Properties

Label 9408.2.a.dk
Level 9408
Weight 2
Character orbit 9408.a
Self dual yes
Analytic conductor 75.123
Analytic rank 1
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 9408 = 2^{6} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9408.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(75.1232582216\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Defining polynomial: \(x^{2} - 2\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 4704)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} + 2 \beta q^{5} + q^{9} +O(q^{10})\) \( q - q^{3} + 2 \beta q^{5} + q^{9} -2 \beta q^{11} -2 \beta q^{15} + 2 \beta q^{17} -4 q^{19} -6 \beta q^{23} + 3 q^{25} - q^{27} -2 q^{29} + 2 \beta q^{33} + 6 q^{37} + 6 \beta q^{41} + 8 \beta q^{43} + 2 \beta q^{45} + 8 q^{47} -2 \beta q^{51} -6 q^{53} -8 q^{55} + 4 q^{57} -12 q^{59} -4 \beta q^{61} -4 \beta q^{67} + 6 \beta q^{69} -2 \beta q^{71} -4 \beta q^{73} -3 q^{75} -4 \beta q^{79} + q^{81} + 4 q^{83} + 8 q^{85} + 2 q^{87} -2 \beta q^{89} -8 \beta q^{95} -12 \beta q^{97} -2 \beta q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{3} + 2q^{9} + O(q^{10}) \) \( 2q - 2q^{3} + 2q^{9} - 8q^{19} + 6q^{25} - 2q^{27} - 4q^{29} + 12q^{37} + 16q^{47} - 12q^{53} - 16q^{55} + 8q^{57} - 24q^{59} - 6q^{75} + 2q^{81} + 8q^{83} + 16q^{85} + 4q^{87} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
0 −1.00000 0 −2.82843 0 0 0 1.00000 0
1.2 0 −1.00000 0 2.82843 0 0 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
28.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9408.2.a.dk 2
4.b odd 2 1 9408.2.a.eb 2
7.b odd 2 1 9408.2.a.eb 2
8.b even 2 1 4704.2.a.br yes 2
8.d odd 2 1 4704.2.a.bi 2
28.d even 2 1 inner 9408.2.a.dk 2
56.e even 2 1 4704.2.a.br yes 2
56.h odd 2 1 4704.2.a.bi 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4704.2.a.bi 2 8.d odd 2 1
4704.2.a.bi 2 56.h odd 2 1
4704.2.a.br yes 2 8.b even 2 1
4704.2.a.br yes 2 56.e even 2 1
9408.2.a.dk 2 1.a even 1 1 trivial
9408.2.a.dk 2 28.d even 2 1 inner
9408.2.a.eb 2 4.b odd 2 1
9408.2.a.eb 2 7.b odd 2 1

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(7\) \(-1\)

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9408))\):

\( T_{5}^{2} - 8 \)
\( T_{11}^{2} - 8 \)
\( T_{13} \)
\( T_{17}^{2} - 8 \)
\( T_{19} + 4 \)
\( T_{31} \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( ( 1 + T )^{2} \)
$5$ \( 1 + 2 T^{2} + 25 T^{4} \)
$7$ 1
$11$ \( 1 + 14 T^{2} + 121 T^{4} \)
$13$ \( ( 1 + 13 T^{2} )^{2} \)
$17$ \( 1 + 26 T^{2} + 289 T^{4} \)
$19$ \( ( 1 + 4 T + 19 T^{2} )^{2} \)
$23$ \( 1 - 26 T^{2} + 529 T^{4} \)
$29$ \( ( 1 + 2 T + 29 T^{2} )^{2} \)
$31$ \( ( 1 + 31 T^{2} )^{2} \)
$37$ \( ( 1 - 6 T + 37 T^{2} )^{2} \)
$41$ \( 1 + 10 T^{2} + 1681 T^{4} \)
$43$ \( 1 - 42 T^{2} + 1849 T^{4} \)
$47$ \( ( 1 - 8 T + 47 T^{2} )^{2} \)
$53$ \( ( 1 + 6 T + 53 T^{2} )^{2} \)
$59$ \( ( 1 + 12 T + 59 T^{2} )^{2} \)
$61$ \( 1 + 90 T^{2} + 3721 T^{4} \)
$67$ \( 1 + 102 T^{2} + 4489 T^{4} \)
$71$ \( 1 + 134 T^{2} + 5041 T^{4} \)
$73$ \( 1 + 114 T^{2} + 5329 T^{4} \)
$79$ \( 1 + 126 T^{2} + 6241 T^{4} \)
$83$ \( ( 1 - 4 T + 83 T^{2} )^{2} \)
$89$ \( 1 + 170 T^{2} + 7921 T^{4} \)
$97$ \( 1 - 94 T^{2} + 9409 T^{4} \)
show more
show less