# Properties

 Label 9408.2.a.dh Level $9408$ Weight $2$ Character orbit 9408.a Self dual yes Analytic conductor $75.123$ Analytic rank $0$ Dimension $2$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$9408 = 2^{6} \cdot 3 \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 9408.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$75.1232582216$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{2})$$ Defining polynomial: $$x^{2} - 2$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 1176) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \sqrt{2}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q - q^{3} + ( -2 + \beta ) q^{5} + q^{9} +O(q^{10})$$ $$q - q^{3} + ( -2 + \beta ) q^{5} + q^{9} + ( -2 - 2 \beta ) q^{11} -3 \beta q^{13} + ( 2 - \beta ) q^{15} + ( 6 - \beta ) q^{17} + ( 4 - 2 \beta ) q^{19} + ( 2 - 2 \beta ) q^{23} + ( 1 - 4 \beta ) q^{25} - q^{27} + 2 \beta q^{29} -2 \beta q^{31} + ( 2 + 2 \beta ) q^{33} + ( -4 - 4 \beta ) q^{37} + 3 \beta q^{39} + ( 6 - 3 \beta ) q^{41} + 8 \beta q^{43} + ( -2 + \beta ) q^{45} + ( -4 - 6 \beta ) q^{47} + ( -6 + \beta ) q^{51} + 2 q^{53} + 2 \beta q^{55} + ( -4 + 2 \beta ) q^{57} -6 \beta q^{59} + ( -4 + 5 \beta ) q^{61} + ( -6 + 6 \beta ) q^{65} -8 \beta q^{67} + ( -2 + 2 \beta ) q^{69} + ( 2 - 6 \beta ) q^{71} + ( 12 + 3 \beta ) q^{73} + ( -1 + 4 \beta ) q^{75} + ( -8 + 4 \beta ) q^{79} + q^{81} -4 q^{83} + ( -14 + 8 \beta ) q^{85} -2 \beta q^{87} + ( 10 + 3 \beta ) q^{89} + 2 \beta q^{93} + ( -12 + 8 \beta ) q^{95} + ( 4 + 3 \beta ) q^{97} + ( -2 - 2 \beta ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 2q^{3} - 4q^{5} + 2q^{9} + O(q^{10})$$ $$2q - 2q^{3} - 4q^{5} + 2q^{9} - 4q^{11} + 4q^{15} + 12q^{17} + 8q^{19} + 4q^{23} + 2q^{25} - 2q^{27} + 4q^{33} - 8q^{37} + 12q^{41} - 4q^{45} - 8q^{47} - 12q^{51} + 4q^{53} - 8q^{57} - 8q^{61} - 12q^{65} - 4q^{69} + 4q^{71} + 24q^{73} - 2q^{75} - 16q^{79} + 2q^{81} - 8q^{83} - 28q^{85} + 20q^{89} - 24q^{95} + 8q^{97} - 4q^{99} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −1.41421 1.41421
0 −1.00000 0 −3.41421 0 0 0 1.00000 0
1.2 0 −1.00000 0 −0.585786 0 0 0 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$1$$
$$7$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9408.2.a.dh 2
4.b odd 2 1 9408.2.a.dv 2
7.b odd 2 1 9408.2.a.ed 2
8.b even 2 1 2352.2.a.bg 2
8.d odd 2 1 1176.2.a.l 2
24.f even 2 1 3528.2.a.bc 2
24.h odd 2 1 7056.2.a.ce 2
28.d even 2 1 9408.2.a.dr 2
56.e even 2 1 1176.2.a.m yes 2
56.h odd 2 1 2352.2.a.z 2
56.j odd 6 2 2352.2.q.bg 4
56.k odd 6 2 1176.2.q.n 4
56.m even 6 2 1176.2.q.m 4
56.p even 6 2 2352.2.q.ba 4
168.e odd 2 1 3528.2.a.bm 2
168.i even 2 1 7056.2.a.cw 2
168.v even 6 2 3528.2.s.bl 4
168.be odd 6 2 3528.2.s.bc 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1176.2.a.l 2 8.d odd 2 1
1176.2.a.m yes 2 56.e even 2 1
1176.2.q.m 4 56.m even 6 2
1176.2.q.n 4 56.k odd 6 2
2352.2.a.z 2 56.h odd 2 1
2352.2.a.bg 2 8.b even 2 1
2352.2.q.ba 4 56.p even 6 2
2352.2.q.bg 4 56.j odd 6 2
3528.2.a.bc 2 24.f even 2 1
3528.2.a.bm 2 168.e odd 2 1
3528.2.s.bc 4 168.be odd 6 2
3528.2.s.bl 4 168.v even 6 2
7056.2.a.ce 2 24.h odd 2 1
7056.2.a.cw 2 168.i even 2 1
9408.2.a.dh 2 1.a even 1 1 trivial
9408.2.a.dr 2 28.d even 2 1
9408.2.a.dv 2 4.b odd 2 1
9408.2.a.ed 2 7.b odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(9408))$$:

 $$T_{5}^{2} + 4 T_{5} + 2$$ $$T_{11}^{2} + 4 T_{11} - 4$$ $$T_{13}^{2} - 18$$ $$T_{17}^{2} - 12 T_{17} + 34$$ $$T_{19}^{2} - 8 T_{19} + 8$$ $$T_{31}^{2} - 8$$