Properties

Label 9464.2.a.bb
Level $9464$
Weight $2$
Character orbit 9464.a
Self dual yes
Analytic conductor $75.570$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [9464,2,Mod(1,9464)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(9464, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("9464.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 9464 = 2^{3} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9464.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,3,0,-5,0,4,0,5,0,-1,0,0,0,11,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.5704204729\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.21801.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 7x^{2} + 2x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 728)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{3} + ( - \beta_1 - 1) q^{5} + q^{7} + (\beta_{2} - \beta_1 + 2) q^{9} + (\beta_{2} + \beta_1) q^{11} + (\beta_{2} + \beta_1 + 3) q^{15} + ( - \beta_{3} + \beta_{2} + \beta_1 + 3) q^{17}+ \cdots + ( - \beta_{3} + 5) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{3} - 5 q^{5} + 4 q^{7} + 5 q^{9} - q^{11} + 11 q^{15} + 12 q^{17} - 3 q^{19} + 3 q^{21} + 6 q^{23} + q^{25} + 12 q^{27} + 11 q^{29} + 4 q^{31} - 13 q^{33} - 5 q^{35} - 8 q^{37} + 2 q^{41} + 17 q^{43}+ \cdots + 21 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 7x^{2} + 2x + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 6\nu + 1 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 7\beta _1 + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.97504
0.905631
−0.672261
−2.20841
0 −1.97504 0 −3.97504 0 1.00000 0 0.900769 0
1.2 0 0.0943695 0 −1.90563 0 1.00000 0 −2.99109 0
1.3 0 1.67226 0 −0.327739 0 1.00000 0 −0.203544 0
1.4 0 3.20841 0 1.20841 0 1.00000 0 7.29387 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9464.2.a.bb 4
13.b even 2 1 9464.2.a.bc 4
13.c even 3 2 728.2.s.e 8
52.j odd 6 2 1456.2.s.r 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
728.2.s.e 8 13.c even 3 2
1456.2.s.r 8 52.j odd 6 2
9464.2.a.bb 4 1.a even 1 1 trivial
9464.2.a.bc 4 13.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9464))\):

\( T_{3}^{4} - 3T_{3}^{3} - 4T_{3}^{2} + 11T_{3} - 1 \) Copy content Toggle raw display
\( T_{5}^{4} + 5T_{5}^{3} + 2T_{5}^{2} - 9T_{5} - 3 \) Copy content Toggle raw display
\( T_{11}^{4} + T_{11}^{3} - 23T_{11}^{2} - 36T_{11} + 48 \) Copy content Toggle raw display
\( T_{17}^{4} - 12T_{17}^{3} + 11T_{17}^{2} + 280T_{17} - 796 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 3 T^{3} + \cdots - 1 \) Copy content Toggle raw display
$5$ \( T^{4} + 5 T^{3} + \cdots - 3 \) Copy content Toggle raw display
$7$ \( (T - 1)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + T^{3} + \cdots + 48 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} - 12 T^{3} + \cdots - 796 \) Copy content Toggle raw display
$19$ \( T^{4} + 3 T^{3} + \cdots - 64 \) Copy content Toggle raw display
$23$ \( T^{4} - 6 T^{3} + \cdots - 172 \) Copy content Toggle raw display
$29$ \( T^{4} - 11 T^{3} + \cdots - 2804 \) Copy content Toggle raw display
$31$ \( T^{4} - 4 T^{3} + \cdots - 12 \) Copy content Toggle raw display
$37$ \( (T^{2} + 4 T - 48)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} - 2 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$43$ \( T^{4} - 17 T^{3} + \cdots - 5184 \) Copy content Toggle raw display
$47$ \( T^{4} + 16 T^{3} + \cdots - 1284 \) Copy content Toggle raw display
$53$ \( T^{4} - 24 T^{3} + \cdots - 1616 \) Copy content Toggle raw display
$59$ \( T^{4} + 4 T^{3} + \cdots + 61 \) Copy content Toggle raw display
$61$ \( T^{4} - 8 T^{3} + \cdots + 100 \) Copy content Toggle raw display
$67$ \( T^{4} - 22 T^{3} + \cdots - 716 \) Copy content Toggle raw display
$71$ \( T^{4} + 4 T^{3} + \cdots + 1676 \) Copy content Toggle raw display
$73$ \( (T^{2} - 52)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + 8 T^{3} + \cdots + 17408 \) Copy content Toggle raw display
$83$ \( T^{4} - 12 T^{3} + \cdots - 16 \) Copy content Toggle raw display
$89$ \( T^{4} + 15 T^{3} + \cdots - 4 \) Copy content Toggle raw display
$97$ \( T^{4} - T^{3} + \cdots + 4924 \) Copy content Toggle raw display
show more
show less