Properties

Label 9464.2.a.c
Level $9464$
Weight $2$
Character orbit 9464.a
Self dual yes
Analytic conductor $75.570$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 9464 = 2^{3} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9464.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(75.5704204729\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 56)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - 2q^{5} + q^{7} - 3q^{9} + O(q^{10}) \) \( q - 2q^{5} + q^{7} - 3q^{9} + 4q^{11} - 6q^{17} - 8q^{19} - q^{25} + 6q^{29} - 8q^{31} - 2q^{35} + 2q^{37} - 2q^{41} - 4q^{43} + 6q^{45} + 8q^{47} + q^{49} + 6q^{53} - 8q^{55} - 6q^{61} - 3q^{63} + 4q^{67} + 8q^{71} - 10q^{73} + 4q^{77} + 16q^{79} + 9q^{81} - 8q^{83} + 12q^{85} + 6q^{89} + 16q^{95} + 6q^{97} - 12q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 −2.00000 0 1.00000 0 −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(7\) \(-1\)
\(13\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9464.2.a.c 1
13.b even 2 1 56.2.a.a 1
39.d odd 2 1 504.2.a.c 1
52.b odd 2 1 112.2.a.b 1
65.d even 2 1 1400.2.a.g 1
65.h odd 4 2 1400.2.g.g 2
91.b odd 2 1 392.2.a.d 1
91.r even 6 2 392.2.i.c 2
91.s odd 6 2 392.2.i.d 2
104.e even 2 1 448.2.a.d 1
104.h odd 2 1 448.2.a.e 1
143.d odd 2 1 6776.2.a.g 1
156.h even 2 1 1008.2.a.d 1
208.o odd 4 2 1792.2.b.d 2
208.p even 4 2 1792.2.b.i 2
260.g odd 2 1 2800.2.a.p 1
260.p even 4 2 2800.2.g.p 2
273.g even 2 1 3528.2.a.x 1
273.w odd 6 2 3528.2.s.t 2
273.ba even 6 2 3528.2.s.e 2
312.b odd 2 1 4032.2.a.bb 1
312.h even 2 1 4032.2.a.bk 1
364.h even 2 1 784.2.a.e 1
364.x even 6 2 784.2.i.g 2
364.bl odd 6 2 784.2.i.e 2
455.h odd 2 1 9800.2.a.u 1
728.b even 2 1 3136.2.a.p 1
728.l odd 2 1 3136.2.a.q 1
1092.d odd 2 1 7056.2.a.bo 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
56.2.a.a 1 13.b even 2 1
112.2.a.b 1 52.b odd 2 1
392.2.a.d 1 91.b odd 2 1
392.2.i.c 2 91.r even 6 2
392.2.i.d 2 91.s odd 6 2
448.2.a.d 1 104.e even 2 1
448.2.a.e 1 104.h odd 2 1
504.2.a.c 1 39.d odd 2 1
784.2.a.e 1 364.h even 2 1
784.2.i.e 2 364.bl odd 6 2
784.2.i.g 2 364.x even 6 2
1008.2.a.d 1 156.h even 2 1
1400.2.a.g 1 65.d even 2 1
1400.2.g.g 2 65.h odd 4 2
1792.2.b.d 2 208.o odd 4 2
1792.2.b.i 2 208.p even 4 2
2800.2.a.p 1 260.g odd 2 1
2800.2.g.p 2 260.p even 4 2
3136.2.a.p 1 728.b even 2 1
3136.2.a.q 1 728.l odd 2 1
3528.2.a.x 1 273.g even 2 1
3528.2.s.e 2 273.ba even 6 2
3528.2.s.t 2 273.w odd 6 2
4032.2.a.bb 1 312.b odd 2 1
4032.2.a.bk 1 312.h even 2 1
6776.2.a.g 1 143.d odd 2 1
7056.2.a.bo 1 1092.d odd 2 1
9464.2.a.c 1 1.a even 1 1 trivial
9800.2.a.u 1 455.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9464))\):

\( T_{3} \)
\( T_{5} + 2 \)
\( T_{11} - 4 \)
\( T_{17} + 6 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \)
$3$ \( T \)
$5$ \( 2 + T \)
$7$ \( -1 + T \)
$11$ \( -4 + T \)
$13$ \( T \)
$17$ \( 6 + T \)
$19$ \( 8 + T \)
$23$ \( T \)
$29$ \( -6 + T \)
$31$ \( 8 + T \)
$37$ \( -2 + T \)
$41$ \( 2 + T \)
$43$ \( 4 + T \)
$47$ \( -8 + T \)
$53$ \( -6 + T \)
$59$ \( T \)
$61$ \( 6 + T \)
$67$ \( -4 + T \)
$71$ \( -8 + T \)
$73$ \( 10 + T \)
$79$ \( -16 + T \)
$83$ \( 8 + T \)
$89$ \( -6 + T \)
$97$ \( -6 + T \)
show more
show less