Properties

Label 945.2.d.a.379.2
Level $945$
Weight $2$
Character 945.379
Analytic conductor $7.546$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [945,2,Mod(379,945)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(945, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("945.379");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 945 = 3^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 945.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.54586299101\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 379.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 945.379
Dual form 945.2.d.a.379.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +1.00000 q^{4} +(-1.00000 - 2.00000i) q^{5} -1.00000i q^{7} +3.00000i q^{8} +(2.00000 - 1.00000i) q^{10} -3.00000 q^{11} -7.00000i q^{13} +1.00000 q^{14} -1.00000 q^{16} -4.00000i q^{17} -3.00000 q^{19} +(-1.00000 - 2.00000i) q^{20} -3.00000i q^{22} +(-3.00000 + 4.00000i) q^{25} +7.00000 q^{26} -1.00000i q^{28} -2.00000 q^{29} +8.00000 q^{31} +5.00000i q^{32} +4.00000 q^{34} +(-2.00000 + 1.00000i) q^{35} -4.00000i q^{37} -3.00000i q^{38} +(6.00000 - 3.00000i) q^{40} -11.0000 q^{41} -5.00000i q^{43} -3.00000 q^{44} -9.00000i q^{47} -1.00000 q^{49} +(-4.00000 - 3.00000i) q^{50} -7.00000i q^{52} -3.00000i q^{53} +(3.00000 + 6.00000i) q^{55} +3.00000 q^{56} -2.00000i q^{58} +10.0000 q^{59} -2.00000 q^{61} +8.00000i q^{62} -7.00000 q^{64} +(-14.0000 + 7.00000i) q^{65} -7.00000i q^{67} -4.00000i q^{68} +(-1.00000 - 2.00000i) q^{70} +8.00000 q^{71} +15.0000i q^{73} +4.00000 q^{74} -3.00000 q^{76} +3.00000i q^{77} +14.0000 q^{79} +(1.00000 + 2.00000i) q^{80} -11.0000i q^{82} -1.00000i q^{83} +(-8.00000 + 4.00000i) q^{85} +5.00000 q^{86} -9.00000i q^{88} +15.0000 q^{89} -7.00000 q^{91} +9.00000 q^{94} +(3.00000 + 6.00000i) q^{95} -2.00000i q^{97} -1.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{4} - 2 q^{5} + 4 q^{10} - 6 q^{11} + 2 q^{14} - 2 q^{16} - 6 q^{19} - 2 q^{20} - 6 q^{25} + 14 q^{26} - 4 q^{29} + 16 q^{31} + 8 q^{34} - 4 q^{35} + 12 q^{40} - 22 q^{41} - 6 q^{44} - 2 q^{49}+ \cdots + 6 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/945\mathbb{Z}\right)^\times\).

\(n\) \(136\) \(596\) \(757\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i 0.935414 + 0.353553i \(0.115027\pi\)
−0.935414 + 0.353553i \(0.884973\pi\)
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −1.00000 2.00000i −0.447214 0.894427i
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 3.00000i 1.06066i
\(9\) 0 0
\(10\) 2.00000 1.00000i 0.632456 0.316228i
\(11\) −3.00000 −0.904534 −0.452267 0.891883i \(-0.649385\pi\)
−0.452267 + 0.891883i \(0.649385\pi\)
\(12\) 0 0
\(13\) 7.00000i 1.94145i −0.240192 0.970725i \(-0.577210\pi\)
0.240192 0.970725i \(-0.422790\pi\)
\(14\) 1.00000 0.267261
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 4.00000i 0.970143i −0.874475 0.485071i \(-0.838794\pi\)
0.874475 0.485071i \(-0.161206\pi\)
\(18\) 0 0
\(19\) −3.00000 −0.688247 −0.344124 0.938924i \(-0.611824\pi\)
−0.344124 + 0.938924i \(0.611824\pi\)
\(20\) −1.00000 2.00000i −0.223607 0.447214i
\(21\) 0 0
\(22\) 3.00000i 0.639602i
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) −3.00000 + 4.00000i −0.600000 + 0.800000i
\(26\) 7.00000 1.37281
\(27\) 0 0
\(28\) 1.00000i 0.188982i
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) 5.00000i 0.883883i
\(33\) 0 0
\(34\) 4.00000 0.685994
\(35\) −2.00000 + 1.00000i −0.338062 + 0.169031i
\(36\) 0 0
\(37\) 4.00000i 0.657596i −0.944400 0.328798i \(-0.893356\pi\)
0.944400 0.328798i \(-0.106644\pi\)
\(38\) 3.00000i 0.486664i
\(39\) 0 0
\(40\) 6.00000 3.00000i 0.948683 0.474342i
\(41\) −11.0000 −1.71791 −0.858956 0.512050i \(-0.828886\pi\)
−0.858956 + 0.512050i \(0.828886\pi\)
\(42\) 0 0
\(43\) 5.00000i 0.762493i −0.924473 0.381246i \(-0.875495\pi\)
0.924473 0.381246i \(-0.124505\pi\)
\(44\) −3.00000 −0.452267
\(45\) 0 0
\(46\) 0 0
\(47\) 9.00000i 1.31278i −0.754420 0.656392i \(-0.772082\pi\)
0.754420 0.656392i \(-0.227918\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) −4.00000 3.00000i −0.565685 0.424264i
\(51\) 0 0
\(52\) 7.00000i 0.970725i
\(53\) 3.00000i 0.412082i −0.978543 0.206041i \(-0.933942\pi\)
0.978543 0.206041i \(-0.0660580\pi\)
\(54\) 0 0
\(55\) 3.00000 + 6.00000i 0.404520 + 0.809040i
\(56\) 3.00000 0.400892
\(57\) 0 0
\(58\) 2.00000i 0.262613i
\(59\) 10.0000 1.30189 0.650945 0.759125i \(-0.274373\pi\)
0.650945 + 0.759125i \(0.274373\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 8.00000i 1.01600i
\(63\) 0 0
\(64\) −7.00000 −0.875000
\(65\) −14.0000 + 7.00000i −1.73649 + 0.868243i
\(66\) 0 0
\(67\) 7.00000i 0.855186i −0.903971 0.427593i \(-0.859362\pi\)
0.903971 0.427593i \(-0.140638\pi\)
\(68\) 4.00000i 0.485071i
\(69\) 0 0
\(70\) −1.00000 2.00000i −0.119523 0.239046i
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 0 0
\(73\) 15.0000i 1.75562i 0.479012 + 0.877809i \(0.340995\pi\)
−0.479012 + 0.877809i \(0.659005\pi\)
\(74\) 4.00000 0.464991
\(75\) 0 0
\(76\) −3.00000 −0.344124
\(77\) 3.00000i 0.341882i
\(78\) 0 0
\(79\) 14.0000 1.57512 0.787562 0.616236i \(-0.211343\pi\)
0.787562 + 0.616236i \(0.211343\pi\)
\(80\) 1.00000 + 2.00000i 0.111803 + 0.223607i
\(81\) 0 0
\(82\) 11.0000i 1.21475i
\(83\) 1.00000i 0.109764i −0.998493 0.0548821i \(-0.982522\pi\)
0.998493 0.0548821i \(-0.0174783\pi\)
\(84\) 0 0
\(85\) −8.00000 + 4.00000i −0.867722 + 0.433861i
\(86\) 5.00000 0.539164
\(87\) 0 0
\(88\) 9.00000i 0.959403i
\(89\) 15.0000 1.59000 0.794998 0.606612i \(-0.207472\pi\)
0.794998 + 0.606612i \(0.207472\pi\)
\(90\) 0 0
\(91\) −7.00000 −0.733799
\(92\) 0 0
\(93\) 0 0
\(94\) 9.00000 0.928279
\(95\) 3.00000 + 6.00000i 0.307794 + 0.615587i
\(96\) 0 0
\(97\) 2.00000i 0.203069i −0.994832 0.101535i \(-0.967625\pi\)
0.994832 0.101535i \(-0.0323753\pi\)
\(98\) 1.00000i 0.101015i
\(99\) 0 0
\(100\) −3.00000 + 4.00000i −0.300000 + 0.400000i
\(101\) −3.00000 −0.298511 −0.149256 0.988799i \(-0.547688\pi\)
−0.149256 + 0.988799i \(0.547688\pi\)
\(102\) 0 0
\(103\) 10.0000i 0.985329i 0.870219 + 0.492665i \(0.163977\pi\)
−0.870219 + 0.492665i \(0.836023\pi\)
\(104\) 21.0000 2.05922
\(105\) 0 0
\(106\) 3.00000 0.291386
\(107\) 14.0000i 1.35343i 0.736245 + 0.676716i \(0.236597\pi\)
−0.736245 + 0.676716i \(0.763403\pi\)
\(108\) 0 0
\(109\) 7.00000 0.670478 0.335239 0.942133i \(-0.391183\pi\)
0.335239 + 0.942133i \(0.391183\pi\)
\(110\) −6.00000 + 3.00000i −0.572078 + 0.286039i
\(111\) 0 0
\(112\) 1.00000i 0.0944911i
\(113\) 3.00000i 0.282216i −0.989994 0.141108i \(-0.954933\pi\)
0.989994 0.141108i \(-0.0450665\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −2.00000 −0.185695
\(117\) 0 0
\(118\) 10.0000i 0.920575i
\(119\) −4.00000 −0.366679
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 2.00000i 0.181071i
\(123\) 0 0
\(124\) 8.00000 0.718421
\(125\) 11.0000 + 2.00000i 0.983870 + 0.178885i
\(126\) 0 0
\(127\) 7.00000i 0.621150i −0.950549 0.310575i \(-0.899478\pi\)
0.950549 0.310575i \(-0.100522\pi\)
\(128\) 3.00000i 0.265165i
\(129\) 0 0
\(130\) −7.00000 14.0000i −0.613941 1.22788i
\(131\) −4.00000 −0.349482 −0.174741 0.984614i \(-0.555909\pi\)
−0.174741 + 0.984614i \(0.555909\pi\)
\(132\) 0 0
\(133\) 3.00000i 0.260133i
\(134\) 7.00000 0.604708
\(135\) 0 0
\(136\) 12.0000 1.02899
\(137\) 3.00000i 0.256307i −0.991754 0.128154i \(-0.959095\pi\)
0.991754 0.128154i \(-0.0409051\pi\)
\(138\) 0 0
\(139\) −20.0000 −1.69638 −0.848189 0.529694i \(-0.822307\pi\)
−0.848189 + 0.529694i \(0.822307\pi\)
\(140\) −2.00000 + 1.00000i −0.169031 + 0.0845154i
\(141\) 0 0
\(142\) 8.00000i 0.671345i
\(143\) 21.0000i 1.75611i
\(144\) 0 0
\(145\) 2.00000 + 4.00000i 0.166091 + 0.332182i
\(146\) −15.0000 −1.24141
\(147\) 0 0
\(148\) 4.00000i 0.328798i
\(149\) 4.00000 0.327693 0.163846 0.986486i \(-0.447610\pi\)
0.163846 + 0.986486i \(0.447610\pi\)
\(150\) 0 0
\(151\) −10.0000 −0.813788 −0.406894 0.913475i \(-0.633388\pi\)
−0.406894 + 0.913475i \(0.633388\pi\)
\(152\) 9.00000i 0.729996i
\(153\) 0 0
\(154\) −3.00000 −0.241747
\(155\) −8.00000 16.0000i −0.642575 1.28515i
\(156\) 0 0
\(157\) 18.0000i 1.43656i 0.695756 + 0.718278i \(0.255069\pi\)
−0.695756 + 0.718278i \(0.744931\pi\)
\(158\) 14.0000i 1.11378i
\(159\) 0 0
\(160\) 10.0000 5.00000i 0.790569 0.395285i
\(161\) 0 0
\(162\) 0 0
\(163\) 4.00000i 0.313304i −0.987654 0.156652i \(-0.949930\pi\)
0.987654 0.156652i \(-0.0500701\pi\)
\(164\) −11.0000 −0.858956
\(165\) 0 0
\(166\) 1.00000 0.0776151
\(167\) 12.0000i 0.928588i −0.885681 0.464294i \(-0.846308\pi\)
0.885681 0.464294i \(-0.153692\pi\)
\(168\) 0 0
\(169\) −36.0000 −2.76923
\(170\) −4.00000 8.00000i −0.306786 0.613572i
\(171\) 0 0
\(172\) 5.00000i 0.381246i
\(173\) 18.0000i 1.36851i −0.729241 0.684257i \(-0.760127\pi\)
0.729241 0.684257i \(-0.239873\pi\)
\(174\) 0 0
\(175\) 4.00000 + 3.00000i 0.302372 + 0.226779i
\(176\) 3.00000 0.226134
\(177\) 0 0
\(178\) 15.0000i 1.12430i
\(179\) 13.0000 0.971666 0.485833 0.874052i \(-0.338516\pi\)
0.485833 + 0.874052i \(0.338516\pi\)
\(180\) 0 0
\(181\) −6.00000 −0.445976 −0.222988 0.974821i \(-0.571581\pi\)
−0.222988 + 0.974821i \(0.571581\pi\)
\(182\) 7.00000i 0.518875i
\(183\) 0 0
\(184\) 0 0
\(185\) −8.00000 + 4.00000i −0.588172 + 0.294086i
\(186\) 0 0
\(187\) 12.0000i 0.877527i
\(188\) 9.00000i 0.656392i
\(189\) 0 0
\(190\) −6.00000 + 3.00000i −0.435286 + 0.217643i
\(191\) −9.00000 −0.651217 −0.325609 0.945505i \(-0.605569\pi\)
−0.325609 + 0.945505i \(0.605569\pi\)
\(192\) 0 0
\(193\) 26.0000i 1.87152i 0.352636 + 0.935760i \(0.385285\pi\)
−0.352636 + 0.935760i \(0.614715\pi\)
\(194\) 2.00000 0.143592
\(195\) 0 0
\(196\) −1.00000 −0.0714286
\(197\) 11.0000i 0.783718i −0.920025 0.391859i \(-0.871832\pi\)
0.920025 0.391859i \(-0.128168\pi\)
\(198\) 0 0
\(199\) 13.0000 0.921546 0.460773 0.887518i \(-0.347572\pi\)
0.460773 + 0.887518i \(0.347572\pi\)
\(200\) −12.0000 9.00000i −0.848528 0.636396i
\(201\) 0 0
\(202\) 3.00000i 0.211079i
\(203\) 2.00000i 0.140372i
\(204\) 0 0
\(205\) 11.0000 + 22.0000i 0.768273 + 1.53655i
\(206\) −10.0000 −0.696733
\(207\) 0 0
\(208\) 7.00000i 0.485363i
\(209\) 9.00000 0.622543
\(210\) 0 0
\(211\) 2.00000 0.137686 0.0688428 0.997628i \(-0.478069\pi\)
0.0688428 + 0.997628i \(0.478069\pi\)
\(212\) 3.00000i 0.206041i
\(213\) 0 0
\(214\) −14.0000 −0.957020
\(215\) −10.0000 + 5.00000i −0.681994 + 0.340997i
\(216\) 0 0
\(217\) 8.00000i 0.543075i
\(218\) 7.00000i 0.474100i
\(219\) 0 0
\(220\) 3.00000 + 6.00000i 0.202260 + 0.404520i
\(221\) −28.0000 −1.88348
\(222\) 0 0
\(223\) 6.00000i 0.401790i 0.979613 + 0.200895i \(0.0643850\pi\)
−0.979613 + 0.200895i \(0.935615\pi\)
\(224\) 5.00000 0.334077
\(225\) 0 0
\(226\) 3.00000 0.199557
\(227\) 1.00000i 0.0663723i 0.999449 + 0.0331862i \(0.0105654\pi\)
−0.999449 + 0.0331862i \(0.989435\pi\)
\(228\) 0 0
\(229\) 10.0000 0.660819 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 6.00000i 0.393919i
\(233\) 1.00000i 0.0655122i 0.999463 + 0.0327561i \(0.0104285\pi\)
−0.999463 + 0.0327561i \(0.989572\pi\)
\(234\) 0 0
\(235\) −18.0000 + 9.00000i −1.17419 + 0.587095i
\(236\) 10.0000 0.650945
\(237\) 0 0
\(238\) 4.00000i 0.259281i
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) 22.0000 1.41714 0.708572 0.705638i \(-0.249340\pi\)
0.708572 + 0.705638i \(0.249340\pi\)
\(242\) 2.00000i 0.128565i
\(243\) 0 0
\(244\) −2.00000 −0.128037
\(245\) 1.00000 + 2.00000i 0.0638877 + 0.127775i
\(246\) 0 0
\(247\) 21.0000i 1.33620i
\(248\) 24.0000i 1.52400i
\(249\) 0 0
\(250\) −2.00000 + 11.0000i −0.126491 + 0.695701i
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 7.00000 0.439219
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) 20.0000i 1.24757i 0.781598 + 0.623783i \(0.214405\pi\)
−0.781598 + 0.623783i \(0.785595\pi\)
\(258\) 0 0
\(259\) −4.00000 −0.248548
\(260\) −14.0000 + 7.00000i −0.868243 + 0.434122i
\(261\) 0 0
\(262\) 4.00000i 0.247121i
\(263\) 12.0000i 0.739952i 0.929041 + 0.369976i \(0.120634\pi\)
−0.929041 + 0.369976i \(0.879366\pi\)
\(264\) 0 0
\(265\) −6.00000 + 3.00000i −0.368577 + 0.184289i
\(266\) −3.00000 −0.183942
\(267\) 0 0
\(268\) 7.00000i 0.427593i
\(269\) 22.0000 1.34136 0.670682 0.741745i \(-0.266002\pi\)
0.670682 + 0.741745i \(0.266002\pi\)
\(270\) 0 0
\(271\) −23.0000 −1.39715 −0.698575 0.715537i \(-0.746182\pi\)
−0.698575 + 0.715537i \(0.746182\pi\)
\(272\) 4.00000i 0.242536i
\(273\) 0 0
\(274\) 3.00000 0.181237
\(275\) 9.00000 12.0000i 0.542720 0.723627i
\(276\) 0 0
\(277\) 8.00000i 0.480673i 0.970690 + 0.240337i \(0.0772579\pi\)
−0.970690 + 0.240337i \(0.922742\pi\)
\(278\) 20.0000i 1.19952i
\(279\) 0 0
\(280\) −3.00000 6.00000i −0.179284 0.358569i
\(281\) 2.00000 0.119310 0.0596550 0.998219i \(-0.481000\pi\)
0.0596550 + 0.998219i \(0.481000\pi\)
\(282\) 0 0
\(283\) 20.0000i 1.18888i −0.804141 0.594438i \(-0.797374\pi\)
0.804141 0.594438i \(-0.202626\pi\)
\(284\) 8.00000 0.474713
\(285\) 0 0
\(286\) −21.0000 −1.24176
\(287\) 11.0000i 0.649309i
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) −4.00000 + 2.00000i −0.234888 + 0.117444i
\(291\) 0 0
\(292\) 15.0000i 0.877809i
\(293\) 30.0000i 1.75262i −0.481749 0.876309i \(-0.659998\pi\)
0.481749 0.876309i \(-0.340002\pi\)
\(294\) 0 0
\(295\) −10.0000 20.0000i −0.582223 1.16445i
\(296\) 12.0000 0.697486
\(297\) 0 0
\(298\) 4.00000i 0.231714i
\(299\) 0 0
\(300\) 0 0
\(301\) −5.00000 −0.288195
\(302\) 10.0000i 0.575435i
\(303\) 0 0
\(304\) 3.00000 0.172062
\(305\) 2.00000 + 4.00000i 0.114520 + 0.229039i
\(306\) 0 0
\(307\) 14.0000i 0.799022i −0.916728 0.399511i \(-0.869180\pi\)
0.916728 0.399511i \(-0.130820\pi\)
\(308\) 3.00000i 0.170941i
\(309\) 0 0
\(310\) 16.0000 8.00000i 0.908739 0.454369i
\(311\) −30.0000 −1.70114 −0.850572 0.525859i \(-0.823744\pi\)
−0.850572 + 0.525859i \(0.823744\pi\)
\(312\) 0 0
\(313\) 15.0000i 0.847850i −0.905697 0.423925i \(-0.860652\pi\)
0.905697 0.423925i \(-0.139348\pi\)
\(314\) −18.0000 −1.01580
\(315\) 0 0
\(316\) 14.0000 0.787562
\(317\) 27.0000i 1.51647i 0.651981 + 0.758236i \(0.273938\pi\)
−0.651981 + 0.758236i \(0.726062\pi\)
\(318\) 0 0
\(319\) 6.00000 0.335936
\(320\) 7.00000 + 14.0000i 0.391312 + 0.782624i
\(321\) 0 0
\(322\) 0 0
\(323\) 12.0000i 0.667698i
\(324\) 0 0
\(325\) 28.0000 + 21.0000i 1.55316 + 1.16487i
\(326\) 4.00000 0.221540
\(327\) 0 0
\(328\) 33.0000i 1.82212i
\(329\) −9.00000 −0.496186
\(330\) 0 0
\(331\) 12.0000 0.659580 0.329790 0.944054i \(-0.393022\pi\)
0.329790 + 0.944054i \(0.393022\pi\)
\(332\) 1.00000i 0.0548821i
\(333\) 0 0
\(334\) 12.0000 0.656611
\(335\) −14.0000 + 7.00000i −0.764902 + 0.382451i
\(336\) 0 0
\(337\) 30.0000i 1.63420i 0.576493 + 0.817102i \(0.304421\pi\)
−0.576493 + 0.817102i \(0.695579\pi\)
\(338\) 36.0000i 1.95814i
\(339\) 0 0
\(340\) −8.00000 + 4.00000i −0.433861 + 0.216930i
\(341\) −24.0000 −1.29967
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 15.0000 0.808746
\(345\) 0 0
\(346\) 18.0000 0.967686
\(347\) 12.0000i 0.644194i −0.946707 0.322097i \(-0.895612\pi\)
0.946707 0.322097i \(-0.104388\pi\)
\(348\) 0 0
\(349\) −16.0000 −0.856460 −0.428230 0.903670i \(-0.640863\pi\)
−0.428230 + 0.903670i \(0.640863\pi\)
\(350\) −3.00000 + 4.00000i −0.160357 + 0.213809i
\(351\) 0 0
\(352\) 15.0000i 0.799503i
\(353\) 34.0000i 1.80964i −0.425797 0.904819i \(-0.640006\pi\)
0.425797 0.904819i \(-0.359994\pi\)
\(354\) 0 0
\(355\) −8.00000 16.0000i −0.424596 0.849192i
\(356\) 15.0000 0.794998
\(357\) 0 0
\(358\) 13.0000i 0.687071i
\(359\) 31.0000 1.63612 0.818059 0.575135i \(-0.195050\pi\)
0.818059 + 0.575135i \(0.195050\pi\)
\(360\) 0 0
\(361\) −10.0000 −0.526316
\(362\) 6.00000i 0.315353i
\(363\) 0 0
\(364\) −7.00000 −0.366900
\(365\) 30.0000 15.0000i 1.57027 0.785136i
\(366\) 0 0
\(367\) 18.0000i 0.939592i 0.882775 + 0.469796i \(0.155673\pi\)
−0.882775 + 0.469796i \(0.844327\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −4.00000 8.00000i −0.207950 0.415900i
\(371\) −3.00000 −0.155752
\(372\) 0 0
\(373\) 18.0000i 0.932005i 0.884783 + 0.466002i \(0.154306\pi\)
−0.884783 + 0.466002i \(0.845694\pi\)
\(374\) −12.0000 −0.620505
\(375\) 0 0
\(376\) 27.0000 1.39242
\(377\) 14.0000i 0.721037i
\(378\) 0 0
\(379\) 10.0000 0.513665 0.256833 0.966456i \(-0.417321\pi\)
0.256833 + 0.966456i \(0.417321\pi\)
\(380\) 3.00000 + 6.00000i 0.153897 + 0.307794i
\(381\) 0 0
\(382\) 9.00000i 0.460480i
\(383\) 16.0000i 0.817562i 0.912633 + 0.408781i \(0.134046\pi\)
−0.912633 + 0.408781i \(0.865954\pi\)
\(384\) 0 0
\(385\) 6.00000 3.00000i 0.305788 0.152894i
\(386\) −26.0000 −1.32337
\(387\) 0 0
\(388\) 2.00000i 0.101535i
\(389\) −10.0000 −0.507020 −0.253510 0.967333i \(-0.581585\pi\)
−0.253510 + 0.967333i \(0.581585\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 3.00000i 0.151523i
\(393\) 0 0
\(394\) 11.0000 0.554172
\(395\) −14.0000 28.0000i −0.704416 1.40883i
\(396\) 0 0
\(397\) 14.0000i 0.702640i −0.936255 0.351320i \(-0.885733\pi\)
0.936255 0.351320i \(-0.114267\pi\)
\(398\) 13.0000i 0.651631i
\(399\) 0 0
\(400\) 3.00000 4.00000i 0.150000 0.200000i
\(401\) −6.00000 −0.299626 −0.149813 0.988714i \(-0.547867\pi\)
−0.149813 + 0.988714i \(0.547867\pi\)
\(402\) 0 0
\(403\) 56.0000i 2.78956i
\(404\) −3.00000 −0.149256
\(405\) 0 0
\(406\) −2.00000 −0.0992583
\(407\) 12.0000i 0.594818i
\(408\) 0 0
\(409\) −14.0000 −0.692255 −0.346128 0.938187i \(-0.612504\pi\)
−0.346128 + 0.938187i \(0.612504\pi\)
\(410\) −22.0000 + 11.0000i −1.08650 + 0.543251i
\(411\) 0 0
\(412\) 10.0000i 0.492665i
\(413\) 10.0000i 0.492068i
\(414\) 0 0
\(415\) −2.00000 + 1.00000i −0.0981761 + 0.0490881i
\(416\) 35.0000 1.71602
\(417\) 0 0
\(418\) 9.00000i 0.440204i
\(419\) 6.00000 0.293119 0.146560 0.989202i \(-0.453180\pi\)
0.146560 + 0.989202i \(0.453180\pi\)
\(420\) 0 0
\(421\) −27.0000 −1.31590 −0.657950 0.753062i \(-0.728576\pi\)
−0.657950 + 0.753062i \(0.728576\pi\)
\(422\) 2.00000i 0.0973585i
\(423\) 0 0
\(424\) 9.00000 0.437079
\(425\) 16.0000 + 12.0000i 0.776114 + 0.582086i
\(426\) 0 0
\(427\) 2.00000i 0.0967868i
\(428\) 14.0000i 0.676716i
\(429\) 0 0
\(430\) −5.00000 10.0000i −0.241121 0.482243i
\(431\) 23.0000 1.10787 0.553936 0.832560i \(-0.313125\pi\)
0.553936 + 0.832560i \(0.313125\pi\)
\(432\) 0 0
\(433\) 11.0000i 0.528626i −0.964437 0.264313i \(-0.914855\pi\)
0.964437 0.264313i \(-0.0851452\pi\)
\(434\) 8.00000 0.384012
\(435\) 0 0
\(436\) 7.00000 0.335239
\(437\) 0 0
\(438\) 0 0
\(439\) 39.0000 1.86137 0.930684 0.365824i \(-0.119213\pi\)
0.930684 + 0.365824i \(0.119213\pi\)
\(440\) −18.0000 + 9.00000i −0.858116 + 0.429058i
\(441\) 0 0
\(442\) 28.0000i 1.33182i
\(443\) 4.00000i 0.190046i −0.995475 0.0950229i \(-0.969708\pi\)
0.995475 0.0950229i \(-0.0302924\pi\)
\(444\) 0 0
\(445\) −15.0000 30.0000i −0.711068 1.42214i
\(446\) −6.00000 −0.284108
\(447\) 0 0
\(448\) 7.00000i 0.330719i
\(449\) 10.0000 0.471929 0.235965 0.971762i \(-0.424175\pi\)
0.235965 + 0.971762i \(0.424175\pi\)
\(450\) 0 0
\(451\) 33.0000 1.55391
\(452\) 3.00000i 0.141108i
\(453\) 0 0
\(454\) −1.00000 −0.0469323
\(455\) 7.00000 + 14.0000i 0.328165 + 0.656330i
\(456\) 0 0
\(457\) 2.00000i 0.0935561i −0.998905 0.0467780i \(-0.985105\pi\)
0.998905 0.0467780i \(-0.0148953\pi\)
\(458\) 10.0000i 0.467269i
\(459\) 0 0
\(460\) 0 0
\(461\) 33.0000 1.53696 0.768482 0.639872i \(-0.221013\pi\)
0.768482 + 0.639872i \(0.221013\pi\)
\(462\) 0 0
\(463\) 27.0000i 1.25480i −0.778699 0.627398i \(-0.784120\pi\)
0.778699 0.627398i \(-0.215880\pi\)
\(464\) 2.00000 0.0928477
\(465\) 0 0
\(466\) −1.00000 −0.0463241
\(467\) 12.0000i 0.555294i −0.960683 0.277647i \(-0.910445\pi\)
0.960683 0.277647i \(-0.0895545\pi\)
\(468\) 0 0
\(469\) −7.00000 −0.323230
\(470\) −9.00000 18.0000i −0.415139 0.830278i
\(471\) 0 0
\(472\) 30.0000i 1.38086i
\(473\) 15.0000i 0.689701i
\(474\) 0 0
\(475\) 9.00000 12.0000i 0.412948 0.550598i
\(476\) −4.00000 −0.183340
\(477\) 0 0
\(478\) 12.0000i 0.548867i
\(479\) 42.0000 1.91903 0.959514 0.281659i \(-0.0908848\pi\)
0.959514 + 0.281659i \(0.0908848\pi\)
\(480\) 0 0
\(481\) −28.0000 −1.27669
\(482\) 22.0000i 1.00207i
\(483\) 0 0
\(484\) −2.00000 −0.0909091
\(485\) −4.00000 + 2.00000i −0.181631 + 0.0908153i
\(486\) 0 0
\(487\) 15.0000i 0.679715i −0.940477 0.339857i \(-0.889621\pi\)
0.940477 0.339857i \(-0.110379\pi\)
\(488\) 6.00000i 0.271607i
\(489\) 0 0
\(490\) −2.00000 + 1.00000i −0.0903508 + 0.0451754i
\(491\) −28.0000 −1.26362 −0.631811 0.775122i \(-0.717688\pi\)
−0.631811 + 0.775122i \(0.717688\pi\)
\(492\) 0 0
\(493\) 8.00000i 0.360302i
\(494\) −21.0000 −0.944835
\(495\) 0 0
\(496\) −8.00000 −0.359211
\(497\) 8.00000i 0.358849i
\(498\) 0 0
\(499\) 32.0000 1.43252 0.716258 0.697835i \(-0.245853\pi\)
0.716258 + 0.697835i \(0.245853\pi\)
\(500\) 11.0000 + 2.00000i 0.491935 + 0.0894427i
\(501\) 0 0
\(502\) 0 0
\(503\) 9.00000i 0.401290i −0.979664 0.200645i \(-0.935696\pi\)
0.979664 0.200645i \(-0.0643038\pi\)
\(504\) 0 0
\(505\) 3.00000 + 6.00000i 0.133498 + 0.266996i
\(506\) 0 0
\(507\) 0 0
\(508\) 7.00000i 0.310575i
\(509\) −6.00000 −0.265945 −0.132973 0.991120i \(-0.542452\pi\)
−0.132973 + 0.991120i \(0.542452\pi\)
\(510\) 0 0
\(511\) 15.0000 0.663561
\(512\) 11.0000i 0.486136i
\(513\) 0 0
\(514\) −20.0000 −0.882162
\(515\) 20.0000 10.0000i 0.881305 0.440653i
\(516\) 0 0
\(517\) 27.0000i 1.18746i
\(518\) 4.00000i 0.175750i
\(519\) 0 0
\(520\) −21.0000 42.0000i −0.920911 1.84182i
\(521\) 25.0000 1.09527 0.547635 0.836717i \(-0.315528\pi\)
0.547635 + 0.836717i \(0.315528\pi\)
\(522\) 0 0
\(523\) 20.0000i 0.874539i −0.899331 0.437269i \(-0.855946\pi\)
0.899331 0.437269i \(-0.144054\pi\)
\(524\) −4.00000 −0.174741
\(525\) 0 0
\(526\) −12.0000 −0.523225
\(527\) 32.0000i 1.39394i
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) −3.00000 6.00000i −0.130312 0.260623i
\(531\) 0 0
\(532\) 3.00000i 0.130066i
\(533\) 77.0000i 3.33524i
\(534\) 0 0
\(535\) 28.0000 14.0000i 1.21055 0.605273i
\(536\) 21.0000 0.907062
\(537\) 0 0
\(538\) 22.0000i 0.948487i
\(539\) 3.00000 0.129219
\(540\) 0 0
\(541\) 15.0000 0.644900 0.322450 0.946586i \(-0.395494\pi\)
0.322450 + 0.946586i \(0.395494\pi\)
\(542\) 23.0000i 0.987935i
\(543\) 0 0
\(544\) 20.0000 0.857493
\(545\) −7.00000 14.0000i −0.299847 0.599694i
\(546\) 0 0
\(547\) 16.0000i 0.684111i −0.939680 0.342055i \(-0.888877\pi\)
0.939680 0.342055i \(-0.111123\pi\)
\(548\) 3.00000i 0.128154i
\(549\) 0 0
\(550\) 12.0000 + 9.00000i 0.511682 + 0.383761i
\(551\) 6.00000 0.255609
\(552\) 0 0
\(553\) 14.0000i 0.595341i
\(554\) −8.00000 −0.339887
\(555\) 0 0
\(556\) −20.0000 −0.848189
\(557\) 2.00000i 0.0847427i −0.999102 0.0423714i \(-0.986509\pi\)
0.999102 0.0423714i \(-0.0134913\pi\)
\(558\) 0 0
\(559\) −35.0000 −1.48034
\(560\) 2.00000 1.00000i 0.0845154 0.0422577i
\(561\) 0 0
\(562\) 2.00000i 0.0843649i
\(563\) 27.0000i 1.13791i 0.822367 + 0.568957i \(0.192653\pi\)
−0.822367 + 0.568957i \(0.807347\pi\)
\(564\) 0 0
\(565\) −6.00000 + 3.00000i −0.252422 + 0.126211i
\(566\) 20.0000 0.840663
\(567\) 0 0
\(568\) 24.0000i 1.00702i
\(569\) −30.0000 −1.25767 −0.628833 0.777541i \(-0.716467\pi\)
−0.628833 + 0.777541i \(0.716467\pi\)
\(570\) 0 0
\(571\) 18.0000 0.753277 0.376638 0.926360i \(-0.377080\pi\)
0.376638 + 0.926360i \(0.377080\pi\)
\(572\) 21.0000i 0.878054i
\(573\) 0 0
\(574\) −11.0000 −0.459131
\(575\) 0 0
\(576\) 0 0
\(577\) 13.0000i 0.541197i −0.962692 0.270599i \(-0.912778\pi\)
0.962692 0.270599i \(-0.0872216\pi\)
\(578\) 1.00000i 0.0415945i
\(579\) 0 0
\(580\) 2.00000 + 4.00000i 0.0830455 + 0.166091i
\(581\) −1.00000 −0.0414870
\(582\) 0 0
\(583\) 9.00000i 0.372742i
\(584\) −45.0000 −1.86211
\(585\) 0 0
\(586\) 30.0000 1.23929
\(587\) 12.0000i 0.495293i 0.968850 + 0.247647i \(0.0796572\pi\)
−0.968850 + 0.247647i \(0.920343\pi\)
\(588\) 0 0
\(589\) −24.0000 −0.988903
\(590\) 20.0000 10.0000i 0.823387 0.411693i
\(591\) 0 0
\(592\) 4.00000i 0.164399i
\(593\) 26.0000i 1.06769i 0.845582 + 0.533846i \(0.179254\pi\)
−0.845582 + 0.533846i \(0.820746\pi\)
\(594\) 0 0
\(595\) 4.00000 + 8.00000i 0.163984 + 0.327968i
\(596\) 4.00000 0.163846
\(597\) 0 0
\(598\) 0 0
\(599\) 7.00000 0.286012 0.143006 0.989722i \(-0.454323\pi\)
0.143006 + 0.989722i \(0.454323\pi\)
\(600\) 0 0
\(601\) 28.0000 1.14214 0.571072 0.820900i \(-0.306528\pi\)
0.571072 + 0.820900i \(0.306528\pi\)
\(602\) 5.00000i 0.203785i
\(603\) 0 0
\(604\) −10.0000 −0.406894
\(605\) 2.00000 + 4.00000i 0.0813116 + 0.162623i
\(606\) 0 0
\(607\) 12.0000i 0.487065i −0.969893 0.243532i \(-0.921694\pi\)
0.969893 0.243532i \(-0.0783062\pi\)
\(608\) 15.0000i 0.608330i
\(609\) 0 0
\(610\) −4.00000 + 2.00000i −0.161955 + 0.0809776i
\(611\) −63.0000 −2.54871
\(612\) 0 0
\(613\) 4.00000i 0.161558i −0.996732 0.0807792i \(-0.974259\pi\)
0.996732 0.0807792i \(-0.0257409\pi\)
\(614\) 14.0000 0.564994
\(615\) 0 0
\(616\) −9.00000 −0.362620
\(617\) 10.0000i 0.402585i −0.979531 0.201292i \(-0.935486\pi\)
0.979531 0.201292i \(-0.0645141\pi\)
\(618\) 0 0
\(619\) 35.0000 1.40677 0.703384 0.710810i \(-0.251671\pi\)
0.703384 + 0.710810i \(0.251671\pi\)
\(620\) −8.00000 16.0000i −0.321288 0.642575i
\(621\) 0 0
\(622\) 30.0000i 1.20289i
\(623\) 15.0000i 0.600962i
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) 15.0000 0.599521
\(627\) 0 0
\(628\) 18.0000i 0.718278i
\(629\) −16.0000 −0.637962
\(630\) 0 0
\(631\) −2.00000 −0.0796187 −0.0398094 0.999207i \(-0.512675\pi\)
−0.0398094 + 0.999207i \(0.512675\pi\)
\(632\) 42.0000i 1.67067i
\(633\) 0 0
\(634\) −27.0000 −1.07231
\(635\) −14.0000 + 7.00000i −0.555573 + 0.277787i
\(636\) 0 0
\(637\) 7.00000i 0.277350i
\(638\) 6.00000i 0.237542i
\(639\) 0 0
\(640\) 6.00000 3.00000i 0.237171 0.118585i
\(641\) 38.0000 1.50091 0.750455 0.660922i \(-0.229834\pi\)
0.750455 + 0.660922i \(0.229834\pi\)
\(642\) 0 0
\(643\) 2.00000i 0.0788723i 0.999222 + 0.0394362i \(0.0125562\pi\)
−0.999222 + 0.0394362i \(0.987444\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −12.0000 −0.472134
\(647\) 25.0000i 0.982851i −0.870919 0.491426i \(-0.836476\pi\)
0.870919 0.491426i \(-0.163524\pi\)
\(648\) 0 0
\(649\) −30.0000 −1.17760
\(650\) −21.0000 + 28.0000i −0.823688 + 1.09825i
\(651\) 0 0
\(652\) 4.00000i 0.156652i
\(653\) 34.0000i 1.33052i −0.746611 0.665261i \(-0.768320\pi\)
0.746611 0.665261i \(-0.231680\pi\)
\(654\) 0 0
\(655\) 4.00000 + 8.00000i 0.156293 + 0.312586i
\(656\) 11.0000 0.429478
\(657\) 0 0
\(658\) 9.00000i 0.350857i
\(659\) −36.0000 −1.40236 −0.701180 0.712984i \(-0.747343\pi\)
−0.701180 + 0.712984i \(0.747343\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 12.0000i 0.466393i
\(663\) 0 0
\(664\) 3.00000 0.116423
\(665\) 6.00000 3.00000i 0.232670 0.116335i
\(666\) 0 0
\(667\) 0 0
\(668\) 12.0000i 0.464294i
\(669\) 0 0
\(670\) −7.00000 14.0000i −0.270434 0.540867i
\(671\) 6.00000 0.231627
\(672\) 0 0
\(673\) 36.0000i 1.38770i −0.720121 0.693849i \(-0.755914\pi\)
0.720121 0.693849i \(-0.244086\pi\)
\(674\) −30.0000 −1.15556
\(675\) 0 0
\(676\) −36.0000 −1.38462
\(677\) 4.00000i 0.153732i 0.997041 + 0.0768662i \(0.0244914\pi\)
−0.997041 + 0.0768662i \(0.975509\pi\)
\(678\) 0 0
\(679\) −2.00000 −0.0767530
\(680\) −12.0000 24.0000i −0.460179 0.920358i
\(681\) 0 0
\(682\) 24.0000i 0.919007i
\(683\) 44.0000i 1.68361i −0.539779 0.841807i \(-0.681492\pi\)
0.539779 0.841807i \(-0.318508\pi\)
\(684\) 0 0
\(685\) −6.00000 + 3.00000i −0.229248 + 0.114624i
\(686\) −1.00000 −0.0381802
\(687\) 0 0
\(688\) 5.00000i 0.190623i
\(689\) −21.0000 −0.800036
\(690\) 0 0
\(691\) −5.00000 −0.190209 −0.0951045 0.995467i \(-0.530319\pi\)
−0.0951045 + 0.995467i \(0.530319\pi\)
\(692\) 18.0000i 0.684257i
\(693\) 0 0
\(694\) 12.0000 0.455514
\(695\) 20.0000 + 40.0000i 0.758643 + 1.51729i
\(696\) 0 0
\(697\) 44.0000i 1.66662i
\(698\) 16.0000i 0.605609i
\(699\) 0 0
\(700\) 4.00000 + 3.00000i 0.151186 + 0.113389i
\(701\) −8.00000 −0.302156 −0.151078 0.988522i \(-0.548274\pi\)
−0.151078 + 0.988522i \(0.548274\pi\)
\(702\) 0 0
\(703\) 12.0000i 0.452589i
\(704\) 21.0000 0.791467
\(705\) 0 0
\(706\) 34.0000 1.27961
\(707\) 3.00000i 0.112827i
\(708\) 0 0
\(709\) 1.00000 0.0375558 0.0187779 0.999824i \(-0.494022\pi\)
0.0187779 + 0.999824i \(0.494022\pi\)
\(710\) 16.0000 8.00000i 0.600469 0.300235i
\(711\) 0 0
\(712\) 45.0000i 1.68645i
\(713\) 0 0
\(714\) 0 0
\(715\) 42.0000 21.0000i 1.57071 0.785355i
\(716\) 13.0000 0.485833
\(717\) 0 0
\(718\) 31.0000i 1.15691i
\(719\) −6.00000 −0.223762 −0.111881 0.993722i \(-0.535688\pi\)
−0.111881 + 0.993722i \(0.535688\pi\)
\(720\) 0 0
\(721\) 10.0000 0.372419
\(722\) 10.0000i 0.372161i
\(723\) 0 0
\(724\) −6.00000 −0.222988
\(725\) 6.00000 8.00000i 0.222834 0.297113i
\(726\) 0 0
\(727\) 22.0000i 0.815935i −0.912996 0.407967i \(-0.866238\pi\)
0.912996 0.407967i \(-0.133762\pi\)
\(728\) 21.0000i 0.778312i
\(729\) 0 0
\(730\) 15.0000 + 30.0000i 0.555175 + 1.11035i
\(731\) −20.0000 −0.739727
\(732\) 0 0
\(733\) 31.0000i 1.14501i −0.819901 0.572506i \(-0.805971\pi\)
0.819901 0.572506i \(-0.194029\pi\)
\(734\) −18.0000 −0.664392
\(735\) 0 0
\(736\) 0 0
\(737\) 21.0000i 0.773545i
\(738\) 0 0
\(739\) 44.0000 1.61857 0.809283 0.587419i \(-0.199856\pi\)
0.809283 + 0.587419i \(0.199856\pi\)
\(740\) −8.00000 + 4.00000i −0.294086 + 0.147043i
\(741\) 0 0
\(742\) 3.00000i 0.110133i
\(743\) 22.0000i 0.807102i 0.914957 + 0.403551i \(0.132224\pi\)
−0.914957 + 0.403551i \(0.867776\pi\)
\(744\) 0 0
\(745\) −4.00000 8.00000i −0.146549 0.293097i
\(746\) −18.0000 −0.659027
\(747\) 0 0
\(748\) 12.0000i 0.438763i
\(749\) 14.0000 0.511549
\(750\) 0 0
\(751\) 6.00000 0.218943 0.109472 0.993990i \(-0.465084\pi\)
0.109472 + 0.993990i \(0.465084\pi\)
\(752\) 9.00000i 0.328196i
\(753\) 0 0
\(754\) −14.0000 −0.509850
\(755\) 10.0000 + 20.0000i 0.363937 + 0.727875i
\(756\) 0 0
\(757\) 32.0000i 1.16306i 0.813525 + 0.581530i \(0.197546\pi\)
−0.813525 + 0.581530i \(0.802454\pi\)
\(758\) 10.0000i 0.363216i
\(759\) 0 0
\(760\) −18.0000 + 9.00000i −0.652929 + 0.326464i
\(761\) −50.0000 −1.81250 −0.906249 0.422744i \(-0.861067\pi\)
−0.906249 + 0.422744i \(0.861067\pi\)
\(762\) 0 0
\(763\) 7.00000i 0.253417i
\(764\) −9.00000 −0.325609
\(765\) 0 0
\(766\) −16.0000 −0.578103
\(767\) 70.0000i 2.52755i
\(768\) 0 0
\(769\) 18.0000 0.649097 0.324548 0.945869i \(-0.394788\pi\)
0.324548 + 0.945869i \(0.394788\pi\)
\(770\) 3.00000 + 6.00000i 0.108112 + 0.216225i
\(771\) 0 0
\(772\) 26.0000i 0.935760i
\(773\) 6.00000i 0.215805i 0.994161 + 0.107903i \(0.0344134\pi\)
−0.994161 + 0.107903i \(0.965587\pi\)
\(774\) 0 0
\(775\) −24.0000 + 32.0000i −0.862105 + 1.14947i
\(776\) 6.00000 0.215387
\(777\) 0 0
\(778\) 10.0000i 0.358517i
\(779\) 33.0000 1.18235
\(780\) 0 0
\(781\) −24.0000 −0.858788
\(782\) 0 0
\(783\) 0 0
\(784\) 1.00000 0.0357143
\(785\) 36.0000 18.0000i 1.28490 0.642448i
\(786\) 0 0
\(787\) 22.0000i 0.784215i −0.919919 0.392108i \(-0.871746\pi\)
0.919919 0.392108i \(-0.128254\pi\)
\(788\) 11.0000i 0.391859i
\(789\) 0 0
\(790\) 28.0000 14.0000i 0.996195 0.498098i
\(791\) −3.00000 −0.106668
\(792\) 0 0
\(793\) 14.0000i 0.497155i
\(794\) 14.0000 0.496841
\(795\) 0 0
\(796\) 13.0000 0.460773
\(797\) 16.0000i 0.566749i 0.959009 + 0.283375i \(0.0914540\pi\)
−0.959009 + 0.283375i \(0.908546\pi\)
\(798\) 0 0
\(799\) −36.0000 −1.27359
\(800\) −20.0000 15.0000i −0.707107 0.530330i
\(801\) 0 0
\(802\) 6.00000i 0.211867i
\(803\) 45.0000i 1.58802i
\(804\) 0 0
\(805\) 0 0
\(806\) 56.0000 1.97252
\(807\) 0 0
\(808\) 9.00000i 0.316619i
\(809\) −36.0000 −1.26569 −0.632846 0.774277i \(-0.718114\pi\)
−0.632846 + 0.774277i \(0.718114\pi\)
\(810\) 0 0
\(811\) 7.00000 0.245803 0.122902 0.992419i \(-0.460780\pi\)
0.122902 + 0.992419i \(0.460780\pi\)
\(812\) 2.00000i 0.0701862i
\(813\) 0 0
\(814\) −12.0000 −0.420600
\(815\) −8.00000 + 4.00000i −0.280228 + 0.140114i
\(816\) 0 0
\(817\) 15.0000i 0.524784i
\(818\) 14.0000i 0.489499i
\(819\) 0 0
\(820\) 11.0000 + 22.0000i 0.384137 + 0.768273i
\(821\) 2.00000 0.0698005 0.0349002 0.999391i \(-0.488889\pi\)
0.0349002 + 0.999391i \(0.488889\pi\)
\(822\) 0 0
\(823\) 1.00000i 0.0348578i 0.999848 + 0.0174289i \(0.00554807\pi\)
−0.999848 + 0.0174289i \(0.994452\pi\)
\(824\) −30.0000 −1.04510
\(825\) 0 0
\(826\) 10.0000 0.347945
\(827\) 6.00000i 0.208640i −0.994544 0.104320i \(-0.966733\pi\)
0.994544 0.104320i \(-0.0332667\pi\)
\(828\) 0 0
\(829\) −30.0000 −1.04194 −0.520972 0.853574i \(-0.674430\pi\)
−0.520972 + 0.853574i \(0.674430\pi\)
\(830\) −1.00000 2.00000i −0.0347105 0.0694210i
\(831\) 0 0
\(832\) 49.0000i 1.69877i
\(833\) 4.00000i 0.138592i
\(834\) 0 0
\(835\) −24.0000 + 12.0000i −0.830554 + 0.415277i
\(836\) 9.00000 0.311272
\(837\) 0 0
\(838\) 6.00000i 0.207267i
\(839\) −42.0000 −1.45000 −0.725001 0.688748i \(-0.758161\pi\)
−0.725001 + 0.688748i \(0.758161\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 27.0000i 0.930481i
\(843\) 0 0
\(844\) 2.00000 0.0688428
\(845\) 36.0000 + 72.0000i 1.23844 + 2.47688i
\(846\) 0 0
\(847\) 2.00000i 0.0687208i
\(848\) 3.00000i 0.103020i
\(849\) 0 0
\(850\) −12.0000 + 16.0000i −0.411597 + 0.548795i
\(851\) 0 0
\(852\) 0 0
\(853\) 6.00000i 0.205436i 0.994711 + 0.102718i \(0.0327539\pi\)
−0.994711 + 0.102718i \(0.967246\pi\)
\(854\) −2.00000 −0.0684386
\(855\) 0 0
\(856\) −42.0000 −1.43553
\(857\) 12.0000i 0.409912i −0.978771 0.204956i \(-0.934295\pi\)
0.978771 0.204956i \(-0.0657052\pi\)
\(858\) 0 0
\(859\) −19.0000 −0.648272 −0.324136 0.946011i \(-0.605073\pi\)
−0.324136 + 0.946011i \(0.605073\pi\)
\(860\) −10.0000 + 5.00000i −0.340997 + 0.170499i
\(861\) 0 0
\(862\) 23.0000i 0.783383i
\(863\) 6.00000i 0.204242i −0.994772 0.102121i \(-0.967437\pi\)
0.994772 0.102121i \(-0.0325630\pi\)
\(864\) 0 0
\(865\) −36.0000 + 18.0000i −1.22404 + 0.612018i
\(866\) 11.0000 0.373795
\(867\) 0 0
\(868\) 8.00000i 0.271538i
\(869\) −42.0000 −1.42475
\(870\) 0 0
\(871\) −49.0000 −1.66030
\(872\) 21.0000i 0.711150i
\(873\) 0 0
\(874\) 0 0
\(875\) 2.00000 11.0000i 0.0676123 0.371868i
\(876\) 0 0
\(877\) 22.0000i 0.742887i −0.928456 0.371444i \(-0.878863\pi\)
0.928456 0.371444i \(-0.121137\pi\)
\(878\) 39.0000i 1.31619i
\(879\) 0 0
\(880\) −3.00000 6.00000i −0.101130 0.202260i
\(881\) −14.0000 −0.471672 −0.235836 0.971793i \(-0.575783\pi\)
−0.235836 + 0.971793i \(0.575783\pi\)
\(882\) 0 0
\(883\) 12.0000i 0.403832i 0.979403 + 0.201916i \(0.0647168\pi\)
−0.979403 + 0.201916i \(0.935283\pi\)
\(884\) −28.0000 −0.941742
\(885\) 0 0
\(886\) 4.00000 0.134383
\(887\) 55.0000i 1.84672i 0.383936 + 0.923360i \(0.374568\pi\)
−0.383936 + 0.923360i \(0.625432\pi\)
\(888\) 0 0
\(889\) −7.00000 −0.234772
\(890\) 30.0000 15.0000i 1.00560 0.502801i
\(891\) 0 0
\(892\) 6.00000i 0.200895i
\(893\) 27.0000i 0.903521i
\(894\) 0 0
\(895\) −13.0000 26.0000i −0.434542 0.869084i
\(896\) 3.00000 0.100223
\(897\) 0 0
\(898\) 10.0000i 0.333704i
\(899\) −16.0000 −0.533630
\(900\) 0 0
\(901\) −12.0000 −0.399778
\(902\) 33.0000i 1.09878i
\(903\) 0 0
\(904\) 9.00000 0.299336
\(905\) 6.00000 + 12.0000i 0.199447 + 0.398893i
\(906\) 0 0
\(907\) 25.0000i 0.830111i 0.909796 + 0.415056i \(0.136238\pi\)
−0.909796 + 0.415056i \(0.863762\pi\)
\(908\) 1.00000i 0.0331862i
\(909\) 0 0
\(910\) −14.0000 + 7.00000i −0.464095 + 0.232048i
\(911\) −15.0000 −0.496972 −0.248486 0.968635i \(-0.579933\pi\)
−0.248486 + 0.968635i \(0.579933\pi\)
\(912\) 0 0
\(913\) 3.00000i 0.0992855i
\(914\) 2.00000 0.0661541
\(915\) 0 0
\(916\) 10.0000 0.330409
\(917\) 4.00000i 0.132092i
\(918\) 0 0
\(919\) −10.0000 −0.329870 −0.164935 0.986304i \(-0.552741\pi\)
−0.164935 + 0.986304i \(0.552741\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 33.0000i 1.08680i
\(923\) 56.0000i 1.84326i
\(924\) 0 0
\(925\) 16.0000 + 12.0000i 0.526077 + 0.394558i
\(926\) 27.0000 0.887275
\(927\) 0 0
\(928\) 10.0000i 0.328266i
\(929\) 13.0000 0.426516 0.213258 0.976996i \(-0.431592\pi\)
0.213258 + 0.976996i \(0.431592\pi\)
\(930\) 0 0
\(931\) 3.00000 0.0983210
\(932\) 1.00000i 0.0327561i
\(933\) 0 0
\(934\) 12.0000 0.392652
\(935\) 24.0000 12.0000i 0.784884 0.392442i
\(936\) 0 0
\(937\) 7.00000i 0.228680i −0.993442 0.114340i \(-0.963525\pi\)
0.993442 0.114340i \(-0.0364753\pi\)
\(938\) 7.00000i 0.228558i
\(939\) 0 0
\(940\) −18.0000 + 9.00000i −0.587095 + 0.293548i
\(941\) 15.0000 0.488986 0.244493 0.969651i \(-0.421378\pi\)
0.244493 + 0.969651i \(0.421378\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −10.0000 −0.325472
\(945\) 0 0
\(946\) −15.0000 −0.487692
\(947\) 18.0000i 0.584921i 0.956278 + 0.292461i \(0.0944741\pi\)
−0.956278 + 0.292461i \(0.905526\pi\)
\(948\) 0 0
\(949\) 105.000 3.40844
\(950\) 12.0000 + 9.00000i 0.389331 + 0.291999i
\(951\) 0 0
\(952\) 12.0000i 0.388922i
\(953\) 42.0000i 1.36051i 0.732974 + 0.680257i \(0.238132\pi\)
−0.732974 + 0.680257i \(0.761868\pi\)
\(954\) 0 0
\(955\) 9.00000 + 18.0000i 0.291233 + 0.582466i
\(956\) 12.0000 0.388108
\(957\) 0 0
\(958\) 42.0000i 1.35696i
\(959\) −3.00000 −0.0968751
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 28.0000i 0.902756i
\(963\) 0 0
\(964\) 22.0000 0.708572
\(965\) 52.0000 26.0000i 1.67394 0.836970i
\(966\) 0 0
\(967\) 5.00000i 0.160789i −0.996763 0.0803946i \(-0.974382\pi\)
0.996763 0.0803946i \(-0.0256180\pi\)
\(968\) 6.00000i 0.192847i
\(969\) 0 0
\(970\) −2.00000 4.00000i −0.0642161 0.128432i
\(971\) 26.0000 0.834380 0.417190 0.908819i \(-0.363015\pi\)
0.417190 + 0.908819i \(0.363015\pi\)
\(972\) 0 0
\(973\) 20.0000i 0.641171i
\(974\) 15.0000 0.480631
\(975\) 0 0
\(976\) 2.00000 0.0640184
\(977\) 21.0000i 0.671850i −0.941889 0.335925i \(-0.890951\pi\)
0.941889 0.335925i \(-0.109049\pi\)
\(978\) 0 0
\(979\) −45.0000 −1.43821
\(980\) 1.00000 + 2.00000i 0.0319438 + 0.0638877i
\(981\) 0 0
\(982\) 28.0000i 0.893516i
\(983\) 24.0000i 0.765481i 0.923856 + 0.382741i \(0.125020\pi\)
−0.923856 + 0.382741i \(0.874980\pi\)
\(984\) 0 0
\(985\) −22.0000 + 11.0000i −0.700978 + 0.350489i
\(986\) −8.00000 −0.254772
\(987\) 0 0
\(988\) 21.0000i 0.668099i
\(989\) 0 0
\(990\) 0 0
\(991\) 4.00000 0.127064 0.0635321 0.997980i \(-0.479763\pi\)
0.0635321 + 0.997980i \(0.479763\pi\)
\(992\) 40.0000i 1.27000i
\(993\) 0 0
\(994\) 8.00000 0.253745
\(995\) −13.0000 26.0000i −0.412128 0.824255i
\(996\) 0 0
\(997\) 50.0000i 1.58352i 0.610835 + 0.791758i \(0.290834\pi\)
−0.610835 + 0.791758i \(0.709166\pi\)
\(998\) 32.0000i 1.01294i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 945.2.d.a.379.2 yes 2
3.2 odd 2 945.2.d.b.379.1 yes 2
5.2 odd 4 4725.2.a.f.1.1 1
5.3 odd 4 4725.2.a.o.1.1 1
5.4 even 2 inner 945.2.d.a.379.1 2
15.2 even 4 4725.2.a.p.1.1 1
15.8 even 4 4725.2.a.e.1.1 1
15.14 odd 2 945.2.d.b.379.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
945.2.d.a.379.1 2 5.4 even 2 inner
945.2.d.a.379.2 yes 2 1.1 even 1 trivial
945.2.d.b.379.1 yes 2 3.2 odd 2
945.2.d.b.379.2 yes 2 15.14 odd 2
4725.2.a.e.1.1 1 15.8 even 4
4725.2.a.f.1.1 1 5.2 odd 4
4725.2.a.o.1.1 1 5.3 odd 4
4725.2.a.p.1.1 1 15.2 even 4