# Properties

 Label 9408.2.a.ee Level $9408$ Weight $2$ Character orbit 9408.a Self dual yes Analytic conductor $75.123$ Analytic rank $0$ Dimension $2$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$9408 = 2^{6} \cdot 3 \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 9408.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$75.1232582216$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{2})$$ Defining polynomial: $$x^{2} - 2$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 1176) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \sqrt{2}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + q^{3} + ( 2 + \beta ) q^{5} + q^{9} +O(q^{10})$$ $$q + q^{3} + ( 2 + \beta ) q^{5} + q^{9} + ( -2 - 2 \beta ) q^{11} + \beta q^{13} + ( 2 + \beta ) q^{15} + ( 2 + 3 \beta ) q^{17} + ( 4 - 2 \beta ) q^{19} + ( 2 - 2 \beta ) q^{23} + ( 1 + 4 \beta ) q^{25} + q^{27} + 6 \beta q^{29} + ( -8 - 2 \beta ) q^{31} + ( -2 - 2 \beta ) q^{33} + ( 4 + 4 \beta ) q^{37} + \beta q^{39} + ( 2 + \beta ) q^{41} + 8 q^{43} + ( 2 + \beta ) q^{45} + ( -4 + 2 \beta ) q^{47} + ( 2 + 3 \beta ) q^{51} + ( 2 - 8 \beta ) q^{53} + ( -8 - 6 \beta ) q^{55} + ( 4 - 2 \beta ) q^{57} + ( 8 + 2 \beta ) q^{59} + ( 4 - 7 \beta ) q^{61} + ( 2 + 2 \beta ) q^{65} + 8 q^{67} + ( 2 - 2 \beta ) q^{69} + ( 2 + 2 \beta ) q^{71} + ( 4 - 5 \beta ) q^{73} + ( 1 + 4 \beta ) q^{75} + ( -8 - 4 \beta ) q^{79} + q^{81} + ( 4 - 8 \beta ) q^{83} + ( 10 + 8 \beta ) q^{85} + 6 \beta q^{87} + ( -2 - 9 \beta ) q^{89} + ( -8 - 2 \beta ) q^{93} + 4 q^{95} + ( 12 + 3 \beta ) q^{97} + ( -2 - 2 \beta ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + 2q^{3} + 4q^{5} + 2q^{9} + O(q^{10})$$ $$2q + 2q^{3} + 4q^{5} + 2q^{9} - 4q^{11} + 4q^{15} + 4q^{17} + 8q^{19} + 4q^{23} + 2q^{25} + 2q^{27} - 16q^{31} - 4q^{33} + 8q^{37} + 4q^{41} + 16q^{43} + 4q^{45} - 8q^{47} + 4q^{51} + 4q^{53} - 16q^{55} + 8q^{57} + 16q^{59} + 8q^{61} + 4q^{65} + 16q^{67} + 4q^{69} + 4q^{71} + 8q^{73} + 2q^{75} - 16q^{79} + 2q^{81} + 8q^{83} + 20q^{85} - 4q^{89} - 16q^{93} + 8q^{95} + 24q^{97} - 4q^{99} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −1.41421 1.41421
0 1.00000 0 0.585786 0 0 0 1.00000 0
1.2 0 1.00000 0 3.41421 0 0 0 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$3$$ $$-1$$
$$7$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9408.2.a.ee 2
4.b odd 2 1 9408.2.a.ds 2
7.b odd 2 1 9408.2.a.dg 2
8.b even 2 1 1176.2.a.j 2
8.d odd 2 1 2352.2.a.bd 2
24.f even 2 1 7056.2.a.cx 2
24.h odd 2 1 3528.2.a.bl 2
28.d even 2 1 9408.2.a.du 2
56.e even 2 1 2352.2.a.bb 2
56.h odd 2 1 1176.2.a.o yes 2
56.j odd 6 2 1176.2.q.k 4
56.k odd 6 2 2352.2.q.bc 4
56.m even 6 2 2352.2.q.be 4
56.p even 6 2 1176.2.q.o 4
168.e odd 2 1 7056.2.a.cg 2
168.i even 2 1 3528.2.a.bb 2
168.s odd 6 2 3528.2.s.bd 4
168.ba even 6 2 3528.2.s.bm 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1176.2.a.j 2 8.b even 2 1
1176.2.a.o yes 2 56.h odd 2 1
1176.2.q.k 4 56.j odd 6 2
1176.2.q.o 4 56.p even 6 2
2352.2.a.bb 2 56.e even 2 1
2352.2.a.bd 2 8.d odd 2 1
2352.2.q.bc 4 56.k odd 6 2
2352.2.q.be 4 56.m even 6 2
3528.2.a.bb 2 168.i even 2 1
3528.2.a.bl 2 24.h odd 2 1
3528.2.s.bd 4 168.s odd 6 2
3528.2.s.bm 4 168.ba even 6 2
7056.2.a.cg 2 168.e odd 2 1
7056.2.a.cx 2 24.f even 2 1
9408.2.a.dg 2 7.b odd 2 1
9408.2.a.ds 2 4.b odd 2 1
9408.2.a.du 2 28.d even 2 1
9408.2.a.ee 2 1.a even 1 1 trivial

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(9408))$$:

 $$T_{5}^{2} - 4 T_{5} + 2$$ $$T_{11}^{2} + 4 T_{11} - 4$$ $$T_{13}^{2} - 2$$ $$T_{17}^{2} - 4 T_{17} - 14$$ $$T_{19}^{2} - 8 T_{19} + 8$$ $$T_{31}^{2} + 16 T_{31} + 56$$