Properties

Label 9450.2.a.i
Level 9450
Weight 2
Character orbit 9450.a
Self dual yes
Analytic conductor 75.459
Analytic rank 0
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 9450 = 2 \cdot 3^{3} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 9450.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(75.4586299101\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1890)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} + q^{4} - q^{7} - q^{8} + O(q^{10}) \) \( q - q^{2} + q^{4} - q^{7} - q^{8} - 3q^{11} + 5q^{13} + q^{14} + q^{16} - 4q^{17} + q^{19} + 3q^{22} - 8q^{23} - 5q^{26} - q^{28} - 10q^{29} - 8q^{31} - q^{32} + 4q^{34} - 4q^{37} - q^{38} - 9q^{41} + q^{43} - 3q^{44} + 8q^{46} + 13q^{47} + q^{49} + 5q^{52} + 3q^{53} + q^{56} + 10q^{58} + 14q^{59} + 6q^{61} + 8q^{62} + q^{64} - 11q^{67} - 4q^{68} + 7q^{73} + 4q^{74} + q^{76} + 3q^{77} - 10q^{79} + 9q^{82} + 15q^{83} - q^{86} + 3q^{88} + 11q^{89} - 5q^{91} - 8q^{92} - 13q^{94} + 18q^{97} - q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 0 1.00000 0 0 −1.00000 −1.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9450.2.a.i 1
3.b odd 2 1 9450.2.a.cv 1
5.b even 2 1 9450.2.a.de 1
5.c odd 4 2 1890.2.g.g yes 2
15.d odd 2 1 9450.2.a.bt 1
15.e even 4 2 1890.2.g.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1890.2.g.e 2 15.e even 4 2
1890.2.g.g yes 2 5.c odd 4 2
9450.2.a.i 1 1.a even 1 1 trivial
9450.2.a.bt 1 15.d odd 2 1
9450.2.a.cv 1 3.b odd 2 1
9450.2.a.de 1 5.b even 2 1

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(1\)
\(5\) \(-1\)
\(7\) \(1\)

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9450))\):

\( T_{11} + 3 \)
\( T_{13} - 5 \)
\( T_{17} + 4 \)
\( T_{19} - 1 \)