Properties

Label 9408.2.a.cg.1.1
Level $9408$
Weight $2$
Character 9408.1
Self dual yes
Analytic conductor $75.123$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 9408 = 2^{6} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9408.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(75.1232582216\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 672)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 9408.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{3} -1.00000 q^{5} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{3} -1.00000 q^{5} +1.00000 q^{9} -1.00000 q^{11} -1.00000 q^{15} -8.00000 q^{17} +4.00000 q^{19} +4.00000 q^{23} -4.00000 q^{25} +1.00000 q^{27} +5.00000 q^{29} +7.00000 q^{31} -1.00000 q^{33} -8.00000 q^{37} +4.00000 q^{41} -10.0000 q^{43} -1.00000 q^{45} +6.00000 q^{47} -8.00000 q^{51} +1.00000 q^{53} +1.00000 q^{55} +4.00000 q^{57} -9.00000 q^{59} +2.00000 q^{61} -2.00000 q^{67} +4.00000 q^{69} +6.00000 q^{71} +2.00000 q^{73} -4.00000 q^{75} -9.00000 q^{79} +1.00000 q^{81} +3.00000 q^{83} +8.00000 q^{85} +5.00000 q^{87} -6.00000 q^{89} +7.00000 q^{93} -4.00000 q^{95} -1.00000 q^{97} -1.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −1.00000 −0.447214 −0.223607 0.974679i \(-0.571783\pi\)
−0.223607 + 0.974679i \(0.571783\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −1.00000 −0.301511 −0.150756 0.988571i \(-0.548171\pi\)
−0.150756 + 0.988571i \(0.548171\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) −8.00000 −1.94029 −0.970143 0.242536i \(-0.922021\pi\)
−0.970143 + 0.242536i \(0.922021\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 5.00000 0.928477 0.464238 0.885710i \(-0.346328\pi\)
0.464238 + 0.885710i \(0.346328\pi\)
\(30\) 0 0
\(31\) 7.00000 1.25724 0.628619 0.777714i \(-0.283621\pi\)
0.628619 + 0.777714i \(0.283621\pi\)
\(32\) 0 0
\(33\) −1.00000 −0.174078
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −8.00000 −1.31519 −0.657596 0.753371i \(-0.728427\pi\)
−0.657596 + 0.753371i \(0.728427\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.00000 0.624695 0.312348 0.949968i \(-0.398885\pi\)
0.312348 + 0.949968i \(0.398885\pi\)
\(42\) 0 0
\(43\) −10.0000 −1.52499 −0.762493 0.646997i \(-0.776025\pi\)
−0.762493 + 0.646997i \(0.776025\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) 6.00000 0.875190 0.437595 0.899172i \(-0.355830\pi\)
0.437595 + 0.899172i \(0.355830\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −8.00000 −1.12022
\(52\) 0 0
\(53\) 1.00000 0.137361 0.0686803 0.997639i \(-0.478121\pi\)
0.0686803 + 0.997639i \(0.478121\pi\)
\(54\) 0 0
\(55\) 1.00000 0.134840
\(56\) 0 0
\(57\) 4.00000 0.529813
\(58\) 0 0
\(59\) −9.00000 −1.17170 −0.585850 0.810419i \(-0.699239\pi\)
−0.585850 + 0.810419i \(0.699239\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −2.00000 −0.244339 −0.122169 0.992509i \(-0.538985\pi\)
−0.122169 + 0.992509i \(0.538985\pi\)
\(68\) 0 0
\(69\) 4.00000 0.481543
\(70\) 0 0
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) 0 0
\(75\) −4.00000 −0.461880
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −9.00000 −1.01258 −0.506290 0.862364i \(-0.668983\pi\)
−0.506290 + 0.862364i \(0.668983\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 3.00000 0.329293 0.164646 0.986353i \(-0.447352\pi\)
0.164646 + 0.986353i \(0.447352\pi\)
\(84\) 0 0
\(85\) 8.00000 0.867722
\(86\) 0 0
\(87\) 5.00000 0.536056
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 7.00000 0.725866
\(94\) 0 0
\(95\) −4.00000 −0.410391
\(96\) 0 0
\(97\) −1.00000 −0.101535 −0.0507673 0.998711i \(-0.516167\pi\)
−0.0507673 + 0.998711i \(0.516167\pi\)
\(98\) 0 0
\(99\) −1.00000 −0.100504
\(100\) 0 0
\(101\) −2.00000 −0.199007 −0.0995037 0.995037i \(-0.531726\pi\)
−0.0995037 + 0.995037i \(0.531726\pi\)
\(102\) 0 0
\(103\) −16.0000 −1.57653 −0.788263 0.615338i \(-0.789020\pi\)
−0.788263 + 0.615338i \(0.789020\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −15.0000 −1.45010 −0.725052 0.688694i \(-0.758184\pi\)
−0.725052 + 0.688694i \(0.758184\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 0 0
\(111\) −8.00000 −0.759326
\(112\) 0 0
\(113\) 4.00000 0.376288 0.188144 0.982141i \(-0.439753\pi\)
0.188144 + 0.982141i \(0.439753\pi\)
\(114\) 0 0
\(115\) −4.00000 −0.373002
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −10.0000 −0.909091
\(122\) 0 0
\(123\) 4.00000 0.360668
\(124\) 0 0
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) 13.0000 1.15356 0.576782 0.816898i \(-0.304308\pi\)
0.576782 + 0.816898i \(0.304308\pi\)
\(128\) 0 0
\(129\) −10.0000 −0.880451
\(130\) 0 0
\(131\) 19.0000 1.66004 0.830019 0.557735i \(-0.188330\pi\)
0.830019 + 0.557735i \(0.188330\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −1.00000 −0.0860663
\(136\) 0 0
\(137\) 18.0000 1.53784 0.768922 0.639343i \(-0.220793\pi\)
0.768922 + 0.639343i \(0.220793\pi\)
\(138\) 0 0
\(139\) −10.0000 −0.848189 −0.424094 0.905618i \(-0.639408\pi\)
−0.424094 + 0.905618i \(0.639408\pi\)
\(140\) 0 0
\(141\) 6.00000 0.505291
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −5.00000 −0.415227
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) 7.00000 0.569652 0.284826 0.958579i \(-0.408064\pi\)
0.284826 + 0.958579i \(0.408064\pi\)
\(152\) 0 0
\(153\) −8.00000 −0.646762
\(154\) 0 0
\(155\) −7.00000 −0.562254
\(156\) 0 0
\(157\) −20.0000 −1.59617 −0.798087 0.602542i \(-0.794154\pi\)
−0.798087 + 0.602542i \(0.794154\pi\)
\(158\) 0 0
\(159\) 1.00000 0.0793052
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −20.0000 −1.56652 −0.783260 0.621694i \(-0.786445\pi\)
−0.783260 + 0.621694i \(0.786445\pi\)
\(164\) 0 0
\(165\) 1.00000 0.0778499
\(166\) 0 0
\(167\) −18.0000 −1.39288 −0.696441 0.717614i \(-0.745234\pi\)
−0.696441 + 0.717614i \(0.745234\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 4.00000 0.305888
\(172\) 0 0
\(173\) 18.0000 1.36851 0.684257 0.729241i \(-0.260127\pi\)
0.684257 + 0.729241i \(0.260127\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −9.00000 −0.676481
\(178\) 0 0
\(179\) −20.0000 −1.49487 −0.747435 0.664335i \(-0.768715\pi\)
−0.747435 + 0.664335i \(0.768715\pi\)
\(180\) 0 0
\(181\) −20.0000 −1.48659 −0.743294 0.668965i \(-0.766738\pi\)
−0.743294 + 0.668965i \(0.766738\pi\)
\(182\) 0 0
\(183\) 2.00000 0.147844
\(184\) 0 0
\(185\) 8.00000 0.588172
\(186\) 0 0
\(187\) 8.00000 0.585018
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −11.0000 −0.791797 −0.395899 0.918294i \(-0.629567\pi\)
−0.395899 + 0.918294i \(0.629567\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 0 0
\(199\) 20.0000 1.41776 0.708881 0.705328i \(-0.249200\pi\)
0.708881 + 0.705328i \(0.249200\pi\)
\(200\) 0 0
\(201\) −2.00000 −0.141069
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −4.00000 −0.279372
\(206\) 0 0
\(207\) 4.00000 0.278019
\(208\) 0 0
\(209\) −4.00000 −0.276686
\(210\) 0 0
\(211\) −22.0000 −1.51454 −0.757271 0.653101i \(-0.773468\pi\)
−0.757271 + 0.653101i \(0.773468\pi\)
\(212\) 0 0
\(213\) 6.00000 0.411113
\(214\) 0 0
\(215\) 10.0000 0.681994
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 2.00000 0.135147
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −19.0000 −1.27233 −0.636167 0.771551i \(-0.719481\pi\)
−0.636167 + 0.771551i \(0.719481\pi\)
\(224\) 0 0
\(225\) −4.00000 −0.266667
\(226\) 0 0
\(227\) −7.00000 −0.464606 −0.232303 0.972643i \(-0.574626\pi\)
−0.232303 + 0.972643i \(0.574626\pi\)
\(228\) 0 0
\(229\) −24.0000 −1.58596 −0.792982 0.609245i \(-0.791473\pi\)
−0.792982 + 0.609245i \(0.791473\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −8.00000 −0.524097 −0.262049 0.965055i \(-0.584398\pi\)
−0.262049 + 0.965055i \(0.584398\pi\)
\(234\) 0 0
\(235\) −6.00000 −0.391397
\(236\) 0 0
\(237\) −9.00000 −0.584613
\(238\) 0 0
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) 15.0000 0.966235 0.483117 0.875556i \(-0.339504\pi\)
0.483117 + 0.875556i \(0.339504\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 3.00000 0.190117
\(250\) 0 0
\(251\) −1.00000 −0.0631194 −0.0315597 0.999502i \(-0.510047\pi\)
−0.0315597 + 0.999502i \(0.510047\pi\)
\(252\) 0 0
\(253\) −4.00000 −0.251478
\(254\) 0 0
\(255\) 8.00000 0.500979
\(256\) 0 0
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 5.00000 0.309492
\(262\) 0 0
\(263\) −30.0000 −1.84988 −0.924940 0.380114i \(-0.875885\pi\)
−0.924940 + 0.380114i \(0.875885\pi\)
\(264\) 0 0
\(265\) −1.00000 −0.0614295
\(266\) 0 0
\(267\) −6.00000 −0.367194
\(268\) 0 0
\(269\) 17.0000 1.03651 0.518254 0.855227i \(-0.326582\pi\)
0.518254 + 0.855227i \(0.326582\pi\)
\(270\) 0 0
\(271\) 11.0000 0.668202 0.334101 0.942537i \(-0.391567\pi\)
0.334101 + 0.942537i \(0.391567\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.00000 0.241209
\(276\) 0 0
\(277\) 24.0000 1.44202 0.721010 0.692925i \(-0.243678\pi\)
0.721010 + 0.692925i \(0.243678\pi\)
\(278\) 0 0
\(279\) 7.00000 0.419079
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) 6.00000 0.356663 0.178331 0.983970i \(-0.442930\pi\)
0.178331 + 0.983970i \(0.442930\pi\)
\(284\) 0 0
\(285\) −4.00000 −0.236940
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 47.0000 2.76471
\(290\) 0 0
\(291\) −1.00000 −0.0586210
\(292\) 0 0
\(293\) −3.00000 −0.175262 −0.0876309 0.996153i \(-0.527930\pi\)
−0.0876309 + 0.996153i \(0.527930\pi\)
\(294\) 0 0
\(295\) 9.00000 0.524000
\(296\) 0 0
\(297\) −1.00000 −0.0580259
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −2.00000 −0.114897
\(304\) 0 0
\(305\) −2.00000 −0.114520
\(306\) 0 0
\(307\) 4.00000 0.228292 0.114146 0.993464i \(-0.463587\pi\)
0.114146 + 0.993464i \(0.463587\pi\)
\(308\) 0 0
\(309\) −16.0000 −0.910208
\(310\) 0 0
\(311\) 28.0000 1.58773 0.793867 0.608091i \(-0.208065\pi\)
0.793867 + 0.608091i \(0.208065\pi\)
\(312\) 0 0
\(313\) 1.00000 0.0565233 0.0282617 0.999601i \(-0.491003\pi\)
0.0282617 + 0.999601i \(0.491003\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5.00000 0.280828 0.140414 0.990093i \(-0.455157\pi\)
0.140414 + 0.990093i \(0.455157\pi\)
\(318\) 0 0
\(319\) −5.00000 −0.279946
\(320\) 0 0
\(321\) −15.0000 −0.837218
\(322\) 0 0
\(323\) −32.0000 −1.78053
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −10.0000 −0.553001
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −20.0000 −1.09930 −0.549650 0.835395i \(-0.685239\pi\)
−0.549650 + 0.835395i \(0.685239\pi\)
\(332\) 0 0
\(333\) −8.00000 −0.438397
\(334\) 0 0
\(335\) 2.00000 0.109272
\(336\) 0 0
\(337\) 1.00000 0.0544735 0.0272367 0.999629i \(-0.491329\pi\)
0.0272367 + 0.999629i \(0.491329\pi\)
\(338\) 0 0
\(339\) 4.00000 0.217250
\(340\) 0 0
\(341\) −7.00000 −0.379071
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −4.00000 −0.215353
\(346\) 0 0
\(347\) −28.0000 −1.50312 −0.751559 0.659665i \(-0.770698\pi\)
−0.751559 + 0.659665i \(0.770698\pi\)
\(348\) 0 0
\(349\) −6.00000 −0.321173 −0.160586 0.987022i \(-0.551338\pi\)
−0.160586 + 0.987022i \(0.551338\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −24.0000 −1.27739 −0.638696 0.769460i \(-0.720526\pi\)
−0.638696 + 0.769460i \(0.720526\pi\)
\(354\) 0 0
\(355\) −6.00000 −0.318447
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6.00000 0.316668 0.158334 0.987386i \(-0.449388\pi\)
0.158334 + 0.987386i \(0.449388\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) −10.0000 −0.524864
\(364\) 0 0
\(365\) −2.00000 −0.104685
\(366\) 0 0
\(367\) −3.00000 −0.156599 −0.0782994 0.996930i \(-0.524949\pi\)
−0.0782994 + 0.996930i \(0.524949\pi\)
\(368\) 0 0
\(369\) 4.00000 0.208232
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 4.00000 0.207112 0.103556 0.994624i \(-0.466978\pi\)
0.103556 + 0.994624i \(0.466978\pi\)
\(374\) 0 0
\(375\) 9.00000 0.464758
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 28.0000 1.43826 0.719132 0.694874i \(-0.244540\pi\)
0.719132 + 0.694874i \(0.244540\pi\)
\(380\) 0 0
\(381\) 13.0000 0.666010
\(382\) 0 0
\(383\) −34.0000 −1.73732 −0.868659 0.495410i \(-0.835018\pi\)
−0.868659 + 0.495410i \(0.835018\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −10.0000 −0.508329
\(388\) 0 0
\(389\) 34.0000 1.72387 0.861934 0.507020i \(-0.169253\pi\)
0.861934 + 0.507020i \(0.169253\pi\)
\(390\) 0 0
\(391\) −32.0000 −1.61831
\(392\) 0 0
\(393\) 19.0000 0.958423
\(394\) 0 0
\(395\) 9.00000 0.452839
\(396\) 0 0
\(397\) −4.00000 −0.200754 −0.100377 0.994949i \(-0.532005\pi\)
−0.100377 + 0.994949i \(0.532005\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −32.0000 −1.59800 −0.799002 0.601329i \(-0.794638\pi\)
−0.799002 + 0.601329i \(0.794638\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) 8.00000 0.396545
\(408\) 0 0
\(409\) 23.0000 1.13728 0.568638 0.822588i \(-0.307470\pi\)
0.568638 + 0.822588i \(0.307470\pi\)
\(410\) 0 0
\(411\) 18.0000 0.887875
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −3.00000 −0.147264
\(416\) 0 0
\(417\) −10.0000 −0.489702
\(418\) 0 0
\(419\) −24.0000 −1.17248 −0.586238 0.810139i \(-0.699392\pi\)
−0.586238 + 0.810139i \(0.699392\pi\)
\(420\) 0 0
\(421\) −2.00000 −0.0974740 −0.0487370 0.998812i \(-0.515520\pi\)
−0.0487370 + 0.998812i \(0.515520\pi\)
\(422\) 0 0
\(423\) 6.00000 0.291730
\(424\) 0 0
\(425\) 32.0000 1.55223
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 30.0000 1.44171 0.720854 0.693087i \(-0.243750\pi\)
0.720854 + 0.693087i \(0.243750\pi\)
\(434\) 0 0
\(435\) −5.00000 −0.239732
\(436\) 0 0
\(437\) 16.0000 0.765384
\(438\) 0 0
\(439\) 19.0000 0.906821 0.453410 0.891302i \(-0.350207\pi\)
0.453410 + 0.891302i \(0.350207\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −29.0000 −1.37783 −0.688916 0.724841i \(-0.741913\pi\)
−0.688916 + 0.724841i \(0.741913\pi\)
\(444\) 0 0
\(445\) 6.00000 0.284427
\(446\) 0 0
\(447\) −6.00000 −0.283790
\(448\) 0 0
\(449\) −24.0000 −1.13263 −0.566315 0.824189i \(-0.691631\pi\)
−0.566315 + 0.824189i \(0.691631\pi\)
\(450\) 0 0
\(451\) −4.00000 −0.188353
\(452\) 0 0
\(453\) 7.00000 0.328889
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 15.0000 0.701670 0.350835 0.936437i \(-0.385898\pi\)
0.350835 + 0.936437i \(0.385898\pi\)
\(458\) 0 0
\(459\) −8.00000 −0.373408
\(460\) 0 0
\(461\) 14.0000 0.652045 0.326023 0.945362i \(-0.394291\pi\)
0.326023 + 0.945362i \(0.394291\pi\)
\(462\) 0 0
\(463\) −40.0000 −1.85896 −0.929479 0.368875i \(-0.879743\pi\)
−0.929479 + 0.368875i \(0.879743\pi\)
\(464\) 0 0
\(465\) −7.00000 −0.324617
\(466\) 0 0
\(467\) 12.0000 0.555294 0.277647 0.960683i \(-0.410445\pi\)
0.277647 + 0.960683i \(0.410445\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −20.0000 −0.921551
\(472\) 0 0
\(473\) 10.0000 0.459800
\(474\) 0 0
\(475\) −16.0000 −0.734130
\(476\) 0 0
\(477\) 1.00000 0.0457869
\(478\) 0 0
\(479\) −18.0000 −0.822441 −0.411220 0.911536i \(-0.634897\pi\)
−0.411220 + 0.911536i \(0.634897\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.00000 0.0454077
\(486\) 0 0
\(487\) −31.0000 −1.40474 −0.702372 0.711810i \(-0.747876\pi\)
−0.702372 + 0.711810i \(0.747876\pi\)
\(488\) 0 0
\(489\) −20.0000 −0.904431
\(490\) 0 0
\(491\) 27.0000 1.21849 0.609246 0.792981i \(-0.291472\pi\)
0.609246 + 0.792981i \(0.291472\pi\)
\(492\) 0 0
\(493\) −40.0000 −1.80151
\(494\) 0 0
\(495\) 1.00000 0.0449467
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −34.0000 −1.52205 −0.761025 0.648723i \(-0.775303\pi\)
−0.761025 + 0.648723i \(0.775303\pi\)
\(500\) 0 0
\(501\) −18.0000 −0.804181
\(502\) 0 0
\(503\) −12.0000 −0.535054 −0.267527 0.963550i \(-0.586206\pi\)
−0.267527 + 0.963550i \(0.586206\pi\)
\(504\) 0 0
\(505\) 2.00000 0.0889988
\(506\) 0 0
\(507\) −13.0000 −0.577350
\(508\) 0 0
\(509\) 9.00000 0.398918 0.199459 0.979906i \(-0.436082\pi\)
0.199459 + 0.979906i \(0.436082\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 4.00000 0.176604
\(514\) 0 0
\(515\) 16.0000 0.705044
\(516\) 0 0
\(517\) −6.00000 −0.263880
\(518\) 0 0
\(519\) 18.0000 0.790112
\(520\) 0 0
\(521\) 14.0000 0.613351 0.306676 0.951814i \(-0.400783\pi\)
0.306676 + 0.951814i \(0.400783\pi\)
\(522\) 0 0
\(523\) −8.00000 −0.349816 −0.174908 0.984585i \(-0.555963\pi\)
−0.174908 + 0.984585i \(0.555963\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −56.0000 −2.43940
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) −9.00000 −0.390567
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 15.0000 0.648507
\(536\) 0 0
\(537\) −20.0000 −0.863064
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −22.0000 −0.945854 −0.472927 0.881102i \(-0.656803\pi\)
−0.472927 + 0.881102i \(0.656803\pi\)
\(542\) 0 0
\(543\) −20.0000 −0.858282
\(544\) 0 0
\(545\) 10.0000 0.428353
\(546\) 0 0
\(547\) −8.00000 −0.342055 −0.171028 0.985266i \(-0.554709\pi\)
−0.171028 + 0.985266i \(0.554709\pi\)
\(548\) 0 0
\(549\) 2.00000 0.0853579
\(550\) 0 0
\(551\) 20.0000 0.852029
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 8.00000 0.339581
\(556\) 0 0
\(557\) −9.00000 −0.381342 −0.190671 0.981654i \(-0.561066\pi\)
−0.190671 + 0.981654i \(0.561066\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 8.00000 0.337760
\(562\) 0 0
\(563\) −29.0000 −1.22220 −0.611102 0.791552i \(-0.709274\pi\)
−0.611102 + 0.791552i \(0.709274\pi\)
\(564\) 0 0
\(565\) −4.00000 −0.168281
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −12.0000 −0.503066 −0.251533 0.967849i \(-0.580935\pi\)
−0.251533 + 0.967849i \(0.580935\pi\)
\(570\) 0 0
\(571\) −14.0000 −0.585882 −0.292941 0.956131i \(-0.594634\pi\)
−0.292941 + 0.956131i \(0.594634\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −16.0000 −0.667246
\(576\) 0 0
\(577\) 23.0000 0.957503 0.478751 0.877951i \(-0.341090\pi\)
0.478751 + 0.877951i \(0.341090\pi\)
\(578\) 0 0
\(579\) −11.0000 −0.457144
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −1.00000 −0.0414158
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −15.0000 −0.619116 −0.309558 0.950881i \(-0.600181\pi\)
−0.309558 + 0.950881i \(0.600181\pi\)
\(588\) 0 0
\(589\) 28.0000 1.15372
\(590\) 0 0
\(591\) −18.0000 −0.740421
\(592\) 0 0
\(593\) −36.0000 −1.47834 −0.739171 0.673517i \(-0.764783\pi\)
−0.739171 + 0.673517i \(0.764783\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 20.0000 0.818546
\(598\) 0 0
\(599\) 30.0000 1.22577 0.612883 0.790173i \(-0.290010\pi\)
0.612883 + 0.790173i \(0.290010\pi\)
\(600\) 0 0
\(601\) 19.0000 0.775026 0.387513 0.921864i \(-0.373334\pi\)
0.387513 + 0.921864i \(0.373334\pi\)
\(602\) 0 0
\(603\) −2.00000 −0.0814463
\(604\) 0 0
\(605\) 10.0000 0.406558
\(606\) 0 0
\(607\) 25.0000 1.01472 0.507359 0.861735i \(-0.330622\pi\)
0.507359 + 0.861735i \(0.330622\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −44.0000 −1.77714 −0.888572 0.458738i \(-0.848302\pi\)
−0.888572 + 0.458738i \(0.848302\pi\)
\(614\) 0 0
\(615\) −4.00000 −0.161296
\(616\) 0 0
\(617\) 6.00000 0.241551 0.120775 0.992680i \(-0.461462\pi\)
0.120775 + 0.992680i \(0.461462\pi\)
\(618\) 0 0
\(619\) 10.0000 0.401934 0.200967 0.979598i \(-0.435592\pi\)
0.200967 + 0.979598i \(0.435592\pi\)
\(620\) 0 0
\(621\) 4.00000 0.160514
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) −4.00000 −0.159745
\(628\) 0 0
\(629\) 64.0000 2.55185
\(630\) 0 0
\(631\) 33.0000 1.31371 0.656855 0.754017i \(-0.271887\pi\)
0.656855 + 0.754017i \(0.271887\pi\)
\(632\) 0 0
\(633\) −22.0000 −0.874421
\(634\) 0 0
\(635\) −13.0000 −0.515889
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 6.00000 0.237356
\(640\) 0 0
\(641\) 38.0000 1.50091 0.750455 0.660922i \(-0.229834\pi\)
0.750455 + 0.660922i \(0.229834\pi\)
\(642\) 0 0
\(643\) −2.00000 −0.0788723 −0.0394362 0.999222i \(-0.512556\pi\)
−0.0394362 + 0.999222i \(0.512556\pi\)
\(644\) 0 0
\(645\) 10.0000 0.393750
\(646\) 0 0
\(647\) 10.0000 0.393141 0.196570 0.980490i \(-0.437020\pi\)
0.196570 + 0.980490i \(0.437020\pi\)
\(648\) 0 0
\(649\) 9.00000 0.353281
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 31.0000 1.21312 0.606562 0.795036i \(-0.292548\pi\)
0.606562 + 0.795036i \(0.292548\pi\)
\(654\) 0 0
\(655\) −19.0000 −0.742391
\(656\) 0 0
\(657\) 2.00000 0.0780274
\(658\) 0 0
\(659\) −16.0000 −0.623272 −0.311636 0.950202i \(-0.600877\pi\)
−0.311636 + 0.950202i \(0.600877\pi\)
\(660\) 0 0
\(661\) −18.0000 −0.700119 −0.350059 0.936727i \(-0.613839\pi\)
−0.350059 + 0.936727i \(0.613839\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 20.0000 0.774403
\(668\) 0 0
\(669\) −19.0000 −0.734582
\(670\) 0 0
\(671\) −2.00000 −0.0772091
\(672\) 0 0
\(673\) −19.0000 −0.732396 −0.366198 0.930537i \(-0.619341\pi\)
−0.366198 + 0.930537i \(0.619341\pi\)
\(674\) 0 0
\(675\) −4.00000 −0.153960
\(676\) 0 0
\(677\) 27.0000 1.03769 0.518847 0.854867i \(-0.326361\pi\)
0.518847 + 0.854867i \(0.326361\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −7.00000 −0.268241
\(682\) 0 0
\(683\) 37.0000 1.41577 0.707883 0.706330i \(-0.249650\pi\)
0.707883 + 0.706330i \(0.249650\pi\)
\(684\) 0 0
\(685\) −18.0000 −0.687745
\(686\) 0 0
\(687\) −24.0000 −0.915657
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 12.0000 0.456502 0.228251 0.973602i \(-0.426699\pi\)
0.228251 + 0.973602i \(0.426699\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 10.0000 0.379322
\(696\) 0 0
\(697\) −32.0000 −1.21209
\(698\) 0 0
\(699\) −8.00000 −0.302588
\(700\) 0 0
\(701\) −27.0000 −1.01978 −0.509888 0.860241i \(-0.670313\pi\)
−0.509888 + 0.860241i \(0.670313\pi\)
\(702\) 0 0
\(703\) −32.0000 −1.20690
\(704\) 0 0
\(705\) −6.00000 −0.225973
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −14.0000 −0.525781 −0.262891 0.964826i \(-0.584676\pi\)
−0.262891 + 0.964826i \(0.584676\pi\)
\(710\) 0 0
\(711\) −9.00000 −0.337526
\(712\) 0 0
\(713\) 28.0000 1.04861
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 12.0000 0.448148
\(718\) 0 0
\(719\) 10.0000 0.372937 0.186469 0.982461i \(-0.440296\pi\)
0.186469 + 0.982461i \(0.440296\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 15.0000 0.557856
\(724\) 0 0
\(725\) −20.0000 −0.742781
\(726\) 0 0
\(727\) 19.0000 0.704671 0.352335 0.935874i \(-0.385388\pi\)
0.352335 + 0.935874i \(0.385388\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 80.0000 2.95891
\(732\) 0 0
\(733\) 14.0000 0.517102 0.258551 0.965998i \(-0.416755\pi\)
0.258551 + 0.965998i \(0.416755\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.00000 0.0736709
\(738\) 0 0
\(739\) −34.0000 −1.25071 −0.625355 0.780340i \(-0.715046\pi\)
−0.625355 + 0.780340i \(0.715046\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −38.0000 −1.39408 −0.697042 0.717030i \(-0.745501\pi\)
−0.697042 + 0.717030i \(0.745501\pi\)
\(744\) 0 0
\(745\) 6.00000 0.219823
\(746\) 0 0
\(747\) 3.00000 0.109764
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −7.00000 −0.255434 −0.127717 0.991811i \(-0.540765\pi\)
−0.127717 + 0.991811i \(0.540765\pi\)
\(752\) 0 0
\(753\) −1.00000 −0.0364420
\(754\) 0 0
\(755\) −7.00000 −0.254756
\(756\) 0 0
\(757\) 26.0000 0.944986 0.472493 0.881334i \(-0.343354\pi\)
0.472493 + 0.881334i \(0.343354\pi\)
\(758\) 0 0
\(759\) −4.00000 −0.145191
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 8.00000 0.289241
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −19.0000 −0.685158 −0.342579 0.939489i \(-0.611300\pi\)
−0.342579 + 0.939489i \(0.611300\pi\)
\(770\) 0 0
\(771\) 18.0000 0.648254
\(772\) 0 0
\(773\) −18.0000 −0.647415 −0.323708 0.946157i \(-0.604929\pi\)
−0.323708 + 0.946157i \(0.604929\pi\)
\(774\) 0 0
\(775\) −28.0000 −1.00579
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 16.0000 0.573259
\(780\) 0 0
\(781\) −6.00000 −0.214697
\(782\) 0 0
\(783\) 5.00000 0.178685
\(784\) 0 0
\(785\) 20.0000 0.713831
\(786\) 0 0
\(787\) 38.0000 1.35455 0.677277 0.735728i \(-0.263160\pi\)
0.677277 + 0.735728i \(0.263160\pi\)
\(788\) 0 0
\(789\) −30.0000 −1.06803
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −1.00000 −0.0354663
\(796\) 0 0
\(797\) 51.0000 1.80651 0.903256 0.429101i \(-0.141170\pi\)
0.903256 + 0.429101i \(0.141170\pi\)
\(798\) 0 0
\(799\) −48.0000 −1.69812
\(800\) 0 0
\(801\) −6.00000 −0.212000
\(802\) 0 0
\(803\) −2.00000 −0.0705785
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 17.0000 0.598428
\(808\) 0 0
\(809\) −32.0000 −1.12506 −0.562530 0.826777i \(-0.690172\pi\)
−0.562530 + 0.826777i \(0.690172\pi\)
\(810\) 0 0
\(811\) 2.00000 0.0702295 0.0351147 0.999383i \(-0.488820\pi\)
0.0351147 + 0.999383i \(0.488820\pi\)
\(812\) 0 0
\(813\) 11.0000 0.385787
\(814\) 0 0
\(815\) 20.0000 0.700569
\(816\) 0 0
\(817\) −40.0000 −1.39942
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.00000 0.0349002 0.0174501 0.999848i \(-0.494445\pi\)
0.0174501 + 0.999848i \(0.494445\pi\)
\(822\) 0 0
\(823\) 16.0000 0.557725 0.278862 0.960331i \(-0.410043\pi\)
0.278862 + 0.960331i \(0.410043\pi\)
\(824\) 0 0
\(825\) 4.00000 0.139262
\(826\) 0 0
\(827\) 43.0000 1.49526 0.747628 0.664117i \(-0.231193\pi\)
0.747628 + 0.664117i \(0.231193\pi\)
\(828\) 0 0
\(829\) 20.0000 0.694629 0.347314 0.937749i \(-0.387094\pi\)
0.347314 + 0.937749i \(0.387094\pi\)
\(830\) 0 0
\(831\) 24.0000 0.832551
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 18.0000 0.622916
\(836\) 0 0
\(837\) 7.00000 0.241955
\(838\) 0 0
\(839\) −8.00000 −0.276191 −0.138095 0.990419i \(-0.544098\pi\)
−0.138095 + 0.990419i \(0.544098\pi\)
\(840\) 0 0
\(841\) −4.00000 −0.137931
\(842\) 0 0
\(843\) 6.00000 0.206651
\(844\) 0 0
\(845\) 13.0000 0.447214
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 6.00000 0.205919
\(850\) 0 0
\(851\) −32.0000 −1.09695
\(852\) 0 0
\(853\) −42.0000 −1.43805 −0.719026 0.694983i \(-0.755412\pi\)
−0.719026 + 0.694983i \(0.755412\pi\)
\(854\) 0 0
\(855\) −4.00000 −0.136797
\(856\) 0 0
\(857\) −6.00000 −0.204956 −0.102478 0.994735i \(-0.532677\pi\)
−0.102478 + 0.994735i \(0.532677\pi\)
\(858\) 0 0
\(859\) 18.0000 0.614152 0.307076 0.951685i \(-0.400649\pi\)
0.307076 + 0.951685i \(0.400649\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −46.0000 −1.56586 −0.782929 0.622111i \(-0.786275\pi\)
−0.782929 + 0.622111i \(0.786275\pi\)
\(864\) 0 0
\(865\) −18.0000 −0.612018
\(866\) 0 0
\(867\) 47.0000 1.59620
\(868\) 0 0
\(869\) 9.00000 0.305304
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −1.00000 −0.0338449
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −32.0000 −1.08056 −0.540282 0.841484i \(-0.681682\pi\)
−0.540282 + 0.841484i \(0.681682\pi\)
\(878\) 0 0
\(879\) −3.00000 −0.101187
\(880\) 0 0
\(881\) 18.0000 0.606435 0.303218 0.952921i \(-0.401939\pi\)
0.303218 + 0.952921i \(0.401939\pi\)
\(882\) 0 0
\(883\) 28.0000 0.942275 0.471138 0.882060i \(-0.343844\pi\)
0.471138 + 0.882060i \(0.343844\pi\)
\(884\) 0 0
\(885\) 9.00000 0.302532
\(886\) 0 0
\(887\) 4.00000 0.134307 0.0671534 0.997743i \(-0.478608\pi\)
0.0671534 + 0.997743i \(0.478608\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −1.00000 −0.0335013
\(892\) 0 0
\(893\) 24.0000 0.803129
\(894\) 0 0
\(895\) 20.0000 0.668526
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 35.0000 1.16732
\(900\) 0 0
\(901\) −8.00000 −0.266519
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 20.0000 0.664822
\(906\) 0 0
\(907\) 12.0000 0.398453 0.199227 0.979953i \(-0.436157\pi\)
0.199227 + 0.979953i \(0.436157\pi\)
\(908\) 0 0
\(909\) −2.00000 −0.0663358
\(910\) 0 0
\(911\) −6.00000 −0.198789 −0.0993944 0.995048i \(-0.531691\pi\)
−0.0993944 + 0.995048i \(0.531691\pi\)
\(912\) 0 0
\(913\) −3.00000 −0.0992855
\(914\) 0 0
\(915\) −2.00000 −0.0661180
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −32.0000 −1.05558 −0.527791 0.849374i \(-0.676980\pi\)
−0.527791 + 0.849374i \(0.676980\pi\)
\(920\) 0 0
\(921\) 4.00000 0.131804
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 32.0000 1.05215
\(926\) 0 0
\(927\) −16.0000 −0.525509
\(928\) 0 0
\(929\) 34.0000 1.11550 0.557752 0.830008i \(-0.311664\pi\)
0.557752 + 0.830008i \(0.311664\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 28.0000 0.916679
\(934\) 0 0
\(935\) −8.00000 −0.261628
\(936\) 0 0
\(937\) −29.0000 −0.947389 −0.473694 0.880689i \(-0.657080\pi\)
−0.473694 + 0.880689i \(0.657080\pi\)
\(938\) 0 0
\(939\) 1.00000 0.0326338
\(940\) 0 0
\(941\) 51.0000 1.66255 0.831276 0.555860i \(-0.187611\pi\)
0.831276 + 0.555860i \(0.187611\pi\)
\(942\) 0 0
\(943\) 16.0000 0.521032
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −40.0000 −1.29983 −0.649913 0.760009i \(-0.725195\pi\)
−0.649913 + 0.760009i \(0.725195\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 5.00000 0.162136
\(952\) 0 0
\(953\) −6.00000 −0.194359 −0.0971795 0.995267i \(-0.530982\pi\)
−0.0971795 + 0.995267i \(0.530982\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −5.00000 −0.161627
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 18.0000 0.580645
\(962\) 0 0
\(963\) −15.0000 −0.483368
\(964\) 0 0
\(965\) 11.0000 0.354103
\(966\) 0 0
\(967\) 7.00000 0.225105 0.112552 0.993646i \(-0.464097\pi\)
0.112552 + 0.993646i \(0.464097\pi\)
\(968\) 0 0
\(969\) −32.0000 −1.02799
\(970\) 0 0
\(971\) −59.0000 −1.89340 −0.946700 0.322116i \(-0.895606\pi\)
−0.946700 + 0.322116i \(0.895606\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 50.0000 1.59964 0.799821 0.600239i \(-0.204928\pi\)
0.799821 + 0.600239i \(0.204928\pi\)
\(978\) 0 0
\(979\) 6.00000 0.191761
\(980\) 0 0
\(981\) −10.0000 −0.319275
\(982\) 0 0
\(983\) −24.0000 −0.765481 −0.382741 0.923856i \(-0.625020\pi\)
−0.382741 + 0.923856i \(0.625020\pi\)
\(984\) 0 0
\(985\) 18.0000 0.573528
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −40.0000 −1.27193
\(990\) 0 0
\(991\) −5.00000 −0.158830 −0.0794151 0.996842i \(-0.525305\pi\)
−0.0794151 + 0.996842i \(0.525305\pi\)
\(992\) 0 0
\(993\) −20.0000 −0.634681
\(994\) 0 0
\(995\) −20.0000 −0.634043
\(996\) 0 0
\(997\) −10.0000 −0.316703 −0.158352 0.987383i \(-0.550618\pi\)
−0.158352 + 0.987383i \(0.550618\pi\)
\(998\) 0 0
\(999\) −8.00000 −0.253109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9408.2.a.cg.1.1 1
4.3 odd 2 9408.2.a.o.1.1 1
7.2 even 3 1344.2.q.h.193.1 2
7.4 even 3 1344.2.q.h.961.1 2
7.6 odd 2 9408.2.a.bb.1.1 1
8.3 odd 2 4704.2.a.bc.1.1 1
8.5 even 2 4704.2.a.l.1.1 1
28.11 odd 6 1344.2.q.r.961.1 2
28.23 odd 6 1344.2.q.r.193.1 2
28.27 even 2 9408.2.a.cp.1.1 1
56.11 odd 6 672.2.q.b.289.1 yes 2
56.13 odd 2 4704.2.a.w.1.1 1
56.27 even 2 4704.2.a.f.1.1 1
56.37 even 6 672.2.q.g.193.1 yes 2
56.51 odd 6 672.2.q.b.193.1 2
56.53 even 6 672.2.q.g.289.1 yes 2
168.11 even 6 2016.2.s.i.289.1 2
168.53 odd 6 2016.2.s.j.289.1 2
168.107 even 6 2016.2.s.i.865.1 2
168.149 odd 6 2016.2.s.j.865.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
672.2.q.b.193.1 2 56.51 odd 6
672.2.q.b.289.1 yes 2 56.11 odd 6
672.2.q.g.193.1 yes 2 56.37 even 6
672.2.q.g.289.1 yes 2 56.53 even 6
1344.2.q.h.193.1 2 7.2 even 3
1344.2.q.h.961.1 2 7.4 even 3
1344.2.q.r.193.1 2 28.23 odd 6
1344.2.q.r.961.1 2 28.11 odd 6
2016.2.s.i.289.1 2 168.11 even 6
2016.2.s.i.865.1 2 168.107 even 6
2016.2.s.j.289.1 2 168.53 odd 6
2016.2.s.j.865.1 2 168.149 odd 6
4704.2.a.f.1.1 1 56.27 even 2
4704.2.a.l.1.1 1 8.5 even 2
4704.2.a.w.1.1 1 56.13 odd 2
4704.2.a.bc.1.1 1 8.3 odd 2
9408.2.a.o.1.1 1 4.3 odd 2
9408.2.a.bb.1.1 1 7.6 odd 2
9408.2.a.cg.1.1 1 1.1 even 1 trivial
9408.2.a.cp.1.1 1 28.27 even 2