Properties

Label 945.2.d.c.379.7
Level $945$
Weight $2$
Character 945.379
Analytic conductor $7.546$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [945,2,Mod(379,945)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(945, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("945.379");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 945 = 3^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 945.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.54586299101\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.49787136.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 379.7
Root \(1.09445 - 0.895644i\) of defining polynomial
Character \(\chi\) \(=\) 945.379
Dual form 945.2.d.c.379.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.18890i q^{2} -2.79129 q^{4} +(-2.18890 + 0.456850i) q^{5} -1.00000i q^{7} -1.73205i q^{8} +(-1.00000 - 4.79129i) q^{10} -1.73205 q^{11} -4.79129i q^{13} +2.18890 q^{14} -1.79129 q^{16} -5.65300i q^{17} +6.79129 q^{19} +(6.10985 - 1.27520i) q^{20} -3.79129i q^{22} +4.83465i q^{23} +(4.58258 - 2.00000i) q^{25} +10.4877 q^{26} +2.79129i q^{28} -3.00725 q^{29} -8.58258 q^{31} -7.38505i q^{32} +12.3739 q^{34} +(0.456850 + 2.18890i) q^{35} -10.1652i q^{37} +14.8655i q^{38} +(0.791288 + 3.79129i) q^{40} +9.11710 q^{41} +1.00000i q^{43} +4.83465 q^{44} -10.5826 q^{46} +1.73205i q^{47} -1.00000 q^{49} +(4.37780 + 10.0308i) q^{50} +13.3739i q^{52} -6.56670i q^{53} +(3.79129 - 0.791288i) q^{55} -1.73205 q^{56} -6.58258i q^{58} +7.74655 q^{59} +4.79129 q^{61} -18.7864i q^{62} +12.5826 q^{64} +(2.18890 + 10.4877i) q^{65} +1.37386i q^{67} +15.7792i q^{68} +(-4.79129 + 1.00000i) q^{70} -1.17985 q^{71} +4.58258i q^{73} +22.2505 q^{74} -18.9564 q^{76} +1.73205i q^{77} -3.37386 q^{79} +(3.92095 - 0.818350i) q^{80} +19.9564i q^{82} -17.4159i q^{83} +(2.58258 + 12.3739i) q^{85} -2.18890 q^{86} +3.00000i q^{88} -8.66025 q^{89} -4.79129 q^{91} -13.4949i q^{92} -3.79129 q^{94} +(-14.8655 + 3.10260i) q^{95} -1.37386i q^{97} -2.18890i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{4} - 8 q^{10} + 4 q^{16} + 36 q^{19} - 32 q^{31} + 44 q^{34} - 12 q^{40} - 48 q^{46} - 8 q^{49} + 12 q^{55} + 20 q^{61} + 64 q^{64} - 20 q^{70} - 60 q^{76} + 28 q^{79} - 16 q^{85} - 20 q^{91}+ \cdots - 12 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/945\mathbb{Z}\right)^\times\).

\(n\) \(136\) \(596\) \(757\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.18890i 1.54779i 0.633316 + 0.773893i \(0.281693\pi\)
−0.633316 + 0.773893i \(0.718307\pi\)
\(3\) 0 0
\(4\) −2.79129 −1.39564
\(5\) −2.18890 + 0.456850i −0.978906 + 0.204310i
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 1.73205i 0.612372i
\(9\) 0 0
\(10\) −1.00000 4.79129i −0.316228 1.51514i
\(11\) −1.73205 −0.522233 −0.261116 0.965307i \(-0.584091\pi\)
−0.261116 + 0.965307i \(0.584091\pi\)
\(12\) 0 0
\(13\) 4.79129i 1.32886i −0.747349 0.664432i \(-0.768673\pi\)
0.747349 0.664432i \(-0.231327\pi\)
\(14\) 2.18890 0.585008
\(15\) 0 0
\(16\) −1.79129 −0.447822
\(17\) 5.65300i 1.37105i −0.728047 0.685527i \(-0.759572\pi\)
0.728047 0.685527i \(-0.240428\pi\)
\(18\) 0 0
\(19\) 6.79129 1.55803 0.779014 0.627006i \(-0.215720\pi\)
0.779014 + 0.627006i \(0.215720\pi\)
\(20\) 6.10985 1.27520i 1.36620 0.285144i
\(21\) 0 0
\(22\) 3.79129i 0.808305i
\(23\) 4.83465i 1.00809i 0.863676 + 0.504047i \(0.168156\pi\)
−0.863676 + 0.504047i \(0.831844\pi\)
\(24\) 0 0
\(25\) 4.58258 2.00000i 0.916515 0.400000i
\(26\) 10.4877 2.05680
\(27\) 0 0
\(28\) 2.79129i 0.527504i
\(29\) −3.00725 −0.558433 −0.279216 0.960228i \(-0.590075\pi\)
−0.279216 + 0.960228i \(0.590075\pi\)
\(30\) 0 0
\(31\) −8.58258 −1.54148 −0.770738 0.637152i \(-0.780112\pi\)
−0.770738 + 0.637152i \(0.780112\pi\)
\(32\) 7.38505i 1.30551i
\(33\) 0 0
\(34\) 12.3739 2.12210
\(35\) 0.456850 + 2.18890i 0.0772218 + 0.369992i
\(36\) 0 0
\(37\) 10.1652i 1.67114i −0.549384 0.835570i \(-0.685137\pi\)
0.549384 0.835570i \(-0.314863\pi\)
\(38\) 14.8655i 2.41150i
\(39\) 0 0
\(40\) 0.791288 + 3.79129i 0.125114 + 0.599455i
\(41\) 9.11710 1.42385 0.711926 0.702254i \(-0.247823\pi\)
0.711926 + 0.702254i \(0.247823\pi\)
\(42\) 0 0
\(43\) 1.00000i 0.152499i 0.997089 + 0.0762493i \(0.0242945\pi\)
−0.997089 + 0.0762493i \(0.975706\pi\)
\(44\) 4.83465 0.728851
\(45\) 0 0
\(46\) −10.5826 −1.56032
\(47\) 1.73205i 0.252646i 0.991989 + 0.126323i \(0.0403175\pi\)
−0.991989 + 0.126323i \(0.959682\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 4.37780 + 10.0308i 0.619115 + 1.41857i
\(51\) 0 0
\(52\) 13.3739i 1.85462i
\(53\) 6.56670i 0.902006i −0.892522 0.451003i \(-0.851066\pi\)
0.892522 0.451003i \(-0.148934\pi\)
\(54\) 0 0
\(55\) 3.79129 0.791288i 0.511217 0.106697i
\(56\) −1.73205 −0.231455
\(57\) 0 0
\(58\) 6.58258i 0.864335i
\(59\) 7.74655 1.00852 0.504258 0.863553i \(-0.331766\pi\)
0.504258 + 0.863553i \(0.331766\pi\)
\(60\) 0 0
\(61\) 4.79129 0.613462 0.306731 0.951796i \(-0.400765\pi\)
0.306731 + 0.951796i \(0.400765\pi\)
\(62\) 18.7864i 2.38588i
\(63\) 0 0
\(64\) 12.5826 1.57282
\(65\) 2.18890 + 10.4877i 0.271500 + 1.30083i
\(66\) 0 0
\(67\) 1.37386i 0.167844i 0.996472 + 0.0839221i \(0.0267447\pi\)
−0.996472 + 0.0839221i \(0.973255\pi\)
\(68\) 15.7792i 1.91350i
\(69\) 0 0
\(70\) −4.79129 + 1.00000i −0.572668 + 0.119523i
\(71\) −1.17985 −0.140022 −0.0700112 0.997546i \(-0.522304\pi\)
−0.0700112 + 0.997546i \(0.522304\pi\)
\(72\) 0 0
\(73\) 4.58258i 0.536350i 0.963370 + 0.268175i \(0.0864205\pi\)
−0.963370 + 0.268175i \(0.913579\pi\)
\(74\) 22.2505 2.58657
\(75\) 0 0
\(76\) −18.9564 −2.17445
\(77\) 1.73205i 0.197386i
\(78\) 0 0
\(79\) −3.37386 −0.379589 −0.189795 0.981824i \(-0.560782\pi\)
−0.189795 + 0.981824i \(0.560782\pi\)
\(80\) 3.92095 0.818350i 0.438376 0.0914943i
\(81\) 0 0
\(82\) 19.9564i 2.20382i
\(83\) 17.4159i 1.91164i −0.293955 0.955819i \(-0.594971\pi\)
0.293955 0.955819i \(-0.405029\pi\)
\(84\) 0 0
\(85\) 2.58258 + 12.3739i 0.280120 + 1.34213i
\(86\) −2.18890 −0.236035
\(87\) 0 0
\(88\) 3.00000i 0.319801i
\(89\) −8.66025 −0.917985 −0.458993 0.888440i \(-0.651790\pi\)
−0.458993 + 0.888440i \(0.651790\pi\)
\(90\) 0 0
\(91\) −4.79129 −0.502263
\(92\) 13.4949i 1.40694i
\(93\) 0 0
\(94\) −3.79129 −0.391041
\(95\) −14.8655 + 3.10260i −1.52516 + 0.318320i
\(96\) 0 0
\(97\) 1.37386i 0.139495i −0.997565 0.0697474i \(-0.977781\pi\)
0.997565 0.0697474i \(-0.0222193\pi\)
\(98\) 2.18890i 0.221112i
\(99\) 0 0
\(100\) −12.7913 + 5.58258i −1.27913 + 0.558258i
\(101\) −15.8745 −1.57957 −0.789786 0.613382i \(-0.789809\pi\)
−0.789786 + 0.613382i \(0.789809\pi\)
\(102\) 0 0
\(103\) 10.3739i 1.02217i −0.859531 0.511084i \(-0.829244\pi\)
0.859531 0.511084i \(-0.170756\pi\)
\(104\) −8.29875 −0.813760
\(105\) 0 0
\(106\) 14.3739 1.39611
\(107\) 3.55945i 0.344105i −0.985088 0.172053i \(-0.944960\pi\)
0.985088 0.172053i \(-0.0550399\pi\)
\(108\) 0 0
\(109\) 0.208712 0.0199910 0.00999550 0.999950i \(-0.496818\pi\)
0.00999550 + 0.999950i \(0.496818\pi\)
\(110\) 1.73205 + 8.29875i 0.165145 + 0.791255i
\(111\) 0 0
\(112\) 1.79129i 0.169261i
\(113\) 1.37055i 0.128931i −0.997920 0.0644653i \(-0.979466\pi\)
0.997920 0.0644653i \(-0.0205342\pi\)
\(114\) 0 0
\(115\) −2.20871 10.5826i −0.205963 0.986830i
\(116\) 8.39410 0.779373
\(117\) 0 0
\(118\) 16.9564i 1.56097i
\(119\) −5.65300 −0.518210
\(120\) 0 0
\(121\) −8.00000 −0.727273
\(122\) 10.4877i 0.949508i
\(123\) 0 0
\(124\) 23.9564 2.15135
\(125\) −9.11710 + 6.47135i −0.815459 + 0.578815i
\(126\) 0 0
\(127\) 15.3739i 1.36421i −0.731254 0.682105i \(-0.761065\pi\)
0.731254 0.682105i \(-0.238935\pi\)
\(128\) 12.7719i 1.12889i
\(129\) 0 0
\(130\) −22.9564 + 4.79129i −2.01341 + 0.420224i
\(131\) −11.8582 −1.03606 −0.518028 0.855364i \(-0.673334\pi\)
−0.518028 + 0.855364i \(0.673334\pi\)
\(132\) 0 0
\(133\) 6.79129i 0.588879i
\(134\) −3.00725 −0.259787
\(135\) 0 0
\(136\) −9.79129 −0.839596
\(137\) 15.8745i 1.35625i −0.734946 0.678125i \(-0.762793\pi\)
0.734946 0.678125i \(-0.237207\pi\)
\(138\) 0 0
\(139\) 11.4174 0.968413 0.484207 0.874954i \(-0.339108\pi\)
0.484207 + 0.874954i \(0.339108\pi\)
\(140\) −1.27520 6.10985i −0.107774 0.516377i
\(141\) 0 0
\(142\) 2.58258i 0.216725i
\(143\) 8.29875i 0.693977i
\(144\) 0 0
\(145\) 6.58258 1.37386i 0.546653 0.114093i
\(146\) −10.0308 −0.830155
\(147\) 0 0
\(148\) 28.3739i 2.33232i
\(149\) −13.6856 −1.12117 −0.560584 0.828097i \(-0.689423\pi\)
−0.560584 + 0.828097i \(0.689423\pi\)
\(150\) 0 0
\(151\) −22.1652 −1.80377 −0.901887 0.431972i \(-0.857818\pi\)
−0.901887 + 0.431972i \(0.857818\pi\)
\(152\) 11.7629i 0.954094i
\(153\) 0 0
\(154\) −3.79129 −0.305511
\(155\) 18.7864 3.92095i 1.50896 0.314938i
\(156\) 0 0
\(157\) 10.7477i 0.857762i 0.903361 + 0.428881i \(0.141092\pi\)
−0.903361 + 0.428881i \(0.858908\pi\)
\(158\) 7.38505i 0.587523i
\(159\) 0 0
\(160\) 3.37386 + 16.1652i 0.266727 + 1.27797i
\(161\) 4.83465 0.381024
\(162\) 0 0
\(163\) 12.7477i 0.998479i 0.866464 + 0.499240i \(0.166387\pi\)
−0.866464 + 0.499240i \(0.833613\pi\)
\(164\) −25.4485 −1.98719
\(165\) 0 0
\(166\) 38.1216 2.95881
\(167\) 4.47315i 0.346143i −0.984909 0.173071i \(-0.944631\pi\)
0.984909 0.173071i \(-0.0553692\pi\)
\(168\) 0 0
\(169\) −9.95644 −0.765880
\(170\) −27.0852 + 5.65300i −2.07734 + 0.433566i
\(171\) 0 0
\(172\) 2.79129i 0.212834i
\(173\) 10.6784i 0.811860i −0.913904 0.405930i \(-0.866948\pi\)
0.913904 0.405930i \(-0.133052\pi\)
\(174\) 0 0
\(175\) −2.00000 4.58258i −0.151186 0.346410i
\(176\) 3.10260 0.233867
\(177\) 0 0
\(178\) 18.9564i 1.42085i
\(179\) 9.76465 0.729845 0.364922 0.931038i \(-0.381096\pi\)
0.364922 + 0.931038i \(0.381096\pi\)
\(180\) 0 0
\(181\) 21.3303 1.58547 0.792734 0.609567i \(-0.208657\pi\)
0.792734 + 0.609567i \(0.208657\pi\)
\(182\) 10.4877i 0.777397i
\(183\) 0 0
\(184\) 8.37386 0.617329
\(185\) 4.64395 + 22.2505i 0.341430 + 1.63589i
\(186\) 0 0
\(187\) 9.79129i 0.716010i
\(188\) 4.83465i 0.352603i
\(189\) 0 0
\(190\) −6.79129 32.5390i −0.492692 2.36063i
\(191\) 5.55765 0.402138 0.201069 0.979577i \(-0.435559\pi\)
0.201069 + 0.979577i \(0.435559\pi\)
\(192\) 0 0
\(193\) 10.9564i 0.788662i −0.918969 0.394331i \(-0.870976\pi\)
0.918969 0.394331i \(-0.129024\pi\)
\(194\) 3.00725 0.215908
\(195\) 0 0
\(196\) 2.79129 0.199378
\(197\) 5.00545i 0.356624i 0.983974 + 0.178312i \(0.0570636\pi\)
−0.983974 + 0.178312i \(0.942936\pi\)
\(198\) 0 0
\(199\) 18.2087 1.29078 0.645391 0.763853i \(-0.276695\pi\)
0.645391 + 0.763853i \(0.276695\pi\)
\(200\) −3.46410 7.93725i −0.244949 0.561249i
\(201\) 0 0
\(202\) 34.7477i 2.44484i
\(203\) 3.00725i 0.211068i
\(204\) 0 0
\(205\) −19.9564 + 4.16515i −1.39382 + 0.290907i
\(206\) 22.7074 1.58210
\(207\) 0 0
\(208\) 8.58258i 0.595095i
\(209\) −11.7629 −0.813654
\(210\) 0 0
\(211\) −0.834849 −0.0574733 −0.0287367 0.999587i \(-0.509148\pi\)
−0.0287367 + 0.999587i \(0.509148\pi\)
\(212\) 18.3296i 1.25888i
\(213\) 0 0
\(214\) 7.79129 0.532601
\(215\) −0.456850 2.18890i −0.0311569 0.149282i
\(216\) 0 0
\(217\) 8.58258i 0.582623i
\(218\) 0.456850i 0.0309418i
\(219\) 0 0
\(220\) −10.5826 + 2.20871i −0.713477 + 0.148911i
\(221\) −27.0852 −1.82195
\(222\) 0 0
\(223\) 9.00000i 0.602685i −0.953516 0.301342i \(-0.902565\pi\)
0.953516 0.301342i \(-0.0974347\pi\)
\(224\) −7.38505 −0.493435
\(225\) 0 0
\(226\) 3.00000 0.199557
\(227\) 9.11710i 0.605123i 0.953130 + 0.302562i \(0.0978418\pi\)
−0.953130 + 0.302562i \(0.902158\pi\)
\(228\) 0 0
\(229\) 19.0000 1.25556 0.627778 0.778393i \(-0.283965\pi\)
0.627778 + 0.778393i \(0.283965\pi\)
\(230\) 23.1642 4.83465i 1.52740 0.318788i
\(231\) 0 0
\(232\) 5.20871i 0.341969i
\(233\) 8.48945i 0.556163i −0.960558 0.278081i \(-0.910302\pi\)
0.960558 0.278081i \(-0.0896985\pi\)
\(234\) 0 0
\(235\) −0.791288 3.79129i −0.0516179 0.247316i
\(236\) −21.6229 −1.40753
\(237\) 0 0
\(238\) 12.3739i 0.802078i
\(239\) 1.73205 0.112037 0.0560185 0.998430i \(-0.482159\pi\)
0.0560185 + 0.998430i \(0.482159\pi\)
\(240\) 0 0
\(241\) 3.37386 0.217330 0.108665 0.994078i \(-0.465342\pi\)
0.108665 + 0.994078i \(0.465342\pi\)
\(242\) 17.5112i 1.12566i
\(243\) 0 0
\(244\) −13.3739 −0.856174
\(245\) 2.18890 0.456850i 0.139844 0.0291871i
\(246\) 0 0
\(247\) 32.5390i 2.07041i
\(248\) 14.8655i 0.943957i
\(249\) 0 0
\(250\) −14.1652 19.9564i −0.895883 1.26216i
\(251\) 15.8745 1.00199 0.500995 0.865450i \(-0.332967\pi\)
0.500995 + 0.865450i \(0.332967\pi\)
\(252\) 0 0
\(253\) 8.37386i 0.526460i
\(254\) 33.6519 2.11151
\(255\) 0 0
\(256\) −2.79129 −0.174455
\(257\) 8.75560i 0.546160i −0.961991 0.273080i \(-0.911958\pi\)
0.961991 0.273080i \(-0.0880423\pi\)
\(258\) 0 0
\(259\) −10.1652 −0.631632
\(260\) −6.10985 29.2741i −0.378917 1.81550i
\(261\) 0 0
\(262\) 25.9564i 1.60359i
\(263\) 14.2179i 0.876714i 0.898801 + 0.438357i \(0.144439\pi\)
−0.898801 + 0.438357i \(0.855561\pi\)
\(264\) 0 0
\(265\) 3.00000 + 14.3739i 0.184289 + 0.882979i
\(266\) 14.8655 0.911460
\(267\) 0 0
\(268\) 3.83485i 0.234251i
\(269\) −28.1896 −1.71875 −0.859374 0.511348i \(-0.829147\pi\)
−0.859374 + 0.511348i \(0.829147\pi\)
\(270\) 0 0
\(271\) −11.7913 −0.716270 −0.358135 0.933670i \(-0.616587\pi\)
−0.358135 + 0.933670i \(0.616587\pi\)
\(272\) 10.1262i 0.613988i
\(273\) 0 0
\(274\) 34.7477 2.09919
\(275\) −7.93725 + 3.46410i −0.478634 + 0.208893i
\(276\) 0 0
\(277\) 5.79129i 0.347965i 0.984749 + 0.173982i \(0.0556636\pi\)
−0.984749 + 0.173982i \(0.944336\pi\)
\(278\) 24.9916i 1.49890i
\(279\) 0 0
\(280\) 3.79129 0.791288i 0.226573 0.0472885i
\(281\) −29.9017 −1.78379 −0.891893 0.452246i \(-0.850623\pi\)
−0.891893 + 0.452246i \(0.850623\pi\)
\(282\) 0 0
\(283\) 10.6261i 0.631658i 0.948816 + 0.315829i \(0.102283\pi\)
−0.948816 + 0.315829i \(0.897717\pi\)
\(284\) 3.29330 0.195422
\(285\) 0 0
\(286\) −18.1652 −1.07413
\(287\) 9.11710i 0.538166i
\(288\) 0 0
\(289\) −14.9564 −0.879791
\(290\) 3.00725 + 14.4086i 0.176592 + 0.846103i
\(291\) 0 0
\(292\) 12.7913i 0.748554i
\(293\) 17.3205i 1.01187i 0.862570 + 0.505937i \(0.168853\pi\)
−0.862570 + 0.505937i \(0.831147\pi\)
\(294\) 0 0
\(295\) −16.9564 + 3.53901i −0.987242 + 0.206049i
\(296\) −17.6066 −1.02336
\(297\) 0 0
\(298\) 29.9564i 1.73533i
\(299\) 23.1642 1.33962
\(300\) 0 0
\(301\) 1.00000 0.0576390
\(302\) 48.5173i 2.79186i
\(303\) 0 0
\(304\) −12.1652 −0.697719
\(305\) −10.4877 + 2.18890i −0.600521 + 0.125336i
\(306\) 0 0
\(307\) 14.4174i 0.822846i 0.911445 + 0.411423i \(0.134968\pi\)
−0.911445 + 0.411423i \(0.865032\pi\)
\(308\) 4.83465i 0.275480i
\(309\) 0 0
\(310\) 8.58258 + 41.1216i 0.487458 + 2.33555i
\(311\) 9.02175 0.511577 0.255788 0.966733i \(-0.417665\pi\)
0.255788 + 0.966733i \(0.417665\pi\)
\(312\) 0 0
\(313\) 16.5826i 0.937303i −0.883383 0.468651i \(-0.844740\pi\)
0.883383 0.468651i \(-0.155260\pi\)
\(314\) −23.5257 −1.32763
\(315\) 0 0
\(316\) 9.41742 0.529772
\(317\) 9.38325i 0.527016i −0.964657 0.263508i \(-0.915120\pi\)
0.964657 0.263508i \(-0.0848795\pi\)
\(318\) 0 0
\(319\) 5.20871 0.291632
\(320\) −27.5420 + 5.74835i −1.53965 + 0.321343i
\(321\) 0 0
\(322\) 10.5826i 0.589744i
\(323\) 38.3912i 2.13614i
\(324\) 0 0
\(325\) −9.58258 21.9564i −0.531546 1.21792i
\(326\) −27.9035 −1.54543
\(327\) 0 0
\(328\) 15.7913i 0.871928i
\(329\) 1.73205 0.0954911
\(330\) 0 0
\(331\) −9.62614 −0.529100 −0.264550 0.964372i \(-0.585223\pi\)
−0.264550 + 0.964372i \(0.585223\pi\)
\(332\) 48.6127i 2.66797i
\(333\) 0 0
\(334\) 9.79129 0.535755
\(335\) −0.627650 3.00725i −0.0342922 0.164304i
\(336\) 0 0
\(337\) 32.7042i 1.78151i 0.454484 + 0.890755i \(0.349824\pi\)
−0.454484 + 0.890755i \(0.650176\pi\)
\(338\) 21.7937i 1.18542i
\(339\) 0 0
\(340\) −7.20871 34.5390i −0.390947 1.87314i
\(341\) 14.8655 0.805010
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 1.73205 0.0933859
\(345\) 0 0
\(346\) 23.3739 1.25659
\(347\) 25.5438i 1.37126i 0.727948 + 0.685632i \(0.240474\pi\)
−0.727948 + 0.685632i \(0.759526\pi\)
\(348\) 0 0
\(349\) 21.7477 1.16413 0.582065 0.813143i \(-0.302245\pi\)
0.582065 + 0.813143i \(0.302245\pi\)
\(350\) 10.0308 4.37780i 0.536169 0.234003i
\(351\) 0 0
\(352\) 12.7913i 0.681778i
\(353\) 17.0544i 0.907712i −0.891075 0.453856i \(-0.850048\pi\)
0.891075 0.453856i \(-0.149952\pi\)
\(354\) 0 0
\(355\) 2.58258 0.539015i 0.137069 0.0286079i
\(356\) 24.1733 1.28118
\(357\) 0 0
\(358\) 21.3739i 1.12964i
\(359\) −11.5921 −0.611805 −0.305903 0.952063i \(-0.598958\pi\)
−0.305903 + 0.952063i \(0.598958\pi\)
\(360\) 0 0
\(361\) 27.1216 1.42745
\(362\) 46.6899i 2.45397i
\(363\) 0 0
\(364\) 13.3739 0.700981
\(365\) −2.09355 10.0308i −0.109581 0.525036i
\(366\) 0 0
\(367\) 18.9564i 0.989518i 0.869030 + 0.494759i \(0.164744\pi\)
−0.869030 + 0.494759i \(0.835256\pi\)
\(368\) 8.66025i 0.451447i
\(369\) 0 0
\(370\) −48.7042 + 10.1652i −2.53201 + 0.528461i
\(371\) −6.56670 −0.340926
\(372\) 0 0
\(373\) 9.95644i 0.515525i 0.966208 + 0.257762i \(0.0829852\pi\)
−0.966208 + 0.257762i \(0.917015\pi\)
\(374\) −21.4322 −1.10823
\(375\) 0 0
\(376\) 3.00000 0.154713
\(377\) 14.4086i 0.742081i
\(378\) 0 0
\(379\) 5.58258 0.286758 0.143379 0.989668i \(-0.454203\pi\)
0.143379 + 0.989668i \(0.454203\pi\)
\(380\) 41.4938 8.66025i 2.12859 0.444262i
\(381\) 0 0
\(382\) 12.1652i 0.622423i
\(383\) 36.5638i 1.86832i −0.356853 0.934161i \(-0.616150\pi\)
0.356853 0.934161i \(-0.383850\pi\)
\(384\) 0 0
\(385\) −0.791288 3.79129i −0.0403278 0.193222i
\(386\) 23.9826 1.22068
\(387\) 0 0
\(388\) 3.83485i 0.194685i
\(389\) 36.4883 1.85003 0.925016 0.379929i \(-0.124052\pi\)
0.925016 + 0.379929i \(0.124052\pi\)
\(390\) 0 0
\(391\) 27.3303 1.38215
\(392\) 1.73205i 0.0874818i
\(393\) 0 0
\(394\) −10.9564 −0.551977
\(395\) 7.38505 1.54135i 0.371582 0.0775538i
\(396\) 0 0
\(397\) 25.1652i 1.26300i 0.775375 + 0.631501i \(0.217561\pi\)
−0.775375 + 0.631501i \(0.782439\pi\)
\(398\) 39.8571i 1.99785i
\(399\) 0 0
\(400\) −8.20871 + 3.58258i −0.410436 + 0.179129i
\(401\) −4.11165 −0.205326 −0.102663 0.994716i \(-0.532736\pi\)
−0.102663 + 0.994716i \(0.532736\pi\)
\(402\) 0 0
\(403\) 41.1216i 2.04841i
\(404\) 44.3103 2.20452
\(405\) 0 0
\(406\) −6.58258 −0.326688
\(407\) 17.6066i 0.872725i
\(408\) 0 0
\(409\) 1.16515 0.0576130 0.0288065 0.999585i \(-0.490829\pi\)
0.0288065 + 0.999585i \(0.490829\pi\)
\(410\) −9.11710 43.6827i −0.450262 2.15733i
\(411\) 0 0
\(412\) 28.9564i 1.42658i
\(413\) 7.74655i 0.381183i
\(414\) 0 0
\(415\) 7.95644 + 38.1216i 0.390566 + 1.87132i
\(416\) −35.3839 −1.73484
\(417\) 0 0
\(418\) 25.7477i 1.25936i
\(419\) −22.5167 −1.10001 −0.550005 0.835161i \(-0.685374\pi\)
−0.550005 + 0.835161i \(0.685374\pi\)
\(420\) 0 0
\(421\) −24.7913 −1.20825 −0.604127 0.796888i \(-0.706478\pi\)
−0.604127 + 0.796888i \(0.706478\pi\)
\(422\) 1.82740i 0.0889565i
\(423\) 0 0
\(424\) −11.3739 −0.552364
\(425\) −11.3060 25.9053i −0.548422 1.25659i
\(426\) 0 0
\(427\) 4.79129i 0.231867i
\(428\) 9.93545i 0.480248i
\(429\) 0 0
\(430\) 4.79129 1.00000i 0.231056 0.0482243i
\(431\) 14.4086 0.694038 0.347019 0.937858i \(-0.387194\pi\)
0.347019 + 0.937858i \(0.387194\pi\)
\(432\) 0 0
\(433\) 18.5390i 0.890928i 0.895300 + 0.445464i \(0.146961\pi\)
−0.895300 + 0.445464i \(0.853039\pi\)
\(434\) −18.7864 −0.901776
\(435\) 0 0
\(436\) −0.582576 −0.0279003
\(437\) 32.8335i 1.57064i
\(438\) 0 0
\(439\) −33.3303 −1.59077 −0.795384 0.606105i \(-0.792731\pi\)
−0.795384 + 0.606105i \(0.792731\pi\)
\(440\) −1.37055 6.56670i −0.0653384 0.313055i
\(441\) 0 0
\(442\) 59.2867i 2.81998i
\(443\) 4.30235i 0.204411i 0.994763 + 0.102205i \(0.0325899\pi\)
−0.994763 + 0.102205i \(0.967410\pi\)
\(444\) 0 0
\(445\) 18.9564 3.95644i 0.898621 0.187553i
\(446\) 19.7001 0.932827
\(447\) 0 0
\(448\) 12.5826i 0.594471i
\(449\) −24.4394 −1.15337 −0.576684 0.816968i \(-0.695653\pi\)
−0.576684 + 0.816968i \(0.695653\pi\)
\(450\) 0 0
\(451\) −15.7913 −0.743583
\(452\) 3.82560i 0.179941i
\(453\) 0 0
\(454\) −19.9564 −0.936602
\(455\) 10.4877 2.18890i 0.491669 0.102617i
\(456\) 0 0
\(457\) 28.8693i 1.35045i −0.737612 0.675225i \(-0.764047\pi\)
0.737612 0.675225i \(-0.235953\pi\)
\(458\) 41.5891i 1.94333i
\(459\) 0 0
\(460\) 6.16515 + 29.5390i 0.287452 + 1.37726i
\(461\) 17.2451 0.803182 0.401591 0.915819i \(-0.368457\pi\)
0.401591 + 0.915819i \(0.368457\pi\)
\(462\) 0 0
\(463\) 38.3739i 1.78338i 0.452642 + 0.891692i \(0.350482\pi\)
−0.452642 + 0.891692i \(0.649518\pi\)
\(464\) 5.38685 0.250078
\(465\) 0 0
\(466\) 18.5826 0.860821
\(467\) 15.1515i 0.701128i 0.936539 + 0.350564i \(0.114010\pi\)
−0.936539 + 0.350564i \(0.885990\pi\)
\(468\) 0 0
\(469\) 1.37386 0.0634391
\(470\) 8.29875 1.73205i 0.382793 0.0798935i
\(471\) 0 0
\(472\) 13.4174i 0.617587i
\(473\) 1.73205i 0.0796398i
\(474\) 0 0
\(475\) 31.1216 13.5826i 1.42796 0.623211i
\(476\) 15.7792 0.723237
\(477\) 0 0
\(478\) 3.79129i 0.173409i
\(479\) 1.08450 0.0495521 0.0247760 0.999693i \(-0.492113\pi\)
0.0247760 + 0.999693i \(0.492113\pi\)
\(480\) 0 0
\(481\) −48.7042 −2.22072
\(482\) 7.38505i 0.336380i
\(483\) 0 0
\(484\) 22.3303 1.01501
\(485\) 0.627650 + 3.00725i 0.0285001 + 0.136552i
\(486\) 0 0
\(487\) 31.9129i 1.44611i 0.690790 + 0.723055i \(0.257263\pi\)
−0.690790 + 0.723055i \(0.742737\pi\)
\(488\) 8.29875i 0.375667i
\(489\) 0 0
\(490\) 1.00000 + 4.79129i 0.0451754 + 0.216448i
\(491\) 39.9524 1.80303 0.901514 0.432751i \(-0.142457\pi\)
0.901514 + 0.432751i \(0.142457\pi\)
\(492\) 0 0
\(493\) 17.0000i 0.765641i
\(494\) 71.2247 3.20455
\(495\) 0 0
\(496\) 15.3739 0.690307
\(497\) 1.17985i 0.0529235i
\(498\) 0 0
\(499\) 20.1652 0.902716 0.451358 0.892343i \(-0.350940\pi\)
0.451358 + 0.892343i \(0.350940\pi\)
\(500\) 25.4485 18.0634i 1.13809 0.807820i
\(501\) 0 0
\(502\) 34.7477i 1.55087i
\(503\) 14.5040i 0.646699i −0.946280 0.323350i \(-0.895191\pi\)
0.946280 0.323350i \(-0.104809\pi\)
\(504\) 0 0
\(505\) 34.7477 7.25227i 1.54625 0.322722i
\(506\) 18.3296 0.814848
\(507\) 0 0
\(508\) 42.9129i 1.90395i
\(509\) 41.1323 1.82316 0.911578 0.411127i \(-0.134865\pi\)
0.911578 + 0.411127i \(0.134865\pi\)
\(510\) 0 0
\(511\) 4.58258 0.202721
\(512\) 19.4340i 0.858868i
\(513\) 0 0
\(514\) 19.1652 0.845339
\(515\) 4.73930 + 22.7074i 0.208839 + 1.00061i
\(516\) 0 0
\(517\) 3.00000i 0.131940i
\(518\) 22.2505i 0.977631i
\(519\) 0 0
\(520\) 18.1652 3.79129i 0.796595 0.166259i
\(521\) 14.6748 0.642913 0.321456 0.946924i \(-0.395828\pi\)
0.321456 + 0.946924i \(0.395828\pi\)
\(522\) 0 0
\(523\) 10.0436i 0.439174i −0.975593 0.219587i \(-0.929529\pi\)
0.975593 0.219587i \(-0.0704710\pi\)
\(524\) 33.0997 1.44597
\(525\) 0 0
\(526\) −31.1216 −1.35697
\(527\) 48.5173i 2.11345i
\(528\) 0 0
\(529\) −0.373864 −0.0162549
\(530\) −31.4630 + 6.56670i −1.36666 + 0.285239i
\(531\) 0 0
\(532\) 18.9564i 0.821866i
\(533\) 43.6827i 1.89211i
\(534\) 0 0
\(535\) 1.62614 + 7.79129i 0.0703040 + 0.336847i
\(536\) 2.37960 0.102783
\(537\) 0 0
\(538\) 61.7042i 2.66026i
\(539\) 1.73205 0.0746047
\(540\) 0 0
\(541\) −35.7042 −1.53504 −0.767521 0.641024i \(-0.778510\pi\)
−0.767521 + 0.641024i \(0.778510\pi\)
\(542\) 25.8100i 1.10863i
\(543\) 0 0
\(544\) −41.7477 −1.78992
\(545\) −0.456850 + 0.0953502i −0.0195693 + 0.00408435i
\(546\) 0 0
\(547\) 8.58258i 0.366964i −0.983023 0.183482i \(-0.941263\pi\)
0.983023 0.183482i \(-0.0587370\pi\)
\(548\) 44.3103i 1.89284i
\(549\) 0 0
\(550\) −7.58258 17.3739i −0.323322 0.740824i
\(551\) −20.4231 −0.870054
\(552\) 0 0
\(553\) 3.37386i 0.143471i
\(554\) −12.6766 −0.538575
\(555\) 0 0
\(556\) −31.8693 −1.35156
\(557\) 39.8571i 1.68880i 0.535715 + 0.844399i \(0.320042\pi\)
−0.535715 + 0.844399i \(0.679958\pi\)
\(558\) 0 0
\(559\) 4.79129 0.202650
\(560\) −0.818350 3.92095i −0.0345816 0.165690i
\(561\) 0 0
\(562\) 65.4519i 2.76092i
\(563\) 4.54860i 0.191701i −0.995396 0.0958504i \(-0.969443\pi\)
0.995396 0.0958504i \(-0.0305570\pi\)
\(564\) 0 0
\(565\) 0.626136 + 3.00000i 0.0263418 + 0.126211i
\(566\) −23.2596 −0.977672
\(567\) 0 0
\(568\) 2.04356i 0.0857459i
\(569\) 10.6784 0.447660 0.223830 0.974628i \(-0.428144\pi\)
0.223830 + 0.974628i \(0.428144\pi\)
\(570\) 0 0
\(571\) −2.20871 −0.0924317 −0.0462159 0.998931i \(-0.514716\pi\)
−0.0462159 + 0.998931i \(0.514716\pi\)
\(572\) 23.1642i 0.968544i
\(573\) 0 0
\(574\) 19.9564 0.832966
\(575\) 9.66930 + 22.1552i 0.403238 + 0.923934i
\(576\) 0 0
\(577\) 17.3303i 0.721470i 0.932668 + 0.360735i \(0.117474\pi\)
−0.932668 + 0.360735i \(0.882526\pi\)
\(578\) 32.7382i 1.36173i
\(579\) 0 0
\(580\) −18.3739 + 3.83485i −0.762933 + 0.159233i
\(581\) −17.4159 −0.722532
\(582\) 0 0
\(583\) 11.3739i 0.471057i
\(584\) 7.93725 0.328446
\(585\) 0 0
\(586\) −37.9129 −1.56617
\(587\) 3.38865i 0.139865i 0.997552 + 0.0699323i \(0.0222783\pi\)
−0.997552 + 0.0699323i \(0.977722\pi\)
\(588\) 0 0
\(589\) −58.2867 −2.40166
\(590\) −7.74655 37.1160i −0.318921 1.52804i
\(591\) 0 0
\(592\) 18.2087i 0.748373i
\(593\) 4.28245i 0.175859i −0.996127 0.0879296i \(-0.971975\pi\)
0.996127 0.0879296i \(-0.0280251\pi\)
\(594\) 0 0
\(595\) 12.3739 2.58258i 0.507279 0.105875i
\(596\) 38.2005 1.56475
\(597\) 0 0
\(598\) 50.7042i 2.07345i
\(599\) 44.6917 1.82605 0.913027 0.407899i \(-0.133738\pi\)
0.913027 + 0.407899i \(0.133738\pi\)
\(600\) 0 0
\(601\) −48.6170 −1.98313 −0.991565 0.129608i \(-0.958628\pi\)
−0.991565 + 0.129608i \(0.958628\pi\)
\(602\) 2.18890i 0.0892129i
\(603\) 0 0
\(604\) 61.8693 2.51743
\(605\) 17.5112 3.65480i 0.711932 0.148589i
\(606\) 0 0
\(607\) 29.8348i 1.21096i −0.795861 0.605480i \(-0.792981\pi\)
0.795861 0.605480i \(-0.207019\pi\)
\(608\) 50.1540i 2.03401i
\(609\) 0 0
\(610\) −4.79129 22.9564i −0.193994 0.929479i
\(611\) 8.29875 0.335732
\(612\) 0 0
\(613\) 13.3303i 0.538406i −0.963083 0.269203i \(-0.913240\pi\)
0.963083 0.269203i \(-0.0867602\pi\)
\(614\) −31.5583 −1.27359
\(615\) 0 0
\(616\) 3.00000 0.120873
\(617\) 16.0453i 0.645960i −0.946406 0.322980i \(-0.895315\pi\)
0.946406 0.322980i \(-0.104685\pi\)
\(618\) 0 0
\(619\) 44.4955 1.78842 0.894212 0.447644i \(-0.147737\pi\)
0.894212 + 0.447644i \(0.147737\pi\)
\(620\) −52.4383 + 10.9445i −2.10597 + 0.439542i
\(621\) 0 0
\(622\) 19.7477i 0.791812i
\(623\) 8.66025i 0.346966i
\(624\) 0 0
\(625\) 17.0000 18.3303i 0.680000 0.733212i
\(626\) 36.2976 1.45074
\(627\) 0 0
\(628\) 30.0000i 1.19713i
\(629\) −57.4636 −2.29122
\(630\) 0 0
\(631\) −37.0780 −1.47605 −0.738027 0.674772i \(-0.764242\pi\)
−0.738027 + 0.674772i \(0.764242\pi\)
\(632\) 5.84370i 0.232450i
\(633\) 0 0
\(634\) 20.5390 0.815708
\(635\) 7.02355 + 33.6519i 0.278721 + 1.33543i
\(636\) 0 0
\(637\) 4.79129i 0.189838i
\(638\) 11.4014i 0.451384i
\(639\) 0 0
\(640\) −5.83485 27.9564i −0.230643 1.10508i
\(641\) −26.0007 −1.02696 −0.513482 0.858100i \(-0.671645\pi\)
−0.513482 + 0.858100i \(0.671645\pi\)
\(642\) 0 0
\(643\) 4.79129i 0.188950i −0.995527 0.0944750i \(-0.969883\pi\)
0.995527 0.0944750i \(-0.0301172\pi\)
\(644\) −13.4949 −0.531774
\(645\) 0 0
\(646\) 84.0345 3.30629
\(647\) 6.39590i 0.251449i 0.992065 + 0.125724i \(0.0401255\pi\)
−0.992065 + 0.125724i \(0.959874\pi\)
\(648\) 0 0
\(649\) −13.4174 −0.526680
\(650\) 48.0605 20.9753i 1.88509 0.822719i
\(651\) 0 0
\(652\) 35.5826i 1.39352i
\(653\) 12.8673i 0.503535i −0.967788 0.251767i \(-0.918988\pi\)
0.967788 0.251767i \(-0.0810118\pi\)
\(654\) 0 0
\(655\) 25.9564 5.41742i 1.01420 0.211676i
\(656\) −16.3314 −0.637632
\(657\) 0 0
\(658\) 3.79129i 0.147800i
\(659\) 12.4104 0.483441 0.241720 0.970346i \(-0.422288\pi\)
0.241720 + 0.970346i \(0.422288\pi\)
\(660\) 0 0
\(661\) 17.5390 0.682189 0.341094 0.940029i \(-0.389202\pi\)
0.341094 + 0.940029i \(0.389202\pi\)
\(662\) 21.0707i 0.818934i
\(663\) 0 0
\(664\) −30.1652 −1.17063
\(665\) 3.10260 + 14.8655i 0.120314 + 0.576458i
\(666\) 0 0
\(667\) 14.5390i 0.562953i
\(668\) 12.4859i 0.483092i
\(669\) 0 0
\(670\) 6.58258 1.37386i 0.254307 0.0530770i
\(671\) −8.29875 −0.320370
\(672\) 0 0
\(673\) 7.91288i 0.305019i −0.988302 0.152510i \(-0.951265\pi\)
0.988302 0.152510i \(-0.0487355\pi\)
\(674\) −71.5862 −2.75740
\(675\) 0 0
\(676\) 27.7913 1.06890
\(677\) 11.5921i 0.445519i −0.974873 0.222759i \(-0.928494\pi\)
0.974873 0.222759i \(-0.0715064\pi\)
\(678\) 0 0
\(679\) −1.37386 −0.0527240
\(680\) 21.4322 4.47315i 0.821886 0.171538i
\(681\) 0 0
\(682\) 32.5390i 1.24598i
\(683\) 21.0508i 0.805485i −0.915313 0.402742i \(-0.868057\pi\)
0.915313 0.402742i \(-0.131943\pi\)
\(684\) 0 0
\(685\) 7.25227 + 34.7477i 0.277095 + 1.32764i
\(686\) −2.18890 −0.0835726
\(687\) 0 0
\(688\) 1.79129i 0.0682922i
\(689\) −31.4630 −1.19864
\(690\) 0 0
\(691\) 7.33030 0.278858 0.139429 0.990232i \(-0.455473\pi\)
0.139429 + 0.990232i \(0.455473\pi\)
\(692\) 29.8064i 1.13307i
\(693\) 0 0
\(694\) −55.9129 −2.12242
\(695\) −24.9916 + 5.21605i −0.947986 + 0.197856i
\(696\) 0 0
\(697\) 51.5390i 1.95218i
\(698\) 47.6036i 1.80182i
\(699\) 0 0
\(700\) 5.58258 + 12.7913i 0.211002 + 0.483465i
\(701\) −8.85095 −0.334296 −0.167148 0.985932i \(-0.553456\pi\)
−0.167148 + 0.985932i \(0.553456\pi\)
\(702\) 0 0
\(703\) 69.0345i 2.60368i
\(704\) −21.7937 −0.821379
\(705\) 0 0
\(706\) 37.3303 1.40494
\(707\) 15.8745i 0.597022i
\(708\) 0 0
\(709\) 25.4955 0.957502 0.478751 0.877951i \(-0.341090\pi\)
0.478751 + 0.877951i \(0.341090\pi\)
\(710\) 1.17985 + 5.65300i 0.0442790 + 0.212153i
\(711\) 0 0
\(712\) 15.0000i 0.562149i
\(713\) 41.4938i 1.55395i
\(714\) 0 0
\(715\) −3.79129 18.1652i −0.141786 0.679338i
\(716\) −27.2560 −1.01860
\(717\) 0 0
\(718\) 25.3739i 0.946944i
\(719\) 38.3157 1.42894 0.714468 0.699669i \(-0.246669\pi\)
0.714468 + 0.699669i \(0.246669\pi\)
\(720\) 0 0
\(721\) −10.3739 −0.386343
\(722\) 59.3665i 2.20939i
\(723\) 0 0
\(724\) −59.5390 −2.21275
\(725\) −13.7810 + 6.01450i −0.511812 + 0.223373i
\(726\) 0 0
\(727\) 35.4519i 1.31484i −0.753525 0.657419i \(-0.771648\pi\)
0.753525 0.657419i \(-0.228352\pi\)
\(728\) 8.29875i 0.307572i
\(729\) 0 0
\(730\) 21.9564 4.58258i 0.812644 0.169609i
\(731\) 5.65300 0.209084
\(732\) 0 0
\(733\) 36.2087i 1.33740i −0.743533 0.668700i \(-0.766851\pi\)
0.743533 0.668700i \(-0.233149\pi\)
\(734\) −41.4938 −1.53156
\(735\) 0 0
\(736\) 35.7042 1.31607
\(737\) 2.37960i 0.0876537i
\(738\) 0 0
\(739\) 23.4955 0.864294 0.432147 0.901803i \(-0.357756\pi\)
0.432147 + 0.901803i \(0.357756\pi\)
\(740\) −12.9626 62.1076i −0.476515 2.28312i
\(741\) 0 0
\(742\) 14.3739i 0.527681i
\(743\) 35.3839i 1.29811i 0.760741 + 0.649055i \(0.224836\pi\)
−0.760741 + 0.649055i \(0.775164\pi\)
\(744\) 0 0
\(745\) 29.9564 6.25227i 1.09752 0.229066i
\(746\) −21.7937 −0.797923
\(747\) 0 0
\(748\) 27.3303i 0.999295i
\(749\) −3.55945 −0.130060
\(750\) 0 0
\(751\) −36.6606 −1.33776 −0.668882 0.743368i \(-0.733227\pi\)
−0.668882 + 0.743368i \(0.733227\pi\)
\(752\) 3.10260i 0.113140i
\(753\) 0 0
\(754\) −31.5390 −1.14858
\(755\) 48.5173 10.1262i 1.76573 0.368529i
\(756\) 0 0
\(757\) 15.3739i 0.558773i −0.960179 0.279386i \(-0.909869\pi\)
0.960179 0.279386i \(-0.0901310\pi\)
\(758\) 12.2197i 0.443840i
\(759\) 0 0
\(760\) 5.37386 + 25.7477i 0.194931 + 0.933968i
\(761\) −43.8535 −1.58969 −0.794844 0.606814i \(-0.792447\pi\)
−0.794844 + 0.606814i \(0.792447\pi\)
\(762\) 0 0
\(763\) 0.208712i 0.00755589i
\(764\) −15.5130 −0.561241
\(765\) 0 0
\(766\) 80.0345 2.89176
\(767\) 37.1160i 1.34018i
\(768\) 0 0
\(769\) 7.74773 0.279390 0.139695 0.990195i \(-0.455388\pi\)
0.139695 + 0.990195i \(0.455388\pi\)
\(770\) 8.29875 1.73205i 0.299066 0.0624188i
\(771\) 0 0
\(772\) 30.5826i 1.10069i
\(773\) 17.9681i 0.646266i 0.946354 + 0.323133i \(0.104736\pi\)
−0.946354 + 0.323133i \(0.895264\pi\)
\(774\) 0 0
\(775\) −39.3303 + 17.1652i −1.41279 + 0.616590i
\(776\) −2.37960 −0.0854227
\(777\) 0 0
\(778\) 79.8693i 2.86345i
\(779\) 61.9169 2.21840
\(780\) 0 0
\(781\) 2.04356 0.0731244
\(782\) 59.8233i 2.13928i
\(783\) 0 0
\(784\) 1.79129 0.0639746
\(785\) −4.91010 23.5257i −0.175249 0.839669i
\(786\) 0 0
\(787\) 11.1652i 0.397995i 0.980000 + 0.198997i \(0.0637685\pi\)
−0.980000 + 0.198997i \(0.936231\pi\)
\(788\) 13.9717i 0.497720i
\(789\) 0 0
\(790\) 3.37386 + 16.1652i 0.120037 + 0.575130i
\(791\) −1.37055 −0.0487312
\(792\) 0 0
\(793\) 22.9564i 0.815207i
\(794\) −55.0840 −1.95486
\(795\) 0 0
\(796\) −50.8258 −1.80147
\(797\) 34.4702i 1.22100i −0.792017 0.610499i \(-0.790969\pi\)
0.792017 0.610499i \(-0.209031\pi\)
\(798\) 0 0
\(799\) 9.79129 0.346391
\(800\) −14.7701 33.8426i −0.522202 1.19652i
\(801\) 0 0
\(802\) 9.00000i 0.317801i
\(803\) 7.93725i 0.280100i
\(804\) 0 0
\(805\) −10.5826 + 2.20871i −0.372987 + 0.0778469i
\(806\) −90.0111 −3.17051
\(807\) 0 0
\(808\) 27.4955i 0.967287i
\(809\) −0.286051 −0.0100570 −0.00502850 0.999987i \(-0.501601\pi\)
−0.00502850 + 0.999987i \(0.501601\pi\)
\(810\) 0 0
\(811\) 33.8693 1.18931 0.594656 0.803980i \(-0.297288\pi\)
0.594656 + 0.803980i \(0.297288\pi\)
\(812\) 8.39410i 0.294575i
\(813\) 0 0
\(814\) −38.5390 −1.35079
\(815\) −5.82380 27.9035i −0.203999 0.977417i
\(816\) 0 0
\(817\) 6.79129i 0.237597i
\(818\) 2.55040i 0.0891727i
\(819\) 0 0
\(820\) 55.7042 11.6261i 1.94527 0.406002i
\(821\) 30.9307 1.07949 0.539744 0.841829i \(-0.318521\pi\)
0.539744 + 0.841829i \(0.318521\pi\)
\(822\) 0 0
\(823\) 19.0000i 0.662298i 0.943578 + 0.331149i \(0.107436\pi\)
−0.943578 + 0.331149i \(0.892564\pi\)
\(824\) −17.9681 −0.625947
\(825\) 0 0
\(826\) 16.9564 0.589990
\(827\) 17.6066i 0.612240i −0.951993 0.306120i \(-0.900969\pi\)
0.951993 0.306120i \(-0.0990309\pi\)
\(828\) 0 0
\(829\) −4.91288 −0.170631 −0.0853157 0.996354i \(-0.527190\pi\)
−0.0853157 + 0.996354i \(0.527190\pi\)
\(830\) −83.4444 + 17.4159i −2.89640 + 0.604513i
\(831\) 0 0
\(832\) 60.2867i 2.09007i
\(833\) 5.65300i 0.195865i
\(834\) 0 0
\(835\) 2.04356 + 9.79129i 0.0707203 + 0.338841i
\(836\) 32.8335 1.13557
\(837\) 0 0
\(838\) 49.2867i 1.70258i
\(839\) 3.82560 0.132074 0.0660372 0.997817i \(-0.478964\pi\)
0.0660372 + 0.997817i \(0.478964\pi\)
\(840\) 0 0
\(841\) −19.9564 −0.688153
\(842\) 54.2657i 1.87012i
\(843\) 0 0
\(844\) 2.33030 0.0802123
\(845\) 21.7937 4.54860i 0.749725 0.156477i
\(846\) 0 0
\(847\) 8.00000i 0.274883i
\(848\) 11.7629i 0.403938i
\(849\) 0 0
\(850\) 56.7042 24.7477i 1.94494 0.848840i
\(851\) 49.1450 1.68467
\(852\) 0 0
\(853\) 27.6606i 0.947081i 0.880772 + 0.473541i \(0.157024\pi\)
−0.880772 + 0.473541i \(0.842976\pi\)
\(854\) 10.4877 0.358880
\(855\) 0 0
\(856\) −6.16515 −0.210721
\(857\) 10.8293i 0.369920i 0.982746 + 0.184960i \(0.0592156\pi\)
−0.982746 + 0.184960i \(0.940784\pi\)
\(858\) 0 0
\(859\) −2.41742 −0.0824815 −0.0412407 0.999149i \(-0.513131\pi\)
−0.0412407 + 0.999149i \(0.513131\pi\)
\(860\) 1.27520 + 6.10985i 0.0434840 + 0.208344i
\(861\) 0 0
\(862\) 31.5390i 1.07422i
\(863\) 34.6410i 1.17919i 0.807698 + 0.589597i \(0.200713\pi\)
−0.807698 + 0.589597i \(0.799287\pi\)
\(864\) 0 0
\(865\) 4.87841 + 23.3739i 0.165871 + 0.794735i
\(866\) −40.5801 −1.37897
\(867\) 0 0
\(868\) 23.9564i 0.813135i
\(869\) 5.84370 0.198234
\(870\) 0 0
\(871\) 6.58258 0.223042
\(872\) 0.361500i 0.0122419i
\(873\) 0 0
\(874\) −71.8693 −2.43102
\(875\) 6.47135 + 9.11710i 0.218772 + 0.308214i
\(876\) 0 0
\(877\) 38.4955i 1.29990i 0.759977 + 0.649950i \(0.225210\pi\)
−0.759977 + 0.649950i \(0.774790\pi\)
\(878\) 72.9567i 2.46217i
\(879\) 0 0
\(880\) −6.79129 + 1.41742i −0.228934 + 0.0477814i
\(881\) 36.4684 1.22865 0.614326 0.789052i \(-0.289428\pi\)
0.614326 + 0.789052i \(0.289428\pi\)
\(882\) 0 0
\(883\) 27.6606i 0.930853i −0.885086 0.465427i \(-0.845901\pi\)
0.885086 0.465427i \(-0.154099\pi\)
\(884\) 75.6025 2.54279
\(885\) 0 0
\(886\) −9.41742 −0.316385
\(887\) 52.7243i 1.77031i −0.465297 0.885155i \(-0.654052\pi\)
0.465297 0.885155i \(-0.345948\pi\)
\(888\) 0 0
\(889\) −15.3739 −0.515623
\(890\) 8.66025 + 41.4938i 0.290292 + 1.39087i
\(891\) 0 0
\(892\) 25.1216i 0.841133i
\(893\) 11.7629i 0.393629i
\(894\) 0 0
\(895\) −21.3739 + 4.46099i −0.714449 + 0.149114i
\(896\) 12.7719 0.426679
\(897\) 0 0
\(898\) 53.4955i 1.78517i
\(899\) 25.8100 0.860810
\(900\) 0 0
\(901\) −37.1216 −1.23670
\(902\) 34.5656i 1.15091i
\(903\) 0 0
\(904\) −2.37386 −0.0789535
\(905\) −46.6899 + 9.74475i −1.55203 + 0.323927i
\(906\) 0 0
\(907\) 0.373864i 0.0124139i 0.999981 + 0.00620697i \(0.00197575\pi\)
−0.999981 + 0.00620697i \(0.998024\pi\)
\(908\) 25.4485i 0.844537i
\(909\) 0 0
\(910\) 4.79129 + 22.9564i 0.158830 + 0.760999i
\(911\) 53.9796 1.78842 0.894212 0.447643i \(-0.147736\pi\)
0.894212 + 0.447643i \(0.147736\pi\)
\(912\) 0 0
\(913\) 30.1652i 0.998321i
\(914\) 63.1921 2.09021
\(915\) 0 0
\(916\) −53.0345 −1.75231
\(917\) 11.8582i 0.391592i
\(918\) 0 0
\(919\) 4.20871 0.138833 0.0694163 0.997588i \(-0.477886\pi\)
0.0694163 + 0.997588i \(0.477886\pi\)
\(920\) −18.3296 + 3.82560i −0.604308 + 0.126126i
\(921\) 0 0
\(922\) 37.7477i 1.24316i
\(923\) 5.65300i 0.186071i
\(924\) 0 0
\(925\) −20.3303 46.5826i −0.668456 1.53163i
\(926\) −83.9966 −2.76030
\(927\) 0 0
\(928\) 22.2087i 0.729037i
\(929\) −6.18530 −0.202933 −0.101467 0.994839i \(-0.532353\pi\)
−0.101467 + 0.994839i \(0.532353\pi\)
\(930\) 0 0
\(931\) −6.79129 −0.222575
\(932\) 23.6965i 0.776205i
\(933\) 0 0
\(934\) −33.1652 −1.08520
\(935\) −4.47315 21.4322i −0.146288 0.700907i
\(936\) 0 0
\(937\) 28.3303i 0.925511i −0.886486 0.462755i \(-0.846861\pi\)
0.886486 0.462755i \(-0.153139\pi\)
\(938\) 3.00725i 0.0981902i
\(939\) 0 0
\(940\) 2.20871 + 10.5826i 0.0720402 + 0.345166i
\(941\) −27.9989 −0.912737 −0.456368 0.889791i \(-0.650850\pi\)
−0.456368 + 0.889791i \(0.650850\pi\)
\(942\) 0 0
\(943\) 44.0780i 1.43538i
\(944\) −13.8763 −0.451635
\(945\) 0 0
\(946\) 3.79129 0.123265
\(947\) 21.7182i 0.705747i 0.935671 + 0.352874i \(0.114795\pi\)
−0.935671 + 0.352874i \(0.885205\pi\)
\(948\) 0 0
\(949\) 21.9564 0.712736
\(950\) 29.7309 + 68.1221i 0.964598 + 2.21017i
\(951\) 0 0
\(952\) 9.79129i 0.317337i
\(953\) 20.4986i 0.664013i 0.943277 + 0.332007i \(0.107726\pi\)
−0.943277 + 0.332007i \(0.892274\pi\)
\(954\) 0 0
\(955\) −12.1652 + 2.53901i −0.393655 + 0.0821606i
\(956\) −4.83465 −0.156364
\(957\) 0 0
\(958\) 2.37386i 0.0766960i
\(959\) −15.8745 −0.512615
\(960\) 0 0
\(961\) 42.6606 1.37615
\(962\) 106.609i 3.43720i
\(963\) 0 0
\(964\) −9.41742 −0.303315
\(965\) 5.00545 + 23.9826i 0.161131 + 0.772026i
\(966\) 0 0
\(967\) 44.1652i 1.42026i −0.704073 0.710128i \(-0.748637\pi\)
0.704073 0.710128i \(-0.251363\pi\)
\(968\) 13.8564i 0.445362i
\(969\) 0 0
\(970\) −6.58258 + 1.37386i −0.211354 + 0.0441121i
\(971\) 6.39590 0.205254 0.102627 0.994720i \(-0.467275\pi\)
0.102627 + 0.994720i \(0.467275\pi\)
\(972\) 0 0
\(973\) 11.4174i 0.366026i
\(974\) −69.8541 −2.23827
\(975\) 0 0
\(976\) −8.58258 −0.274722
\(977\) 57.4437i 1.83779i 0.394505 + 0.918894i \(0.370916\pi\)
−0.394505 + 0.918894i \(0.629084\pi\)
\(978\) 0 0
\(979\) 15.0000 0.479402
\(980\) −6.10985 + 1.27520i −0.195172 + 0.0407348i
\(981\) 0 0
\(982\) 87.4519i 2.79070i
\(983\) 9.59386i 0.305996i −0.988226 0.152998i \(-0.951107\pi\)
0.988226 0.152998i \(-0.0488929\pi\)
\(984\) 0 0
\(985\) −2.28674 10.9564i −0.0728617 0.349101i
\(986\) −37.2113 −1.18505
\(987\) 0 0
\(988\) 90.8258i 2.88955i
\(989\) −4.83465 −0.153733
\(990\) 0 0
\(991\) 42.0780 1.33665 0.668326 0.743868i \(-0.267011\pi\)
0.668326 + 0.743868i \(0.267011\pi\)
\(992\) 63.3828i 2.01241i
\(993\) 0 0
\(994\) −2.58258 −0.0819143
\(995\) −39.8571 + 8.31865i −1.26355 + 0.263719i
\(996\) 0 0
\(997\) 33.2432i 1.05282i −0.850230 0.526411i \(-0.823537\pi\)
0.850230 0.526411i \(-0.176463\pi\)
\(998\) 44.1395i 1.39721i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 945.2.d.c.379.7 yes 8
3.2 odd 2 inner 945.2.d.c.379.2 yes 8
5.2 odd 4 4725.2.a.bs.1.1 4
5.3 odd 4 4725.2.a.br.1.4 4
5.4 even 2 inner 945.2.d.c.379.1 8
15.2 even 4 4725.2.a.bs.1.4 4
15.8 even 4 4725.2.a.br.1.1 4
15.14 odd 2 inner 945.2.d.c.379.8 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
945.2.d.c.379.1 8 5.4 even 2 inner
945.2.d.c.379.2 yes 8 3.2 odd 2 inner
945.2.d.c.379.7 yes 8 1.1 even 1 trivial
945.2.d.c.379.8 yes 8 15.14 odd 2 inner
4725.2.a.br.1.1 4 15.8 even 4
4725.2.a.br.1.4 4 5.3 odd 4
4725.2.a.bs.1.1 4 5.2 odd 4
4725.2.a.bs.1.4 4 15.2 even 4