Defining parameters
Level: | \( N \) | \(=\) | \( 945 = 3^{3} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 945.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 14 \) | ||
Sturm bound: | \(288\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(2\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(945))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 156 | 32 | 124 |
Cusp forms | 133 | 32 | 101 |
Eisenstein series | 23 | 0 | 23 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(5\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(15\) | \(4\) | \(11\) | \(13\) | \(4\) | \(9\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(23\) | \(6\) | \(17\) | \(20\) | \(6\) | \(14\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(21\) | \(4\) | \(17\) | \(18\) | \(4\) | \(14\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(19\) | \(2\) | \(17\) | \(16\) | \(2\) | \(14\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(21\) | \(4\) | \(17\) | \(18\) | \(4\) | \(14\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(17\) | \(2\) | \(15\) | \(14\) | \(2\) | \(12\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(21\) | \(4\) | \(17\) | \(18\) | \(4\) | \(14\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(19\) | \(6\) | \(13\) | \(16\) | \(6\) | \(10\) | \(3\) | \(0\) | \(3\) | |||
Plus space | \(+\) | \(72\) | \(12\) | \(60\) | \(61\) | \(12\) | \(49\) | \(11\) | \(0\) | \(11\) | |||||
Minus space | \(-\) | \(84\) | \(20\) | \(64\) | \(72\) | \(20\) | \(52\) | \(12\) | \(0\) | \(12\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(945))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(945))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(945)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(135))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(189))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(315))\)\(^{\oplus 2}\)