# Properties

 Label 9450.2.a.cu Level $9450$ Weight $2$ Character orbit 9450.a Self dual yes Analytic conductor $75.459$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [9450,2,Mod(1,9450)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(9450, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("9450.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$9450 = 2 \cdot 3^{3} \cdot 5^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 9450.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$75.4586299101$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 378) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + q^{2} + q^{4} - q^{7} + q^{8}+O(q^{10})$$ q + q^2 + q^4 - q^7 + q^8 $$q + q^{2} + q^{4} - q^{7} + q^{8} + 3 q^{11} + 4 q^{13} - q^{14} + q^{16} + 6 q^{17} - 7 q^{19} + 3 q^{22} + 3 q^{23} + 4 q^{26} - q^{28} + 5 q^{31} + q^{32} + 6 q^{34} + 7 q^{37} - 7 q^{38} - 9 q^{41} + 10 q^{43} + 3 q^{44} + 3 q^{46} - 6 q^{47} + q^{49} + 4 q^{52} - 12 q^{53} - q^{56} - 6 q^{59} + 8 q^{61} + 5 q^{62} + q^{64} + 4 q^{67} + 6 q^{68} + 9 q^{71} - 2 q^{73} + 7 q^{74} - 7 q^{76} - 3 q^{77} - 10 q^{79} - 9 q^{82} + 10 q^{86} + 3 q^{88} + 15 q^{89} - 4 q^{91} + 3 q^{92} - 6 q^{94} - 8 q^{97} + q^{98}+O(q^{100})$$ q + q^2 + q^4 - q^7 + q^8 + 3 * q^11 + 4 * q^13 - q^14 + q^16 + 6 * q^17 - 7 * q^19 + 3 * q^22 + 3 * q^23 + 4 * q^26 - q^28 + 5 * q^31 + q^32 + 6 * q^34 + 7 * q^37 - 7 * q^38 - 9 * q^41 + 10 * q^43 + 3 * q^44 + 3 * q^46 - 6 * q^47 + q^49 + 4 * q^52 - 12 * q^53 - q^56 - 6 * q^59 + 8 * q^61 + 5 * q^62 + q^64 + 4 * q^67 + 6 * q^68 + 9 * q^71 - 2 * q^73 + 7 * q^74 - 7 * q^76 - 3 * q^77 - 10 * q^79 - 9 * q^82 + 10 * q^86 + 3 * q^88 + 15 * q^89 - 4 * q^91 + 3 * q^92 - 6 * q^94 - 8 * q^97 + q^98

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
1.00000 0 1.00000 0 0 −1.00000 1.00000 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$1$$
$$5$$ $$1$$
$$7$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9450.2.a.cu 1
3.b odd 2 1 9450.2.a.h 1
5.b even 2 1 378.2.a.b 1
15.d odd 2 1 378.2.a.g yes 1
20.d odd 2 1 3024.2.a.c 1
35.c odd 2 1 2646.2.a.n 1
45.h odd 6 2 1134.2.f.b 2
45.j even 6 2 1134.2.f.o 2
60.h even 2 1 3024.2.a.bb 1
105.g even 2 1 2646.2.a.q 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
378.2.a.b 1 5.b even 2 1
378.2.a.g yes 1 15.d odd 2 1
1134.2.f.b 2 45.h odd 6 2
1134.2.f.o 2 45.j even 6 2
2646.2.a.n 1 35.c odd 2 1
2646.2.a.q 1 105.g even 2 1
3024.2.a.c 1 20.d odd 2 1
3024.2.a.bb 1 60.h even 2 1
9450.2.a.h 1 3.b odd 2 1
9450.2.a.cu 1 1.a even 1 1 trivial

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(9450))$$:

 $$T_{11} - 3$$ T11 - 3 $$T_{13} - 4$$ T13 - 4 $$T_{17} - 6$$ T17 - 6 $$T_{19} + 7$$ T19 + 7

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T - 1$$
$3$ $$T$$
$5$ $$T$$
$7$ $$T + 1$$
$11$ $$T - 3$$
$13$ $$T - 4$$
$17$ $$T - 6$$
$19$ $$T + 7$$
$23$ $$T - 3$$
$29$ $$T$$
$31$ $$T - 5$$
$37$ $$T - 7$$
$41$ $$T + 9$$
$43$ $$T - 10$$
$47$ $$T + 6$$
$53$ $$T + 12$$
$59$ $$T + 6$$
$61$ $$T - 8$$
$67$ $$T - 4$$
$71$ $$T - 9$$
$73$ $$T + 2$$
$79$ $$T + 10$$
$83$ $$T$$
$89$ $$T - 15$$
$97$ $$T + 8$$