Properties

Label 945.2.g
Level 945
Weight 2
Character orbit g
Rep. character \(\chi_{945}(944,\cdot)\)
Character field \(\Q\)
Dimension 64
Newform subspaces 2
Sturm bound 288
Trace bound 25

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 945 = 3^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 945.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 105 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(288\)
Trace bound: \(25\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(945, [\chi])\).

Total New Old
Modular forms 156 64 92
Cusp forms 132 64 68
Eisenstein series 24 0 24

Trace form

\( 64q + 64q^{4} + O(q^{10}) \) \( 64q + 64q^{4} + 64q^{16} - 8q^{25} + 48q^{46} - 44q^{49} + 112q^{64} - 48q^{70} - 40q^{79} + 20q^{85} + 20q^{91} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(945, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
945.2.g.a \(32\) \(7.546\) None \(0\) \(0\) \(0\) \(0\)
945.2.g.b \(32\) \(7.546\) None \(0\) \(0\) \(0\) \(0\)

Decomposition of \(S_{2}^{\mathrm{old}}(945, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(945, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(315, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database