 0.671582i \(0.765615\pi\)
\(240\) 9.82046e11i 1.23332i
\(241\) 5.05527e10i 0.0621812i 0.999517 + 0.0310906i \(0.00989804\pi\)
−0.999517 + 0.0310906i \(0.990102\pi\)
\(242\) 2.38477e12i 2.87323i
\(243\) 2.76247e11i 0.326037i
\(244\) −2.28629e12 −2.64352
\(245\) −1.55014e11 −0.175606
\(246\) 2.30949e12i 2.56355i
\(247\) 6.68792e11 9.84823e11i 0.727456 1.07121i
\(248\) 1.42226e12 1.51608
\(249\) 1.31713e12i 1.37604i
\(250\) 1.62257e11i 0.166151i
\(251\) −8.20305e11 −0.823392 −0.411696 0.911321i \(-0.635063\pi\)
−0.411696 + 0.911321i \(0.635063\pi\)
\(252\) 3.19495e11 0.314385
\(253\) −2.59355e12 −2.50202
\(254\) 6.40978e11 0.606282
\(255\) 8.44892e11i 0.783610i
\(256\) −8.05302e11 −0.732417
\(257\) 4.40672e11i 0.393052i 0.980499 + 0.196526i \(0.0629660\pi\)
−0.980499 + 0.196526i \(0.937034\pi\)
\(258\) −1.44671e12 −1.26556
\(259\) 1.08366e12i 0.929810i
\(260\) 1.68619e12i 1.41919i
\(261\) 2.28891e10i 0.0188985i
\(262\) 2.60276e11i 0.210828i
\(263\) −1.04393e12 −0.829649 −0.414824 0.909902i \(-0.636157\pi\)
−0.414824 + 0.909902i \(0.636157\pi\)
\(264\) 5.95187e12 4.64124
\(265\) 2.32373e11i 0.177810i
\(266\) 1.08308e12 1.59488e12i 0.813303 1.19762i
\(267\) 2.46468e11 0.181637
\(268\) 4.66667e12i 3.37546i
\(269\) 1.40263e12i 0.995824i 0.867228 + 0.497912i \(0.165900\pi\)
−0.867228 + 0.497912i \(0.834100\pi\)
\(270\) 1.07466e12 0.748950
\(271\) 3.66620e11 0.250824 0.125412 0.992105i \(-0.459975\pi\)
0.125412 + 0.992105i \(0.459975\pi\)
\(272\) −6.17748e12 −4.14922
\(273\) 1.65136e12 1.08900
\(274\) 8.93763e11i 0.578721i
\(275\) −5.01978e11 −0.319169
\(276\) 6.64105e12i 4.14659i
\(277\) −1.33269e11 −0.0817206 −0.0408603 0.999165i \(-0.513010\pi\)
−0.0408603 + 0.999165i \(0.513010\pi\)
\(278\) 2.54170e12i 1.53074i
\(279\) 1.56544e11i 0.0926010i
\(280\) 1.61649e12i 0.939251i
\(281\) 9.05856e11i 0.517044i −0.966005 0.258522i \(-0.916764\pi\)
0.966005 0.258522i \(-0.0832355\pi\)
\(282\) 5.35707e12 3.00388
\(283\) −2.13661e11 −0.117705 −0.0588524 0.998267i \(-0.518744\pi\)
−0.0588524 + 0.998267i \(0.518744\pi\)
\(284\) 1.31647e12i 0.712559i
\(285\) −5.09813e11 + 7.50720e11i −0.271136 + 0.399258i
\(286\) 7.34519e12 3.83860
\(287\) 1.94051e12i 0.996569i
\(288\) 6.69292e11i 0.337795i
\(289\) 3.29872e12 1.63628
\(290\) −1.95633e11 −0.0953786
\(291\) −1.59922e12 −0.766377
\(292\) −6.50470e12 −3.06417
\(293\) 1.55492e12i 0.720061i −0.932941 0.360030i \(-0.882766\pi\)
0.932941 0.360030i \(-0.117234\pi\)
\(294\) −1.72906e12 −0.787177
\(295\) 6.28225e11i 0.281193i
\(296\) −7.30623e12 −3.21540
\(297\) 3.32471e12i 1.43870i
\(298\) 3.34483e12i 1.42329i
\(299\) 4.85156e12i 2.03014i
\(300\) 1.28537e12i 0.528957i
\(301\) −1.21557e12 −0.491981
\(302\) 2.24228e12 0.892597
\(303\) 3.33489e12i 1.30578i
\(304\) 5.48893e12 + 3.72753e12i 2.11407 + 1.43566i
\(305\) 1.27320e12 0.482387
\(306\) 1.33201e12i 0.496479i
\(307\) 1.35354e12i 0.496341i −0.968716 0.248171i \(-0.920171\pi\)
0.968716 0.248171i \(-0.0798294\pi\)
\(308\) 8.44809e12 3.04793
\(309\) −5.07498e12 −1.80153
\(310\) −1.33798e12 −0.467348
\(311\) 2.07598e12 0.713543 0.356772 0.934192i \(-0.383877\pi\)
0.356772 + 0.934192i \(0.383877\pi\)
\(312\) 1.11337e13i 3.76589i
\(313\) 1.92478e12 0.640706 0.320353 0.947298i \(-0.396198\pi\)
0.320353 + 0.947298i \(0.396198\pi\)
\(314\) 2.71168e12i 0.888363i
\(315\) −1.77922e11 −0.0573688
\(316\) 1.12638e13i 3.57478i
\(317\) 4.86195e11i 0.151885i −0.997112 0.0759424i \(-0.975803\pi\)
0.997112 0.0759424i \(-0.0241965\pi\)
\(318\) 2.59194e12i 0.797056i
\(319\) 6.05233e11i 0.183219i
\(320\) −1.88568e12 −0.561977
\(321\) −1.34763e12 −0.395409
\(322\) 7.85689e12i 2.26971i
\(323\) −4.72234e12 3.20693e12i −1.34321 0.912173i
\(324\) 9.95364e12 2.78777
\(325\) 9.39013e11i 0.258973i
\(326\) 3.71292e12i 1.00839i
\(327\) −6.58803e12 −1.76204
\(328\) −1.30833e13 −3.44626
\(329\) 4.50119e12 1.16774
\(330\) −5.59916e12 −1.43071
\(331\) 4.54318e12i 1.14346i −0.820443 0.571728i \(-0.806273\pi\)
0.820443 0.571728i \(-0.193727\pi\)
\(332\) −1.26047e13 −3.12495
\(333\) 8.04174e11i 0.196394i
\(334\) −1.16670e13 −2.80689
\(335\) 2.59879e12i 0.615952i
\(336\) 9.20386e12i 2.14918i
\(337\) 4.54534e12i 1.04572i 0.852417 + 0.522862i \(0.175136\pi\)
−0.852417 + 0.522862i \(0.824864\pi\)
\(338\) 5.54527e12i 1.25701i
\(339\) −2.08646e12 −0.466027
\(340\) 8.08549e12 1.77956
\(341\) 4.13934e12i 0.897757i
\(342\) −8.03744e11 + 1.18354e12i −0.171786 + 0.252961i
\(343\) −5.15266e12 −1.08533
\(344\) 8.19561e12i 1.70133i
\(345\) 3.69829e12i 0.756668i
\(346\) −1.42062e13 −2.86481
\(347\) −1.47844e11 −0.0293871 −0.0146936 0.999892i \(-0.504677\pi\)
−0.0146936 + 0.999892i \(0.504677\pi\)
\(348\) −1.54976e12 −0.303647
\(349\) 6.03142e11 0.116491 0.0582455 0.998302i \(-0.481449\pi\)
0.0582455 + 0.998302i \(0.481449\pi\)
\(350\) 1.52069e12i 0.289535i
\(351\) 6.21929e12 1.16736
\(352\) 1.76974e13i 3.27489i
\(353\) 5.87718e12 1.07225 0.536125 0.844139i \(-0.319888\pi\)
0.536125 + 0.844139i \(0.319888\pi\)
\(354\) 7.00735e12i 1.26048i
\(355\) 7.33122e11i 0.130027i
\(356\) 2.35866e12i 0.412492i
\(357\) 7.91843e12i 1.36552i
\(358\) 2.14804e13 3.65281
\(359\) −5.09133e12 −0.853806 −0.426903 0.904297i \(-0.640395\pi\)
−0.426903 + 0.904297i \(0.640395\pi\)
\(360\) 1.19958e12i 0.198388i
\(361\) 2.26090e12 + 5.69897e12i 0.368761 + 0.929524i
\(362\) 1.29169e13 2.07786
\(363\) 1.05205e13i 1.66918i
\(364\) 1.58032e13i 2.47308i
\(365\) 3.62235e12 0.559148
\(366\) 1.42015e13 2.16236
\(367\) −9.15489e12 −1.37506 −0.687532 0.726154i \(-0.741306\pi\)
−0.687532 + 0.726154i \(0.741306\pi\)
\(368\) 2.70402e13 4.00656
\(369\) 1.44004e12i 0.210495i
\(370\) 6.87325e12 0.991183
\(371\) 2.17783e12i 0.309852i
\(372\) −1.05992e13 −1.48785
\(373\) 5.60825e12i 0.776753i −0.921501 0.388377i \(-0.873036\pi\)
0.921501 0.388377i \(-0.126964\pi\)
\(374\) 3.52210e13i 4.81331i
\(375\) 7.15799e11i 0.0965239i
\(376\) 3.03478e13i 4.03821i
\(377\) −1.13217e12 −0.148663
\(378\) 1.00719e13 1.30512
\(379\) 1.48606e12i 0.190038i 0.995475 + 0.0950189i \(0.0302911\pi\)
−0.995475 + 0.0950189i \(0.969709\pi\)
\(380\) −7.18427e12 4.87883e12i −0.906703 0.615741i
\(381\) −2.82769e12 −0.352214
\(382\) 1.20305e13i 1.47899i
\(383\) 8.88899e12i 1.07859i 0.842115 + 0.539297i \(0.181310\pi\)
−0.842115 + 0.539297i \(0.818690\pi\)
\(384\) −2.54265e12 −0.304530
\(385\) −4.70460e12 −0.556185
\(386\) −2.77550e12 −0.323895
\(387\) 9.02065e11 0.103916
\(388\) 1.53043e13i 1.74042i
\(389\) −7.90273e12 −0.887215 −0.443608 0.896221i \(-0.646302\pi\)
−0.443608 + 0.896221i \(0.646302\pi\)
\(390\) 1.04739e13i 1.16088i
\(391\) −2.32638e13 −2.54563
\(392\) 9.79511e12i 1.05823i
\(393\) 1.14821e12i 0.122478i
\(394\) 1.33908e13i 1.41034i
\(395\) 6.27261e12i 0.652324i
\(396\) −6.26925e12 −0.643783
\(397\) 1.18480e13 1.20142 0.600708 0.799469i \(-0.294886\pi\)
0.600708 + 0.799469i \(0.294886\pi\)
\(398\) 2.19897e13i 2.20193i
\(399\) −4.77803e12 + 7.03584e12i −0.472481 + 0.695747i
\(400\) 5.23361e12 0.511094
\(401\) 1.25986e13i 1.21507i −0.794292 0.607536i \(-0.792158\pi\)
0.794292 0.607536i \(-0.207842\pi\)
\(402\) 2.89874e13i 2.76108i
\(403\) −7.74316e12 −0.728438
\(404\) −3.19144e13 −2.96538
\(405\) −5.54301e12 −0.508711
\(406\) −1.83349e12 −0.166207
\(407\) 2.12640e13i 1.90402i
\(408\) 5.33875e13 4.72214
\(409\) 6.20508e12i 0.542165i 0.962556 + 0.271082i \(0.0873816\pi\)
−0.962556 + 0.271082i \(0.912618\pi\)
\(410\) 1.23080e13 1.06235
\(411\) 3.94286e12i 0.336203i
\(412\) 4.85668e13i 4.09123i
\(413\) 5.88781e12i 0.490008i
\(414\) 5.83052e12i 0.479408i
\(415\) 7.01935e12 0.570238
\(416\) −3.31053e13 −2.65724
\(417\) 1.12128e13i 0.889268i
\(418\) −2.12526e13 + 3.12953e13i −1.66544 + 2.45243i
\(419\) 7.02354e12 0.543859 0.271929 0.962317i \(-0.412338\pi\)
0.271929 + 0.962317i \(0.412338\pi\)
\(420\) 1.20466e13i 0.921762i
\(421\) 1.70425e13i 1.28861i 0.764767 + 0.644306i \(0.222854\pi\)
−0.764767 + 0.644306i \(0.777146\pi\)
\(422\) −9.51592e12 −0.711031
\(423\) −3.34029e12 −0.246651
\(424\) −1.46833e13 −1.07151
\(425\) −4.50267e12 −0.324732
\(426\) 8.17739e12i 0.582863i
\(427\) 1.19326e13 0.840609
\(428\) 1.28966e13i 0.897961i
\(429\) −3.24035e13 −2.23000
\(430\) 7.70993e12i 0.524455i
\(431\) 5.47542e12i 0.368155i 0.982912 + 0.184078i \(0.0589298\pi\)
−0.982912 + 0.184078i \(0.941070\pi\)
\(432\) 3.46633e13i 2.30384i
\(433\) 9.97961e11i 0.0655653i 0.999463 + 0.0327827i \(0.0104369\pi\)
−0.999463 + 0.0327827i \(0.989563\pi\)
\(434\) −1.25397e13 −0.814402
\(435\) 8.63037e11 0.0554094
\(436\) 6.30465e13i 4.00155i
\(437\) 2.06708e13 + 1.40375e13i 1.29703 + 0.880810i
\(438\) 4.04045e13 2.50645
\(439\) 7.73022e12i 0.474099i 0.971498 + 0.237050i \(0.0761804\pi\)
−0.971498 + 0.237050i \(0.923820\pi\)
\(440\) 3.17192e13i 1.92336i
\(441\) 1.07812e12 0.0646358
\(442\) 6.58854e13 3.90551
\(443\) −3.31553e13 −1.94327 −0.971637 0.236479i \(-0.924007\pi\)
−0.971637 + 0.236479i \(0.924007\pi\)
\(444\) 5.44486e13 3.15553
\(445\) 1.31350e12i 0.0752714i
\(446\) −8.98202e12 −0.508979
\(447\) 1.47558e13i 0.826846i
\(448\) −1.76729e13 −0.979302
\(449\) 2.13987e12i 0.117262i −0.998280 0.0586309i \(-0.981326\pi\)
0.998280 0.0586309i \(-0.0186735\pi\)
\(450\) 1.12849e12i 0.0611554i
\(451\) 3.80774e13i 2.04073i
\(452\) 1.99671e13i 1.05833i
\(453\) −9.89188e12 −0.518547
\(454\) 2.36684e13 1.22712
\(455\) 8.80055e12i 0.451287i
\(456\) −4.74369e13 3.22143e13i −2.40598 1.63390i
\(457\) −4.90726e12 −0.246183 −0.123091 0.992395i \(-0.539281\pi\)
−0.123091 + 0.992395i \(0.539281\pi\)
\(458\) 2.29066e12i 0.113667i
\(459\) 2.98222e13i 1.46378i
\(460\) −3.53921e13 −1.71837
\(461\) −1.08774e13 −0.522422 −0.261211 0.965282i \(-0.584122\pi\)
−0.261211 + 0.965282i \(0.584122\pi\)
\(462\) −5.24760e13 −2.49317
\(463\) 2.42119e13 1.13795 0.568976 0.822354i \(-0.307340\pi\)
0.568976 + 0.822354i \(0.307340\pi\)
\(464\) 6.31015e12i 0.293393i
\(465\) 5.90252e12 0.271502
\(466\) 5.48640e13i 2.49665i
\(467\) 1.68030e13 0.756486 0.378243 0.925706i \(-0.376528\pi\)
0.378243 + 0.925706i \(0.376528\pi\)
\(468\) 1.17274e13i 0.522364i
\(469\) 2.43562e13i 1.07336i
\(470\) 2.85494e13i 1.24482i
\(471\) 1.19626e13i 0.516086i
\(472\) 3.96966e13 1.69451
\(473\) 2.38524e13 1.00746
\(474\) 6.99660e13i 2.92412i
\(475\) 4.00080e12 + 2.71694e12i 0.165455 + 0.112360i
\(476\) 7.57782e13 3.10106
\(477\) 1.61615e12i 0.0654469i
\(478\) 6.86917e13i 2.75274i
\(479\) −9.53778e12 −0.378242 −0.189121 0.981954i \(-0.560564\pi\)
−0.189121 + 0.981954i \(0.560564\pi\)
\(480\) 2.52358e13 0.990399
\(481\) 3.97769e13 1.54492
\(482\) 3.00505e12 0.115509
\(483\) 3.46608e13i 1.31857i
\(484\) −1.00679e14 −3.79065
\(485\) 8.52269e12i 0.317591i
\(486\) −1.64212e13 −0.605653
\(487\) 4.57912e13i 1.67162i −0.549021 0.835809i \(-0.684999\pi\)
0.549021 0.835809i \(-0.315001\pi\)
\(488\) 8.04514e13i 2.90693i
\(489\) 1.63796e13i 0.585813i
\(490\) 9.21464e12i 0.326210i
\(491\) 1.58975e13 0.557084 0.278542 0.960424i \(-0.410149\pi\)
0.278542 + 0.960424i \(0.410149\pi\)
\(492\) 9.75013e13 3.38209
\(493\) 5.42886e12i 0.186412i
\(494\) −5.85418e13 3.97556e13i −1.98990 1.35134i
\(495\) 3.49124e12 0.117477
\(496\) 4.31566e13i 1.43760i
\(497\) 6.87091e12i 0.226586i
\(498\) 7.82952e13 2.55616
\(499\) 1.95575e13 0.632135 0.316067 0.948737i \(-0.397637\pi\)
0.316067 + 0.948737i \(0.397637\pi\)
\(500\) −6.85009e12 −0.219203
\(501\) 5.14691e13 1.63064
\(502\) 4.87621e13i 1.52955i
\(503\) −5.92819e13 −1.84112 −0.920561 0.390600i \(-0.872268\pi\)
−0.920561 + 0.390600i \(0.872268\pi\)
\(504\) 1.12426e13i 0.345712i
\(505\) 1.77726e13 0.541121
\(506\) 1.54171e14i 4.64782i
\(507\) 2.44631e13i 0.730249i
\(508\) 2.70605e13i 0.799867i
\(509\) 3.30097e12i 0.0966169i −0.998832 0.0483084i \(-0.984617\pi\)
0.998832 0.0483084i \(-0.0153830\pi\)
\(510\) −5.02237e13 −1.45565
\(511\) 3.39492e13 0.974372
\(512\) 5.77989e13i 1.64274i
\(513\) −1.79949e13 + 2.64982e13i −0.506480 + 0.745812i
\(514\) 2.61953e13 0.730143
\(515\) 2.70460e13i 0.746565i
\(516\) 6.10766e13i 1.66965i
\(517\) −8.83239e13 −2.39125
\(518\) 6.44170e13 1.72724
\(519\) 6.26708e13 1.66429
\(520\) 5.93349e13 1.56061
\(521\) 3.21190e13i 0.836708i 0.908284 + 0.418354i \(0.137393\pi\)
−0.908284 + 0.418354i \(0.862607\pi\)
\(522\) 1.36062e12 0.0351062
\(523\) 6.91588e13i 1.76742i −0.468039 0.883708i \(-0.655039\pi\)
0.468039 0.883708i \(-0.344961\pi\)
\(524\) 1.09882e13 0.278145
\(525\) 6.70856e12i 0.168203i
\(526\) 6.20555e13i 1.54117i
\(527\) 3.71293e13i 0.913405i
\(528\) 1.80601e14i 4.40100i
\(529\) 6.04044e13 1.45811
\(530\) 1.38132e13 0.330304
\(531\) 4.36929e12i 0.103499i
\(532\) −6.73320e13 4.57251e13i −1.58002 1.07299i
\(533\) 7.12287e13 1.65584
\(534\) 1.46510e13i 0.337413i
\(535\) 7.18192e12i 0.163859i
\(536\) −1.64214e14 −3.71181
\(537\) −9.47613e13 −2.12207
\(538\) 8.33780e13 1.84987
\(539\) 2.85076e13 0.626637
\(540\) 4.53697e13i 0.988090i
\(541\) −7.45917e12 −0.160955 −0.0804775 0.996756i \(-0.525645\pi\)
−0.0804775 + 0.996756i \(0.525645\pi\)
\(542\) 2.17933e13i 0.465937i
\(543\) −5.69832e13 −1.20711
\(544\) 1.58743e14i 3.33197i
\(545\) 3.51095e13i 0.730201i
\(546\) 9.81631e13i 2.02295i
\(547\) 4.99021e13i 1.01902i 0.860465 + 0.509510i \(0.170173\pi\)
−0.860465 + 0.509510i \(0.829827\pi\)
\(548\) −3.77325e13 −0.763507
\(549\) −8.85504e12 −0.177553
\(550\) 2.98395e13i 0.592896i
\(551\) 3.27581e12 4.82376e12i 0.0645001 0.0949790i
\(552\) −2.33689e14 −4.55978
\(553\) 5.87878e13i 1.13674i
\(554\) 7.92205e12i 0.151806i
\(555\) −3.03215e13 −0.575819
\(556\) −1.07305e14 −2.01950
\(557\) −7.42251e13 −1.38444 −0.692221 0.721686i \(-0.743368\pi\)
−0.692221 + 0.721686i \(0.743368\pi\)
\(558\) 9.30560e12 0.172018
\(559\) 4.46189e13i 0.817448i
\(560\) 4.90500e13 0.890634
\(561\) 1.55378e14i 2.79625i
\(562\) −5.38477e13 −0.960473
\(563\) 1.01205e13i 0.178921i −0.995990 0.0894607i \(-0.971486\pi\)
0.995990 0.0894607i \(-0.0285143\pi\)
\(564\) 2.26163e14i 3.96301i
\(565\) 1.11193e13i 0.193124i
\(566\) 1.27009e13i 0.218651i
\(567\) −5.19498e13 −0.886480
\(568\) 4.63249e13 0.783561
\(569\) 5.53259e13i 0.927614i 0.885936 + 0.463807i \(0.153517\pi\)
−0.885936 + 0.463807i \(0.846483\pi\)
\(570\) 4.46257e13 + 3.03053e13i 0.741670 + 0.503668i
\(571\) −6.92313e13 −1.14057 −0.570285 0.821447i \(-0.693167\pi\)
−0.570285 + 0.821447i \(0.693167\pi\)
\(572\) 3.10096e14i 5.06427i
\(573\) 5.30727e13i 0.859207i
\(574\) 1.15352e14 1.85125
\(575\) 1.97092e13 0.313567
\(576\) 1.31149e13 0.206848
\(577\) −6.76743e12 −0.105814 −0.0529072 0.998599i \(-0.516849\pi\)
−0.0529072 + 0.998599i \(0.516849\pi\)
\(578\) 1.96089e14i 3.03958i
\(579\) 1.22442e13 0.188164
\(580\) 8.25914e12i 0.125833i
\(581\) 6.57862e13 0.993698
\(582\) 9.50638e13i 1.42364i
\(583\) 4.27342e13i 0.634501i
\(584\) 2.28891e14i 3.36950i
\(585\) 6.53080e12i 0.0953207i
\(586\) −9.24304e13 −1.33760
\(587\) 6.76963e13 0.971347 0.485673 0.874140i \(-0.338574\pi\)
0.485673 + 0.874140i \(0.338574\pi\)
\(588\) 7.29966e13i 1.03852i
\(589\) 2.24040e13 3.29908e13i 0.316046 0.465390i
\(590\) −3.73442e13 −0.522351
\(591\) 5.90737e13i 0.819326i
\(592\) 2.21697e14i 3.04896i
\(593\) −2.76940e12 −0.0377670 −0.0188835 0.999822i \(-0.506011\pi\)
−0.0188835 + 0.999822i \(0.506011\pi\)
\(594\) −1.97634e14 −2.67257
\(595\) −4.21996e13 −0.565879
\(596\) −1.41211e14 −1.87774
\(597\) 9.70079e13i 1.27919i
\(598\) −2.88396e14 −3.77123
\(599\) 1.88803e13i 0.244836i −0.992479 0.122418i \(-0.960935\pi\)
0.992479 0.122418i \(-0.0390648\pi\)
\(600\) −4.52303e13 −0.581665
\(601\) 6.91622e13i 0.882056i −0.897493 0.441028i \(-0.854614\pi\)
0.897493 0.441028i \(-0.145386\pi\)
\(602\) 7.22584e13i 0.913916i
\(603\) 1.80745e13i 0.226715i
\(604\) 9.46638e13i 1.17760i
\(605\) 5.60666e13 0.691716
\(606\) 1.98239e14 2.42564
\(607\) 8.87312e13i 1.07680i 0.842691 + 0.538398i \(0.180970\pi\)
−0.842691 + 0.538398i \(0.819030\pi\)
\(608\) 9.57867e13 1.41050e14i 1.15289 1.69767i
\(609\) 8.08850e12 0.0965565
\(610\) 7.56838e13i 0.896094i
\(611\) 1.65221e14i 1.94026i
\(612\) −5.62343e13 −0.655004
\(613\) 1.17400e14 1.35633 0.678163 0.734911i \(-0.262776\pi\)
0.678163 + 0.734911i \(0.262776\pi\)
\(614\) −8.04599e13 −0.922015
\(615\) −5.42968e13 −0.617161
\(616\) 2.97277e14i 3.35164i
\(617\) 7.47260e13 0.835692 0.417846 0.908518i \(-0.362785\pi\)
0.417846 + 0.908518i \(0.362785\pi\)
\(618\) 3.01677e14i 3.34657i
\(619\) 1.43701e14 1.58128 0.790638 0.612284i \(-0.209749\pi\)
0.790638 + 0.612284i \(0.209749\pi\)
\(620\) 5.64862e13i 0.616573i
\(621\) 1.30539e14i 1.41345i
\(622\) 1.23404e14i 1.32549i
\(623\) 1.23103e13i 0.131168i
\(624\) 3.37838e14 3.57096
\(625\) 3.81470e12 0.0400000
\(626\) 1.14416e14i 1.19019i
\(627\) 9.37562e13 1.38060e14i 0.967526 1.42472i
\(628\) −1.14481e14 −1.17202
\(629\) 1.90735e14i 1.93721i
\(630\) 1.05764e13i 0.106570i
\(631\) 4.72865e13 0.472705 0.236353 0.971667i \(-0.424048\pi\)
0.236353 + 0.971667i \(0.424048\pi\)
\(632\) 3.96358e14 3.93099
\(633\) 4.19797e13 0.413067
\(634\) −2.89013e13 −0.282145
\(635\) 1.50696e13i 0.145959i
\(636\) 1.09425e14 1.05156
\(637\) 5.33270e13i 0.508452i
\(638\) 3.59775e13 0.340351
\(639\) 5.09884e12i 0.0478594i
\(640\) 1.35505e13i 0.126199i
\(641\) 2.35362e13i 0.217494i −0.994069 0.108747i \(-0.965316\pi\)
0.994069 0.108747i \(-0.0346838\pi\)
\(642\) 8.01086e13i 0.734520i
\(643\) 2.13036e14 1.93820 0.969098 0.246677i \(-0.0793386\pi\)
0.969098 + 0.246677i \(0.0793386\pi\)
\(644\) −3.31699e14 −2.99443
\(645\) 3.40125e13i 0.304677i
\(646\) −1.90633e14 + 2.80714e14i −1.69447 + 2.49518i
\(647\) −2.01127e14 −1.77398 −0.886992 0.461786i \(-0.847209\pi\)
−0.886992 + 0.461786i \(0.847209\pi\)
\(648\) 3.50255e14i 3.06556i
\(649\) 1.15533e14i 1.00342i
\(650\) −5.58186e13 −0.481074
\(651\) 5.53192e13 0.473120
\(652\) −1.56750e14 −1.33036
\(653\) 5.64475e13 0.475422 0.237711 0.971336i \(-0.423603\pi\)
0.237711 + 0.971336i \(0.423603\pi\)
\(654\) 3.91618e14i 3.27321i
\(655\) −6.11916e12 −0.0507557
\(656\) 3.96994e14i 3.26787i
\(657\) −2.51934e13 −0.205807
\(658\) 2.67568e14i 2.16923i
\(659\) 6.32523e13i 0.508920i 0.967083 + 0.254460i \(0.0818977\pi\)
−0.967083 + 0.254460i \(0.918102\pi\)
\(660\) 2.36383e14i 1.88754i
\(661\) 2.11362e14i 1.67502i −0.546422 0.837510i \(-0.684010\pi\)
0.546422 0.837510i \(-0.315990\pi\)
\(662\) −2.70064e14 −2.12411
\(663\) −2.90655e14 −2.26887
\(664\) 4.43543e14i 3.43633i
\(665\) 3.74960e13 + 2.54635e13i 0.288321 + 0.195799i
\(666\) −4.78033e13 −0.364826
\(667\) 2.37634e13i 0.180003i
\(668\) 4.92551e14i 3.70313i
\(669\) 3.96244e13 0.295687
\(670\) 1.54482e14 1.14421
\(671\) −2.34145e14 −1.72136
\(672\) 2.36513e14 1.72587
\(673\) 2.61390e13i 0.189327i −0.995509 0.0946636i \(-0.969822\pi\)
0.995509 0.0946636i \(-0.0301775\pi\)
\(674\) 2.70193e14 1.94256
\(675\) 2.52656e13i 0.180306i
\(676\) 2.34108e14 1.65837
\(677\) 1.54762e14i 1.08823i −0.839010 0.544115i \(-0.816865\pi\)
0.839010 0.544115i \(-0.183135\pi\)
\(678\) 1.24027e14i 0.865703i
\(679\) 7.98758e13i 0.553434i
\(680\) 2.84517e14i 1.95688i
\(681\) −1.04413e14 −0.712887
\(682\) 2.46059e14 1.66769
\(683\) 1.74415e14i 1.17349i −0.809771 0.586746i \(-0.800409\pi\)
0.809771 0.586746i \(-0.199591\pi\)
\(684\) 4.99664e13 + 3.39321e13i 0.333732 + 0.226637i
\(685\) 2.10126e13 0.139324
\(686\) 3.06294e14i 2.01613i
\(687\) 1.01053e13i 0.0660337i
\(688\) −2.48685e14 −1.61327
\(689\) 7.99397e13 0.514833
\(690\) 2.19841e14 1.40560
\(691\) 2.28714e14 1.45179 0.725893 0.687808i \(-0.241427\pi\)
0.725893 + 0.687808i \(0.241427\pi\)
\(692\) 5.99750e14i 3.77955i
\(693\) 3.27203e13 0.204716
\(694\) 8.78845e12i 0.0545902i
\(695\) 5.97561e13 0.368517
\(696\) 5.45341e13i 0.333904i
\(697\) 3.41549e14i 2.07630i
\(698\) 3.58531e13i 0.216396i
\(699\) 2.42034e14i 1.45041i
\(700\) −6.41999e13 −0.381983
\(701\) −1.99743e14 −1.18000 −0.589999 0.807404i \(-0.700872\pi\)
−0.589999 + 0.807404i \(0.700872\pi\)
\(702\) 3.69699e14i 2.16852i
\(703\) −1.15091e14 + 1.69475e14i −0.670291 + 0.987029i
\(704\) 3.46783e14 2.00537
\(705\) 1.25946e14i 0.723168i
\(706\) 3.49363e14i 1.99183i
\(707\) 1.66567e14 0.942958
\(708\) −2.95833e14 −1.66296
\(709\) −4.30964e13 −0.240552 −0.120276 0.992740i \(-0.538378\pi\)
−0.120276 + 0.992740i \(0.538378\pi\)
\(710\) −4.35796e13 −0.241542
\(711\) 4.36258e13i 0.240102i
\(712\) 8.29981e13 0.453595
\(713\) 1.62524e14i 0.882000i
\(714\) −4.70703e14 −2.53662
\(715\) 1.72687e14i 0.924125i
\(716\) 9.06852e14i 4.81916i
\(717\) 3.03035e14i 1.59918i
\(718\) 3.02649e14i 1.58605i
\(719\) 3.33543e14 1.73583 0.867915 0.496713i \(-0.165460\pi\)
0.867915 + 0.496713i \(0.165460\pi\)
\(720\) −3.63996e13 −0.188119
\(721\) 2.53479e14i 1.30096i
\(722\) 3.38769e14 1.34397e14i 1.72671 0.685019i
\(723\) −1.32568e13 −0.0671040
\(724\) 5.45320e14i 2.74131i
\(725\) 4.59937e12i 0.0229619i
\(726\) 6.25379e14 3.10070
\(727\) 5.26018e13 0.259017 0.129509 0.991578i \(-0.458660\pi\)
0.129509 + 0.991578i \(0.458660\pi\)
\(728\) 5.56094e14 2.71951
\(729\) −1.61761e14 −0.785663
\(730\) 2.15327e14i 1.03869i
\(731\) 2.13953e14 1.02502
\(732\) 5.99552e14i 2.85280i
\(733\) −3.00849e14 −1.42177 −0.710884 0.703310i \(-0.751705\pi\)
−0.710884 + 0.703310i \(0.751705\pi\)
\(734\) 5.44203e14i 2.55435i
\(735\) 4.06506e13i 0.189509i
\(736\) 6.94857e14i 3.21741i
\(737\) 4.77926e14i 2.19798i
\(738\) −8.56014e13 −0.391020
\(739\) −3.13150e14 −1.42079 −0.710395 0.703804i \(-0.751484\pi\)
−0.710395 + 0.703804i \(0.751484\pi\)
\(740\) 2.90172e14i 1.30767i
\(741\) 2.58258e14 + 1.75383e14i 1.15601 + 0.785048i
\(742\) 1.29459e14 0.575589
\(743\) 1.56249e13i 0.0690038i −0.999405 0.0345019i \(-0.989016\pi\)
0.999405 0.0345019i \(-0.0109845\pi\)
\(744\) 3.72972e14i 1.63611i
\(745\) 7.86378e13 0.342649
\(746\) −3.33376e14 −1.44291
\(747\) −4.88193e13 −0.209889
\(748\) −1.48695e15 −6.35020
\(749\) 6.73099e13i 0.285542i
\(750\) 4.25499e13 0.179305
\(751\) 4.51396e14i 1.88955i 0.327719 + 0.944775i \(0.393720\pi\)
−0.327719 + 0.944775i \(0.606280\pi\)
\(752\) 9.20863e14 3.82918
\(753\) 2.15115e14i 0.888579i
\(754\) 6.73004e13i 0.276160i
\(755\) 5.27167e13i 0.214888i
\(756\) 4.25210e14i 1.72185i
\(757\) 1.19935e14 0.482467 0.241233 0.970467i \(-0.422448\pi\)
0.241233 + 0.970467i \(0.422448\pi\)
\(758\) 8.83372e13 0.353018
\(759\) 6.80127e14i 2.70011i
\(760\) −1.71679e14 + 2.52805e14i −0.677096 + 0.997051i
\(761\) 1.87180e14 0.733390 0.366695 0.930341i \(-0.380489\pi\)
0.366695 + 0.930341i \(0.380489\pi\)
\(762\) 1.68089e14i 0.654281i
\(763\) 3.29051e14i 1.27245i
\(764\) 5.07898e14 1.95123
\(765\) 3.13159e13 0.119525
\(766\) 5.28396e14 2.00362
\(767\) −2.16118e14 −0.814170
\(768\) 2.11181e14i 0.790403i
\(769\) −2.12256e14 −0.789275 −0.394637 0.918837i \(-0.629130\pi\)
−0.394637 + 0.918837i \(0.629130\pi\)
\(770\) 2.79660e14i 1.03318i
\(771\) −1.15561e14 −0.424170
\(772\) 1.17175e14i 0.427315i
\(773\) 1.66349e14i 0.602729i −0.953509 0.301364i \(-0.902558\pi\)
0.953509 0.301364i \(-0.0974420\pi\)
\(774\) 5.36223e13i 0.193037i
\(775\) 3.14562e13i 0.112512i
\(776\) −5.38537e14 −1.91384
\(777\) −2.84177e14 −1.00342
\(778\) 4.69769e14i 1.64811i
\(779\) −2.06093e14 + 3.03480e14i −0.718416 + 1.05790i
\(780\) −4.42184e14 −1.53155
\(781\) 1.34823e14i 0.463992i
\(782\) 1.38289e15i 4.72883i
\(783\) 3.04627e13 0.103505
\(784\) −2.97219e14 −1.00345
\(785\) 6.37523e13 0.213869
\(786\) −6.82543e13 −0.227519
\(787\) 2.93580e14i 0.972417i −0.873843 0.486208i \(-0.838380\pi\)
0.873843 0.486208i \(-0.161620\pi\)
\(788\) 5.65326e14 1.86066
\(789\) 2.73759e14i 0.895331i
\(790\) −3.72869e14 −1.21177
\(791\) 1.04212e14i 0.336539i
\(792\) 2.20606e14i 0.707933i
\(793\) 4.37998e14i 1.39671i
\(794\) 7.04293e14i 2.23178i
\(795\) −6.09371e13 −0.191887
\(796\) −9.28351e14 −2.90501
\(797\) 4.81601e14i 1.49760i 0.662797 + 0.748799i \(0.269369\pi\)
−0.662797 + 0.748799i \(0.730631\pi\)
\(798\) 4.18238e14 + 2.84025e14i 1.29244 + 0.877692i
\(799\) −7.92253e14 −2.43293
\(800\) 1.34489e14i 0.410427i
\(801\) 9.13534e12i 0.0277053i
\(802\) −7.48913e14 −2.25715
\(803\) −6.66163e14 −1.99527
\(804\) 1.22378e15 3.64270
\(805\) 1.84718e14 0.546423
\(806\) 4.60284e14i 1.35316i
\(807\) −3.67824e14 −1.07466
\(808\) 1.12303e15i 3.26086i
\(809\) 4.76554e14 1.37521 0.687606 0.726084i \(-0.258662\pi\)
0.687606 + 0.726084i \(0.258662\pi\)
\(810\) 3.29498e14i 0.944992i
\(811\) 2.15024e13i 0.0612890i −0.999530 0.0306445i \(-0.990244\pi\)
0.999530 0.0306445i \(-0.00975597\pi\)
\(812\) 7.74057e13i 0.219277i
\(813\) 9.61418e13i 0.270682i
\(814\) −1.26401e15 −3.53696
\(815\) 8.72916e13 0.242764
\(816\) 1.61997e15i 4.47771i
\(817\) −1.90105e14 1.29100e14i −0.522257 0.354664i
\(818\) 3.68855e14 1.00714
\(819\) 6.12075e13i 0.166106i
\(820\) 5.19612e14i 1.40156i
\(821\) 1.25085e14 0.335343 0.167672 0.985843i \(-0.446375\pi\)
0.167672 + 0.985843i \(0.446375\pi\)
\(822\) 2.34379e14 0.624539
\(823\) 4.08897e14 1.08296 0.541482 0.840712i \(-0.317863\pi\)
0.541482 + 0.840712i \(0.317863\pi\)
\(824\) −1.70900e15 −4.49890
\(825\) 1.31638e14i 0.344438i
\(826\) −3.49994e14 −0.910250
\(827\) 4.34380e14i 1.12290i −0.827509 0.561452i \(-0.810243\pi\)
0.827509 0.561452i \(-0.189757\pi\)
\(828\) 2.46151e14 0.632484
\(829\) 1.45668e14i 0.372043i −0.982546 0.186021i \(-0.940441\pi\)
0.982546 0.186021i \(-0.0595593\pi\)
\(830\) 4.17258e14i 1.05929i
\(831\) 3.49483e13i 0.0881903i
\(832\) 6.48701e14i 1.62715i
\(833\) 2.55709e14 0.637560
\(834\) 6.66531e14 1.65192
\(835\) 2.74294e14i 0.675746i
\(836\) 1.32121e15 + 8.97233e14i 3.23550 + 2.19722i
\(837\) 2.08342e14 0.507164
\(838\) 4.17507e14i 1.01028i
\(839\) 4.33256e14i 1.04216i 0.853507 + 0.521081i \(0.174471\pi\)
−0.853507 + 0.521081i \(0.825529\pi\)
\(840\) −4.23904e14 −1.01361
\(841\) 4.15162e14 0.986819
\(842\) 1.01307e15 2.39376
\(843\) 2.37550e14 0.557978
\(844\) 4.01740e14i 0.938064i
\(845\) −1.30371e14 −0.302619
\(846\) 1.98560e14i 0.458184i
\(847\) 5.25464e14 1.20539
\(848\) 4.45545e14i 1.01604i
\(849\) 5.60302e13i 0.127023i
\(850\) 2.67656e14i 0.603230i
\(851\) 8.34891e14i 1.87060i
\(852\) −3.45230e14 −0.768971
\(853\) 4.08862e14 0.905381 0.452691 0.891668i \(-0.350464\pi\)
0.452691 + 0.891668i \(0.350464\pi\)
\(854\) 7.09318e14i 1.56153i
\(855\) −2.78254e13 1.88962e13i −0.0608992 0.0413566i
\(856\) −4.53815e14 −0.987439
\(857\) 2.80853e14i 0.607541i −0.952745 0.303770i \(-0.901754\pi\)
0.952745 0.303770i \(-0.0982456\pi\)
\(858\) 1.92619e15i 4.14250i
\(859\) 3.11804e12 0.00666678 0.00333339 0.999994i \(-0.498939\pi\)
0.00333339 + 0.999994i \(0.498939\pi\)
\(860\) 3.25495e14 0.691913
\(861\) −5.08877e14 −1.07547
\(862\) 3.25480e14 0.683894
\(863\) 1.97761e14i 0.413130i 0.978433 + 0.206565i \(0.0662286\pi\)
−0.978433 + 0.206565i \(0.933771\pi\)
\(864\) 8.90748e14 1.85006
\(865\) 3.33991e14i 0.689690i
\(866\) 5.93227e13 0.121796
\(867\) 8.65051e14i 1.76582i
\(868\) 5.29396e14i 1.07444i
\(869\) 1.15355e15i 2.32776i
\(870\) 5.13023e13i 0.102930i
\(871\) 8.94021e14 1.78343
\(872\) −2.21852e15 −4.40029
\(873\) 5.92750e13i 0.116896i
\(874\) 8.34444e14 1.22875e15i 1.63621 2.40939i
\(875\) 3.57518e13 0.0697041
\(876\) 1.70578e15i 3.30676i
\(877\) 3.77353e14i 0.727360i 0.931524 + 0.363680i \(0.118480\pi\)
−0.931524 + 0.363680i \(0.881520\pi\)
\(878\) 4.59515e14 0.880698
\(879\) 4.07759e14 0.777068
\(880\) −9.62477e14 −1.82380
\(881\) −9.90761e14 −1.86676 −0.933382 0.358885i \(-0.883157\pi\)
−0.933382 + 0.358885i \(0.883157\pi\)
\(882\) 6.40875e13i 0.120069i
\(883\) 5.10654e13 0.0951312 0.0475656 0.998868i \(-0.484854\pi\)
0.0475656 + 0.998868i \(0.484854\pi\)
\(884\) 2.78152e15i 5.15254i
\(885\) 1.64745e14 0.303455
\(886\) 1.97088e15i 3.60987i
\(887\) 7.71062e14i 1.40434i −0.712011 0.702169i \(-0.752215\pi\)
0.712011 0.702169i \(-0.247785\pi\)
\(888\) 1.91597e15i 3.46996i
\(889\) 1.41234e14i 0.254349i
\(890\) −7.80795e13 −0.139826
\(891\) 1.01938e15 1.81529
\(892\) 3.79199e14i 0.671496i
\(893\) 7.03949e14 + 4.78051e14i 1.23961 + 0.841815i
\(894\) 8.77141e14 1.53597
\(895\) 5.05010e14i 0.879397i
\(896\) 1.26997e14i 0.219914i
\(897\) 1.27226e15 2.19086
\(898\) −1.27203e14 −0.217828
\(899\) −3.79267e13 −0.0645872
\(900\) 4.76421e13 0.0806824
\(901\) 3.83320e14i 0.645561i
\(902\) −2.26347e15 −3.79090
\(903\) 3.18770e14i 0.530931i
\(904\) −7.02615e14 −1.16379
\(905\) 3.03680e14i 0.500233i
\(906\) 5.88012e14i 0.963264i
\(907\) 1.60447e14i 0.261394i −0.991422 0.130697i \(-0.958279\pi\)
0.991422 0.130697i \(-0.0417215\pi\)
\(908\) 9.99221e14i 1.61895i
\(909\) −1.23608e14 −0.199171
\(910\) −5.23139e14 −0.838321
\(911\) 5.42354e13i 0.0864353i −0.999066 0.0432177i \(-0.986239\pi\)
0.999066 0.0432177i \(-0.0137609\pi\)
\(912\) −9.77500e14 + 1.43941e15i −1.54933 + 2.28144i
\(913\) −1.29088e15 −2.03485
\(914\) 2.91707e14i 0.457315i
\(915\) 3.33881e14i 0.520578i
\(916\) −9.67063e13 −0.149961
\(917\) −5.73495e13 −0.0884470
\(918\) −1.77275e15 −2.71915
\(919\) −2.42268e14 −0.369589 −0.184794 0.982777i \(-0.559162\pi\)
−0.184794 + 0.982777i \(0.559162\pi\)
\(920\) 1.24540e15i 1.88960i
\(921\) 3.54951e14 0.535636
\(922\) 6.46597e14i 0.970463i
\(923\) −2.52204e14 −0.376482
\(924\) 2.21541e15i 3.28923i
\(925\) 1.61592e14i 0.238622i
\(926\) 1.43925e15i 2.11389i
\(927\) 1.88104e14i 0.274789i
\(928\) −1.62153e14 −0.235605
\(929\) −3.73940e14 −0.540409 −0.270205 0.962803i \(-0.587091\pi\)
−0.270205 + 0.962803i \(0.587091\pi\)
\(930\) 3.50869e14i 0.504348i
\(931\) −2.27207e14 1.54296e14i −0.324844 0.220601i
\(932\) 2.31623e15 3.29383
\(933\) 5.44400e14i 0.770034i
\(934\) 9.98833e14i 1.40527i
\(935\) 8.28055e14 1.15878
\(936\) −4.12672e14 −0.574415
\(937\) −8.79489e14 −1.21768 −0.608839 0.793294i \(-0.708364\pi\)
−0.608839 + 0.793294i \(0.708364\pi\)
\(938\) 1.44783e15 1.99390
\(939\) 5.04750e14i 0.691431i
\(940\) −1.20529e15 −1.64229
\(941\) 1.35085e15i 1.83088i 0.402456 + 0.915439i \(0.368157\pi\)
−0.402456 + 0.915439i \(0.631843\pi\)
\(942\) 7.11106e14 0.958694
\(943\) 1.49504e15i 2.00491i
\(944\) 1.20454e15i 1.60680i
\(945\) 2.36792e14i 0.314202i
\(946\) 1.41788e15i 1.87147i
\(947\) −5.97770e14 −0.784845 −0.392423 0.919785i \(-0.628363\pi\)
−0.392423 + 0.919785i \(0.628363\pi\)
\(948\) −2.95380e15 −3.85779
\(949\) 1.24614e15i 1.61896i
\(950\) 1.61506e14 2.37823e14i 0.208723 0.307352i
\(951\) 1.27499e14 0.163909
\(952\) 2.66653e15i 3.41006i
\(953\) 1.25201e15i 1.59273i −0.604814 0.796366i \(-0.706753\pi\)
0.604814 0.796366i \(-0.293247\pi\)
\(954\) −9.60702e13 −0.121576
\(955\) −2.82840e14 −0.356060
\(956\) 2.90000e15 3.63169
\(957\) −1.58715e14 −0.197724
\(958\) 5.66963e14i 0.702631i
\(959\) 1.96933e14 0.242787
\(960\) 4.94498e14i 0.606468i
\(961\) 5.60238e14 0.683527
\(962\) 2.36450e15i 2.86988i
\(963\) 4.99500e13i 0.0603121i
\(964\) 1.26866e14i 0.152391i
\(965\) 6.52527e13i 0.0779762i
\(966\) 2.06038e15 2.44941
\(967\) −3.41450e14 −0.403826 −0.201913 0.979403i \(-0.564716\pi\)
−0.201913 + 0.979403i \(0.564716\pi\)
\(968\) 3.54277e15i 4.16837i
\(969\) 8.40980e14 1.23838e15i 0.984390 1.44955i
\(970\) 5.06622e14 0.589964
\(971\) 1.35206e15i 1.56639i 0.621774 + 0.783197i \(0.286412\pi\)
−0.621774 + 0.783197i \(0.713588\pi\)
\(972\) 6.93264e14i 0.799038i
\(973\) 5.60042e14 0.642179
\(974\) −2.72201e15 −3.10523
\(975\) 2.46245e14 0.279476
\(976\) 2.44119e15 2.75646
\(977\) 7.25298e14i 0.814786i −0.913253 0.407393i \(-0.866438\pi\)
0.913253 0.407393i \(-0.133562\pi\)
\(978\) 9.73668e14 1.08822
\(979\) 2.41557e14i 0.268600i
\(980\) 3.89020e14 0.430370
\(981\) 2.44185e14i 0.268766i
\(982\) 9.45008e14i 1.03485i
\(983\) 1.08785e15i 1.18523i −0.805486 0.592615i \(-0.798095\pi\)
0.805486 0.592615i \(-0.201905\pi\)
\(984\) 3.43094e15i 3.71910i
\(985\) −3.14821e14 −0.339533
\(986\) 3.22713e14 0.346283
\(987\) 1.18038e15i 1.26019i
\(988\) −1.67839e15 + 2.47149e15i −1.78282 + 2.62527i
\(989\) −9.36521e14 −0.989774
\(990\) 2.07533e14i 0.218228i
\(991\) 1.21165e15i 1.26768i 0.773466 + 0.633838i \(0.218521\pi\)
−0.773466 + 0.633838i \(0.781479\pi\)
\(992\) −1.10900e15 −1.15445
\(993\) 1.19139e15 1.23398
\(994\) −4.08434e14 −0.420911
\(995\) 5.16983e14 0.530104
\(996\) 3.30544e15i 3.37235i
\(997\) −1.93560e14 −0.196489 −0.0982447 0.995162i \(-0.531323\pi\)
−0.0982447 + 0.995162i \(0.531323\pi\)
\(998\) 1.16257e15i 1.17427i
\(999\) −1.07026e15 −1.07563
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 95.11.c.a.56.4 68
19.18 odd 2 inner 95.11.c.a.56.65 yes 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.11.c.a.56.4 68 1.1 even 1 trivial
95.11.c.a.56.65 yes 68 19.18 odd 2 inner