Properties

Label 9464.2.a.q
Level $9464$
Weight $2$
Character orbit 9464.a
Self dual yes
Analytic conductor $75.570$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9464,2,Mod(1,9464)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9464, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9464.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9464 = 2^{3} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9464.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,1,0,-5,0,2,0,-3,0,1,0,0,0,-5,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.5704204729\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 728)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{3} + ( - \beta - 2) q^{5} + q^{7} + (\beta - 2) q^{9} + (5 \beta - 2) q^{11} + ( - 3 \beta - 1) q^{15} - q^{17} + ( - 3 \beta + 2) q^{19} + \beta q^{21} + 2 q^{23} + 5 \beta q^{25} + ( - 4 \beta + 1) q^{27}+ \cdots + ( - 7 \beta + 9) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} - 5 q^{5} + 2 q^{7} - 3 q^{9} + q^{11} - 5 q^{15} - 2 q^{17} + q^{19} + q^{21} + 4 q^{23} + 5 q^{25} - 2 q^{27} - 5 q^{29} + 2 q^{31} + 13 q^{33} - 5 q^{35} + 10 q^{41} - 3 q^{43} + 5 q^{45}+ \cdots + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.618034
1.61803
0 −0.618034 0 −1.38197 0 1.00000 0 −2.61803 0
1.2 0 1.61803 0 −3.61803 0 1.00000 0 −0.381966 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9464.2.a.q 2
13.b even 2 1 9464.2.a.s 2
13.e even 6 2 728.2.s.b 4
52.i odd 6 2 1456.2.s.n 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
728.2.s.b 4 13.e even 6 2
1456.2.s.n 4 52.i odd 6 2
9464.2.a.q 2 1.a even 1 1 trivial
9464.2.a.s 2 13.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9464))\):

\( T_{3}^{2} - T_{3} - 1 \) Copy content Toggle raw display
\( T_{5}^{2} + 5T_{5} + 5 \) Copy content Toggle raw display
\( T_{11}^{2} - T_{11} - 31 \) Copy content Toggle raw display
\( T_{17} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - T - 1 \) Copy content Toggle raw display
$5$ \( T^{2} + 5T + 5 \) Copy content Toggle raw display
$7$ \( (T - 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - T - 31 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( (T + 1)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - T - 11 \) Copy content Toggle raw display
$23$ \( (T - 2)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 5T - 25 \) Copy content Toggle raw display
$31$ \( T^{2} - 2T - 19 \) Copy content Toggle raw display
$37$ \( T^{2} - 80 \) Copy content Toggle raw display
$41$ \( T^{2} - 10T + 20 \) Copy content Toggle raw display
$43$ \( T^{2} + 3T - 29 \) Copy content Toggle raw display
$47$ \( (T - 3)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 4T - 41 \) Copy content Toggle raw display
$59$ \( T^{2} - 10T + 5 \) Copy content Toggle raw display
$61$ \( (T + 6)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 2T - 19 \) Copy content Toggle raw display
$71$ \( T^{2} - 6T + 4 \) Copy content Toggle raw display
$73$ \( T^{2} - 12T - 44 \) Copy content Toggle raw display
$79$ \( T^{2} - 80 \) Copy content Toggle raw display
$83$ \( T^{2} - 2T - 19 \) Copy content Toggle raw display
$89$ \( T^{2} + 15T - 5 \) Copy content Toggle raw display
$97$ \( T^{2} + 13T - 59 \) Copy content Toggle raw display
show more
show less