Properties

Label 9408.2.a.c
Level $9408$
Weight $2$
Character orbit 9408.a
Self dual yes
Analytic conductor $75.123$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 9408 = 2^{6} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9408.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(75.1232582216\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 672)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{3} - 4q^{5} + q^{9} + O(q^{10}) \) \( q - q^{3} - 4q^{5} + q^{9} - 2q^{11} - 2q^{13} + 4q^{15} + 4q^{19} + 6q^{23} + 11q^{25} - q^{27} + 10q^{29} - 8q^{31} + 2q^{33} - 10q^{37} + 2q^{39} + 4q^{41} - 8q^{43} - 4q^{45} - 4q^{47} - 10q^{53} + 8q^{55} - 4q^{57} - 8q^{59} - 6q^{61} + 8q^{65} + 4q^{67} - 6q^{69} - 14q^{71} - 6q^{73} - 11q^{75} - 4q^{79} + q^{81} + 12q^{83} - 10q^{87} - 4q^{89} + 8q^{93} - 16q^{95} + 2q^{97} - 2q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −1.00000 0 −4.00000 0 0 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(1\)
\(7\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9408.2.a.c 1
4.b odd 2 1 9408.2.a.bq 1
7.b odd 2 1 1344.2.a.t 1
8.b even 2 1 4704.2.a.bg 1
8.d odd 2 1 4704.2.a.q 1
21.c even 2 1 4032.2.a.b 1
28.d even 2 1 1344.2.a.j 1
56.e even 2 1 672.2.a.e yes 1
56.h odd 2 1 672.2.a.a 1
84.h odd 2 1 4032.2.a.c 1
112.j even 4 2 5376.2.c.b 2
112.l odd 4 2 5376.2.c.bf 2
168.e odd 2 1 2016.2.a.n 1
168.i even 2 1 2016.2.a.m 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
672.2.a.a 1 56.h odd 2 1
672.2.a.e yes 1 56.e even 2 1
1344.2.a.j 1 28.d even 2 1
1344.2.a.t 1 7.b odd 2 1
2016.2.a.m 1 168.i even 2 1
2016.2.a.n 1 168.e odd 2 1
4032.2.a.b 1 21.c even 2 1
4032.2.a.c 1 84.h odd 2 1
4704.2.a.q 1 8.d odd 2 1
4704.2.a.bg 1 8.b even 2 1
5376.2.c.b 2 112.j even 4 2
5376.2.c.bf 2 112.l odd 4 2
9408.2.a.c 1 1.a even 1 1 trivial
9408.2.a.bq 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(9408))\):

\( T_{5} + 4 \)
\( T_{11} + 2 \)
\( T_{13} + 2 \)
\( T_{17} \)
\( T_{19} - 4 \)
\( T_{31} + 8 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( 1 + T \)
$5$ \( 1 + 4 T + 5 T^{2} \)
$7$ 1
$11$ \( 1 + 2 T + 11 T^{2} \)
$13$ \( 1 + 2 T + 13 T^{2} \)
$17$ \( 1 + 17 T^{2} \)
$19$ \( 1 - 4 T + 19 T^{2} \)
$23$ \( 1 - 6 T + 23 T^{2} \)
$29$ \( 1 - 10 T + 29 T^{2} \)
$31$ \( 1 + 8 T + 31 T^{2} \)
$37$ \( 1 + 10 T + 37 T^{2} \)
$41$ \( 1 - 4 T + 41 T^{2} \)
$43$ \( 1 + 8 T + 43 T^{2} \)
$47$ \( 1 + 4 T + 47 T^{2} \)
$53$ \( 1 + 10 T + 53 T^{2} \)
$59$ \( 1 + 8 T + 59 T^{2} \)
$61$ \( 1 + 6 T + 61 T^{2} \)
$67$ \( 1 - 4 T + 67 T^{2} \)
$71$ \( 1 + 14 T + 71 T^{2} \)
$73$ \( 1 + 6 T + 73 T^{2} \)
$79$ \( 1 + 4 T + 79 T^{2} \)
$83$ \( 1 - 12 T + 83 T^{2} \)
$89$ \( 1 + 4 T + 89 T^{2} \)
$97$ \( 1 - 2 T + 97 T^{2} \)
show more
show less