Properties

Label 9405.2.a.z.1.5
Level $9405$
Weight $2$
Character 9405.1
Self dual yes
Analytic conductor $75.099$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9405,2,Mod(1,9405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9405, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9405.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9405 = 3^{2} \cdot 5 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9405.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.0993031010\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.7281497.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 5x^{4} + 7x^{3} + 6x^{2} - 2x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1045)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.79049\) of defining polynomial
Character \(\chi\) \(=\) 9405.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.23198 q^{2} +2.98176 q^{4} +1.00000 q^{5} +4.13295 q^{7} +2.19127 q^{8} +O(q^{10})\) \(q+2.23198 q^{2} +2.98176 q^{4} +1.00000 q^{5} +4.13295 q^{7} +2.19127 q^{8} +2.23198 q^{10} +1.00000 q^{11} -0.110474 q^{13} +9.22468 q^{14} -1.07264 q^{16} +6.99924 q^{17} -1.00000 q^{19} +2.98176 q^{20} +2.23198 q^{22} -8.36934 q^{23} +1.00000 q^{25} -0.246577 q^{26} +12.3235 q^{28} +3.28289 q^{29} -0.202971 q^{31} -6.77665 q^{32} +15.6222 q^{34} +4.13295 q^{35} -0.683573 q^{37} -2.23198 q^{38} +2.19127 q^{40} +4.97522 q^{41} +8.52642 q^{43} +2.98176 q^{44} -18.6802 q^{46} -3.85948 q^{47} +10.0813 q^{49} +2.23198 q^{50} -0.329408 q^{52} +10.1554 q^{53} +1.00000 q^{55} +9.05639 q^{56} +7.32737 q^{58} +10.4857 q^{59} -3.53161 q^{61} -0.453029 q^{62} -12.9801 q^{64} -0.110474 q^{65} -7.84063 q^{67} +20.8700 q^{68} +9.22468 q^{70} +1.58930 q^{71} +8.41595 q^{73} -1.52572 q^{74} -2.98176 q^{76} +4.13295 q^{77} +2.80598 q^{79} -1.07264 q^{80} +11.1046 q^{82} +5.52580 q^{83} +6.99924 q^{85} +19.0308 q^{86} +2.19127 q^{88} -0.654537 q^{89} -0.456585 q^{91} -24.9553 q^{92} -8.61430 q^{94} -1.00000 q^{95} -10.8858 q^{97} +22.5013 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} + 4 q^{4} + 6 q^{5} + 5 q^{7} + 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 2 q^{2} + 4 q^{4} + 6 q^{5} + 5 q^{7} + 12 q^{8} + 2 q^{10} + 6 q^{11} - 5 q^{13} + 8 q^{14} + 4 q^{16} - q^{17} - 6 q^{19} + 4 q^{20} + 2 q^{22} - 4 q^{23} + 6 q^{25} + 14 q^{26} + 10 q^{28} + 9 q^{29} - 21 q^{31} + q^{32} + 5 q^{35} - 3 q^{37} - 2 q^{38} + 12 q^{40} + 23 q^{41} + 7 q^{43} + 4 q^{44} - 12 q^{46} + 18 q^{47} - 3 q^{49} + 2 q^{50} + 13 q^{52} + 17 q^{53} + 6 q^{55} + 2 q^{56} + 23 q^{58} + 29 q^{59} + 17 q^{61} - 2 q^{62} - 18 q^{64} - 5 q^{65} + 8 q^{67} + q^{68} + 8 q^{70} + 12 q^{71} + 2 q^{73} + 37 q^{74} - 4 q^{76} + 5 q^{77} + 3 q^{79} + 4 q^{80} + 24 q^{82} + 11 q^{83} - q^{85} + 12 q^{86} + 12 q^{88} + 22 q^{89} - 18 q^{91} + 15 q^{92} + 22 q^{94} - 6 q^{95} - 2 q^{97} + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.23198 1.57825 0.789126 0.614232i \(-0.210534\pi\)
0.789126 + 0.614232i \(0.210534\pi\)
\(3\) 0 0
\(4\) 2.98176 1.49088
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 4.13295 1.56211 0.781054 0.624463i \(-0.214682\pi\)
0.781054 + 0.624463i \(0.214682\pi\)
\(8\) 2.19127 0.774729
\(9\) 0 0
\(10\) 2.23198 0.705816
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −0.110474 −0.0306401 −0.0153200 0.999883i \(-0.504877\pi\)
−0.0153200 + 0.999883i \(0.504877\pi\)
\(14\) 9.22468 2.46540
\(15\) 0 0
\(16\) −1.07264 −0.268160
\(17\) 6.99924 1.69756 0.848782 0.528743i \(-0.177336\pi\)
0.848782 + 0.528743i \(0.177336\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 2.98176 0.666741
\(21\) 0 0
\(22\) 2.23198 0.475861
\(23\) −8.36934 −1.74513 −0.872564 0.488500i \(-0.837544\pi\)
−0.872564 + 0.488500i \(0.837544\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −0.246577 −0.0483577
\(27\) 0 0
\(28\) 12.3235 2.32891
\(29\) 3.28289 0.609618 0.304809 0.952414i \(-0.401407\pi\)
0.304809 + 0.952414i \(0.401407\pi\)
\(30\) 0 0
\(31\) −0.202971 −0.0364547 −0.0182274 0.999834i \(-0.505802\pi\)
−0.0182274 + 0.999834i \(0.505802\pi\)
\(32\) −6.77665 −1.19795
\(33\) 0 0
\(34\) 15.6222 2.67918
\(35\) 4.13295 0.698596
\(36\) 0 0
\(37\) −0.683573 −0.112379 −0.0561893 0.998420i \(-0.517895\pi\)
−0.0561893 + 0.998420i \(0.517895\pi\)
\(38\) −2.23198 −0.362076
\(39\) 0 0
\(40\) 2.19127 0.346470
\(41\) 4.97522 0.776999 0.388499 0.921449i \(-0.372994\pi\)
0.388499 + 0.921449i \(0.372994\pi\)
\(42\) 0 0
\(43\) 8.52642 1.30027 0.650134 0.759820i \(-0.274713\pi\)
0.650134 + 0.759820i \(0.274713\pi\)
\(44\) 2.98176 0.449517
\(45\) 0 0
\(46\) −18.6802 −2.75425
\(47\) −3.85948 −0.562963 −0.281482 0.959567i \(-0.590826\pi\)
−0.281482 + 0.959567i \(0.590826\pi\)
\(48\) 0 0
\(49\) 10.0813 1.44018
\(50\) 2.23198 0.315650
\(51\) 0 0
\(52\) −0.329408 −0.0456806
\(53\) 10.1554 1.39496 0.697478 0.716607i \(-0.254306\pi\)
0.697478 + 0.716607i \(0.254306\pi\)
\(54\) 0 0
\(55\) 1.00000 0.134840
\(56\) 9.05639 1.21021
\(57\) 0 0
\(58\) 7.32737 0.962131
\(59\) 10.4857 1.36512 0.682561 0.730829i \(-0.260866\pi\)
0.682561 + 0.730829i \(0.260866\pi\)
\(60\) 0 0
\(61\) −3.53161 −0.452177 −0.226088 0.974107i \(-0.572594\pi\)
−0.226088 + 0.974107i \(0.572594\pi\)
\(62\) −0.453029 −0.0575347
\(63\) 0 0
\(64\) −12.9801 −1.62251
\(65\) −0.110474 −0.0137027
\(66\) 0 0
\(67\) −7.84063 −0.957886 −0.478943 0.877846i \(-0.658980\pi\)
−0.478943 + 0.877846i \(0.658980\pi\)
\(68\) 20.8700 2.53086
\(69\) 0 0
\(70\) 9.22468 1.10256
\(71\) 1.58930 0.188616 0.0943078 0.995543i \(-0.469936\pi\)
0.0943078 + 0.995543i \(0.469936\pi\)
\(72\) 0 0
\(73\) 8.41595 0.985012 0.492506 0.870309i \(-0.336081\pi\)
0.492506 + 0.870309i \(0.336081\pi\)
\(74\) −1.52572 −0.177362
\(75\) 0 0
\(76\) −2.98176 −0.342031
\(77\) 4.13295 0.470993
\(78\) 0 0
\(79\) 2.80598 0.315697 0.157848 0.987463i \(-0.449544\pi\)
0.157848 + 0.987463i \(0.449544\pi\)
\(80\) −1.07264 −0.119925
\(81\) 0 0
\(82\) 11.1046 1.22630
\(83\) 5.52580 0.606535 0.303267 0.952905i \(-0.401922\pi\)
0.303267 + 0.952905i \(0.401922\pi\)
\(84\) 0 0
\(85\) 6.99924 0.759174
\(86\) 19.0308 2.05215
\(87\) 0 0
\(88\) 2.19127 0.233590
\(89\) −0.654537 −0.0693808 −0.0346904 0.999398i \(-0.511045\pi\)
−0.0346904 + 0.999398i \(0.511045\pi\)
\(90\) 0 0
\(91\) −0.456585 −0.0478631
\(92\) −24.9553 −2.60177
\(93\) 0 0
\(94\) −8.61430 −0.888498
\(95\) −1.00000 −0.102598
\(96\) 0 0
\(97\) −10.8858 −1.10529 −0.552643 0.833418i \(-0.686381\pi\)
−0.552643 + 0.833418i \(0.686381\pi\)
\(98\) 22.5013 2.27297
\(99\) 0 0
\(100\) 2.98176 0.298176
\(101\) −9.08470 −0.903961 −0.451980 0.892028i \(-0.649282\pi\)
−0.451980 + 0.892028i \(0.649282\pi\)
\(102\) 0 0
\(103\) −3.59063 −0.353795 −0.176898 0.984229i \(-0.556606\pi\)
−0.176898 + 0.984229i \(0.556606\pi\)
\(104\) −0.242079 −0.0237378
\(105\) 0 0
\(106\) 22.6668 2.20159
\(107\) 7.13069 0.689350 0.344675 0.938722i \(-0.387989\pi\)
0.344675 + 0.938722i \(0.387989\pi\)
\(108\) 0 0
\(109\) −15.1412 −1.45026 −0.725131 0.688611i \(-0.758221\pi\)
−0.725131 + 0.688611i \(0.758221\pi\)
\(110\) 2.23198 0.212811
\(111\) 0 0
\(112\) −4.43317 −0.418896
\(113\) 2.67686 0.251818 0.125909 0.992042i \(-0.459815\pi\)
0.125909 + 0.992042i \(0.459815\pi\)
\(114\) 0 0
\(115\) −8.36934 −0.780445
\(116\) 9.78879 0.908866
\(117\) 0 0
\(118\) 23.4039 2.15451
\(119\) 28.9275 2.65178
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −7.88251 −0.713649
\(123\) 0 0
\(124\) −0.605211 −0.0543496
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −13.0799 −1.16065 −0.580326 0.814384i \(-0.697075\pi\)
−0.580326 + 0.814384i \(0.697075\pi\)
\(128\) −15.4181 −1.36278
\(129\) 0 0
\(130\) −0.246577 −0.0216262
\(131\) 8.33532 0.728260 0.364130 0.931348i \(-0.381366\pi\)
0.364130 + 0.931348i \(0.381366\pi\)
\(132\) 0 0
\(133\) −4.13295 −0.358372
\(134\) −17.5002 −1.51179
\(135\) 0 0
\(136\) 15.3372 1.31515
\(137\) 13.0803 1.11753 0.558765 0.829326i \(-0.311276\pi\)
0.558765 + 0.829326i \(0.311276\pi\)
\(138\) 0 0
\(139\) −18.2803 −1.55052 −0.775259 0.631644i \(-0.782381\pi\)
−0.775259 + 0.631644i \(0.782381\pi\)
\(140\) 12.3235 1.04152
\(141\) 0 0
\(142\) 3.54730 0.297683
\(143\) −0.110474 −0.00923833
\(144\) 0 0
\(145\) 3.28289 0.272629
\(146\) 18.7843 1.55460
\(147\) 0 0
\(148\) −2.03825 −0.167543
\(149\) −18.3204 −1.50087 −0.750435 0.660945i \(-0.770156\pi\)
−0.750435 + 0.660945i \(0.770156\pi\)
\(150\) 0 0
\(151\) 8.66581 0.705213 0.352607 0.935772i \(-0.385295\pi\)
0.352607 + 0.935772i \(0.385295\pi\)
\(152\) −2.19127 −0.177735
\(153\) 0 0
\(154\) 9.22468 0.743346
\(155\) −0.202971 −0.0163030
\(156\) 0 0
\(157\) −18.7512 −1.49651 −0.748254 0.663412i \(-0.769108\pi\)
−0.748254 + 0.663412i \(0.769108\pi\)
\(158\) 6.26290 0.498249
\(159\) 0 0
\(160\) −6.77665 −0.535741
\(161\) −34.5901 −2.72608
\(162\) 0 0
\(163\) 19.8023 1.55103 0.775517 0.631327i \(-0.217489\pi\)
0.775517 + 0.631327i \(0.217489\pi\)
\(164\) 14.8349 1.15841
\(165\) 0 0
\(166\) 12.3335 0.957265
\(167\) −1.91597 −0.148262 −0.0741312 0.997248i \(-0.523618\pi\)
−0.0741312 + 0.997248i \(0.523618\pi\)
\(168\) 0 0
\(169\) −12.9878 −0.999061
\(170\) 15.6222 1.19817
\(171\) 0 0
\(172\) 25.4237 1.93854
\(173\) 3.30818 0.251516 0.125758 0.992061i \(-0.459864\pi\)
0.125758 + 0.992061i \(0.459864\pi\)
\(174\) 0 0
\(175\) 4.13295 0.312422
\(176\) −1.07264 −0.0808534
\(177\) 0 0
\(178\) −1.46092 −0.109500
\(179\) 21.9873 1.64341 0.821703 0.569915i \(-0.193024\pi\)
0.821703 + 0.569915i \(0.193024\pi\)
\(180\) 0 0
\(181\) −17.0245 −1.26542 −0.632709 0.774389i \(-0.718057\pi\)
−0.632709 + 0.774389i \(0.718057\pi\)
\(182\) −1.01909 −0.0755400
\(183\) 0 0
\(184\) −18.3394 −1.35200
\(185\) −0.683573 −0.0502573
\(186\) 0 0
\(187\) 6.99924 0.511835
\(188\) −11.5080 −0.839310
\(189\) 0 0
\(190\) −2.23198 −0.161925
\(191\) 12.8748 0.931589 0.465794 0.884893i \(-0.345769\pi\)
0.465794 + 0.884893i \(0.345769\pi\)
\(192\) 0 0
\(193\) 2.49248 0.179412 0.0897062 0.995968i \(-0.471407\pi\)
0.0897062 + 0.995968i \(0.471407\pi\)
\(194\) −24.2970 −1.74442
\(195\) 0 0
\(196\) 30.0599 2.14714
\(197\) −0.604202 −0.0430476 −0.0215238 0.999768i \(-0.506852\pi\)
−0.0215238 + 0.999768i \(0.506852\pi\)
\(198\) 0 0
\(199\) −17.6373 −1.25027 −0.625137 0.780515i \(-0.714957\pi\)
−0.625137 + 0.780515i \(0.714957\pi\)
\(200\) 2.19127 0.154946
\(201\) 0 0
\(202\) −20.2769 −1.42668
\(203\) 13.5680 0.952289
\(204\) 0 0
\(205\) 4.97522 0.347484
\(206\) −8.01423 −0.558378
\(207\) 0 0
\(208\) 0.118499 0.00821645
\(209\) −1.00000 −0.0691714
\(210\) 0 0
\(211\) 19.9281 1.37190 0.685952 0.727646i \(-0.259386\pi\)
0.685952 + 0.727646i \(0.259386\pi\)
\(212\) 30.2810 2.07971
\(213\) 0 0
\(214\) 15.9156 1.08797
\(215\) 8.52642 0.581497
\(216\) 0 0
\(217\) −0.838870 −0.0569462
\(218\) −33.7949 −2.28888
\(219\) 0 0
\(220\) 2.98176 0.201030
\(221\) −0.773236 −0.0520135
\(222\) 0 0
\(223\) 12.6225 0.845263 0.422631 0.906302i \(-0.361106\pi\)
0.422631 + 0.906302i \(0.361106\pi\)
\(224\) −28.0076 −1.87133
\(225\) 0 0
\(226\) 5.97472 0.397432
\(227\) −7.57012 −0.502447 −0.251223 0.967929i \(-0.580833\pi\)
−0.251223 + 0.967929i \(0.580833\pi\)
\(228\) 0 0
\(229\) −8.20266 −0.542047 −0.271023 0.962573i \(-0.587362\pi\)
−0.271023 + 0.962573i \(0.587362\pi\)
\(230\) −18.6802 −1.23174
\(231\) 0 0
\(232\) 7.19369 0.472289
\(233\) −16.9904 −1.11308 −0.556538 0.830822i \(-0.687871\pi\)
−0.556538 + 0.830822i \(0.687871\pi\)
\(234\) 0 0
\(235\) −3.85948 −0.251765
\(236\) 31.2658 2.03523
\(237\) 0 0
\(238\) 64.5657 4.18517
\(239\) 15.2540 0.986699 0.493350 0.869831i \(-0.335772\pi\)
0.493350 + 0.869831i \(0.335772\pi\)
\(240\) 0 0
\(241\) −1.53642 −0.0989698 −0.0494849 0.998775i \(-0.515758\pi\)
−0.0494849 + 0.998775i \(0.515758\pi\)
\(242\) 2.23198 0.143477
\(243\) 0 0
\(244\) −10.5304 −0.674141
\(245\) 10.0813 0.644069
\(246\) 0 0
\(247\) 0.110474 0.00702931
\(248\) −0.444764 −0.0282425
\(249\) 0 0
\(250\) 2.23198 0.141163
\(251\) −24.6721 −1.55729 −0.778646 0.627464i \(-0.784093\pi\)
−0.778646 + 0.627464i \(0.784093\pi\)
\(252\) 0 0
\(253\) −8.36934 −0.526176
\(254\) −29.1941 −1.83180
\(255\) 0 0
\(256\) −8.45273 −0.528296
\(257\) −11.9052 −0.742624 −0.371312 0.928508i \(-0.621092\pi\)
−0.371312 + 0.928508i \(0.621092\pi\)
\(258\) 0 0
\(259\) −2.82517 −0.175548
\(260\) −0.329408 −0.0204290
\(261\) 0 0
\(262\) 18.6043 1.14938
\(263\) 0.849505 0.0523827 0.0261914 0.999657i \(-0.491662\pi\)
0.0261914 + 0.999657i \(0.491662\pi\)
\(264\) 0 0
\(265\) 10.1554 0.623843
\(266\) −9.22468 −0.565602
\(267\) 0 0
\(268\) −23.3789 −1.42809
\(269\) 16.6805 1.01703 0.508514 0.861054i \(-0.330195\pi\)
0.508514 + 0.861054i \(0.330195\pi\)
\(270\) 0 0
\(271\) −13.2403 −0.804291 −0.402146 0.915576i \(-0.631735\pi\)
−0.402146 + 0.915576i \(0.631735\pi\)
\(272\) −7.50767 −0.455219
\(273\) 0 0
\(274\) 29.1951 1.76374
\(275\) 1.00000 0.0603023
\(276\) 0 0
\(277\) −17.2124 −1.03419 −0.517096 0.855927i \(-0.672987\pi\)
−0.517096 + 0.855927i \(0.672987\pi\)
\(278\) −40.8014 −2.44711
\(279\) 0 0
\(280\) 9.05639 0.541223
\(281\) −9.32448 −0.556252 −0.278126 0.960545i \(-0.589713\pi\)
−0.278126 + 0.960545i \(0.589713\pi\)
\(282\) 0 0
\(283\) 12.8642 0.764698 0.382349 0.924018i \(-0.375115\pi\)
0.382349 + 0.924018i \(0.375115\pi\)
\(284\) 4.73891 0.281203
\(285\) 0 0
\(286\) −0.246577 −0.0145804
\(287\) 20.5623 1.21376
\(288\) 0 0
\(289\) 31.9893 1.88172
\(290\) 7.32737 0.430278
\(291\) 0 0
\(292\) 25.0943 1.46853
\(293\) 14.4092 0.841796 0.420898 0.907108i \(-0.361715\pi\)
0.420898 + 0.907108i \(0.361715\pi\)
\(294\) 0 0
\(295\) 10.4857 0.610501
\(296\) −1.49789 −0.0870630
\(297\) 0 0
\(298\) −40.8910 −2.36875
\(299\) 0.924597 0.0534708
\(300\) 0 0
\(301\) 35.2393 2.03116
\(302\) 19.3419 1.11300
\(303\) 0 0
\(304\) 1.07264 0.0615202
\(305\) −3.53161 −0.202220
\(306\) 0 0
\(307\) −28.2838 −1.61424 −0.807122 0.590385i \(-0.798976\pi\)
−0.807122 + 0.590385i \(0.798976\pi\)
\(308\) 12.3235 0.702194
\(309\) 0 0
\(310\) −0.453029 −0.0257303
\(311\) 12.3942 0.702809 0.351404 0.936224i \(-0.385704\pi\)
0.351404 + 0.936224i \(0.385704\pi\)
\(312\) 0 0
\(313\) −33.0560 −1.86844 −0.934219 0.356701i \(-0.883901\pi\)
−0.934219 + 0.356701i \(0.883901\pi\)
\(314\) −41.8524 −2.36187
\(315\) 0 0
\(316\) 8.36674 0.470666
\(317\) −9.95795 −0.559294 −0.279647 0.960103i \(-0.590217\pi\)
−0.279647 + 0.960103i \(0.590217\pi\)
\(318\) 0 0
\(319\) 3.28289 0.183807
\(320\) −12.9801 −0.725610
\(321\) 0 0
\(322\) −77.2045 −4.30244
\(323\) −6.99924 −0.389448
\(324\) 0 0
\(325\) −0.110474 −0.00612801
\(326\) 44.1984 2.44792
\(327\) 0 0
\(328\) 10.9020 0.601964
\(329\) −15.9510 −0.879409
\(330\) 0 0
\(331\) 29.9575 1.64661 0.823307 0.567596i \(-0.192126\pi\)
0.823307 + 0.567596i \(0.192126\pi\)
\(332\) 16.4766 0.904270
\(333\) 0 0
\(334\) −4.27642 −0.233995
\(335\) −7.84063 −0.428380
\(336\) 0 0
\(337\) 11.7426 0.639662 0.319831 0.947475i \(-0.396374\pi\)
0.319831 + 0.947475i \(0.396374\pi\)
\(338\) −28.9886 −1.57677
\(339\) 0 0
\(340\) 20.8700 1.13184
\(341\) −0.202971 −0.0109915
\(342\) 0 0
\(343\) 12.7348 0.687613
\(344\) 18.6837 1.00736
\(345\) 0 0
\(346\) 7.38381 0.396956
\(347\) −7.01661 −0.376671 −0.188336 0.982105i \(-0.560309\pi\)
−0.188336 + 0.982105i \(0.560309\pi\)
\(348\) 0 0
\(349\) 4.66034 0.249462 0.124731 0.992191i \(-0.460193\pi\)
0.124731 + 0.992191i \(0.460193\pi\)
\(350\) 9.22468 0.493080
\(351\) 0 0
\(352\) −6.77665 −0.361197
\(353\) 36.5878 1.94737 0.973687 0.227889i \(-0.0731823\pi\)
0.973687 + 0.227889i \(0.0731823\pi\)
\(354\) 0 0
\(355\) 1.58930 0.0843514
\(356\) −1.95167 −0.103438
\(357\) 0 0
\(358\) 49.0753 2.59371
\(359\) −1.09396 −0.0577369 −0.0288684 0.999583i \(-0.509190\pi\)
−0.0288684 + 0.999583i \(0.509190\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −37.9984 −1.99715
\(363\) 0 0
\(364\) −1.36143 −0.0713581
\(365\) 8.41595 0.440511
\(366\) 0 0
\(367\) −12.3334 −0.643801 −0.321900 0.946774i \(-0.604322\pi\)
−0.321900 + 0.946774i \(0.604322\pi\)
\(368\) 8.97730 0.467974
\(369\) 0 0
\(370\) −1.52572 −0.0793186
\(371\) 41.9719 2.17907
\(372\) 0 0
\(373\) −9.20094 −0.476407 −0.238203 0.971215i \(-0.576558\pi\)
−0.238203 + 0.971215i \(0.576558\pi\)
\(374\) 15.6222 0.807804
\(375\) 0 0
\(376\) −8.45715 −0.436144
\(377\) −0.362675 −0.0186787
\(378\) 0 0
\(379\) 36.7806 1.88929 0.944645 0.328093i \(-0.106406\pi\)
0.944645 + 0.328093i \(0.106406\pi\)
\(380\) −2.98176 −0.152961
\(381\) 0 0
\(382\) 28.7364 1.47028
\(383\) −23.8111 −1.21669 −0.608345 0.793673i \(-0.708166\pi\)
−0.608345 + 0.793673i \(0.708166\pi\)
\(384\) 0 0
\(385\) 4.13295 0.210635
\(386\) 5.56317 0.283158
\(387\) 0 0
\(388\) −32.4588 −1.64785
\(389\) −3.05680 −0.154986 −0.0774928 0.996993i \(-0.524691\pi\)
−0.0774928 + 0.996993i \(0.524691\pi\)
\(390\) 0 0
\(391\) −58.5790 −2.96247
\(392\) 22.0908 1.11575
\(393\) 0 0
\(394\) −1.34857 −0.0679400
\(395\) 2.80598 0.141184
\(396\) 0 0
\(397\) 6.65411 0.333960 0.166980 0.985960i \(-0.446598\pi\)
0.166980 + 0.985960i \(0.446598\pi\)
\(398\) −39.3661 −1.97325
\(399\) 0 0
\(400\) −1.07264 −0.0536321
\(401\) −18.0655 −0.902148 −0.451074 0.892487i \(-0.648959\pi\)
−0.451074 + 0.892487i \(0.648959\pi\)
\(402\) 0 0
\(403\) 0.0224231 0.00111698
\(404\) −27.0883 −1.34770
\(405\) 0 0
\(406\) 30.2836 1.50295
\(407\) −0.683573 −0.0338834
\(408\) 0 0
\(409\) 30.6190 1.51401 0.757005 0.653409i \(-0.226662\pi\)
0.757005 + 0.653409i \(0.226662\pi\)
\(410\) 11.1046 0.548418
\(411\) 0 0
\(412\) −10.7064 −0.527465
\(413\) 43.3369 2.13247
\(414\) 0 0
\(415\) 5.52580 0.271251
\(416\) 0.748646 0.0367054
\(417\) 0 0
\(418\) −2.23198 −0.109170
\(419\) 38.4886 1.88029 0.940145 0.340774i \(-0.110689\pi\)
0.940145 + 0.340774i \(0.110689\pi\)
\(420\) 0 0
\(421\) −33.2827 −1.62210 −0.811049 0.584979i \(-0.801103\pi\)
−0.811049 + 0.584979i \(0.801103\pi\)
\(422\) 44.4791 2.16521
\(423\) 0 0
\(424\) 22.2532 1.08071
\(425\) 6.99924 0.339513
\(426\) 0 0
\(427\) −14.5960 −0.706349
\(428\) 21.2620 1.02774
\(429\) 0 0
\(430\) 19.0308 0.917749
\(431\) −4.84543 −0.233396 −0.116698 0.993167i \(-0.537231\pi\)
−0.116698 + 0.993167i \(0.537231\pi\)
\(432\) 0 0
\(433\) 29.2320 1.40480 0.702400 0.711783i \(-0.252112\pi\)
0.702400 + 0.711783i \(0.252112\pi\)
\(434\) −1.87235 −0.0898755
\(435\) 0 0
\(436\) −45.1473 −2.16216
\(437\) 8.36934 0.400360
\(438\) 0 0
\(439\) −12.2196 −0.583211 −0.291605 0.956539i \(-0.594189\pi\)
−0.291605 + 0.956539i \(0.594189\pi\)
\(440\) 2.19127 0.104464
\(441\) 0 0
\(442\) −1.72585 −0.0820903
\(443\) 24.1325 1.14657 0.573284 0.819357i \(-0.305669\pi\)
0.573284 + 0.819357i \(0.305669\pi\)
\(444\) 0 0
\(445\) −0.654537 −0.0310280
\(446\) 28.1732 1.33404
\(447\) 0 0
\(448\) −53.6461 −2.53454
\(449\) 8.77225 0.413988 0.206994 0.978342i \(-0.433632\pi\)
0.206994 + 0.978342i \(0.433632\pi\)
\(450\) 0 0
\(451\) 4.97522 0.234274
\(452\) 7.98176 0.375430
\(453\) 0 0
\(454\) −16.8964 −0.792987
\(455\) −0.456585 −0.0214050
\(456\) 0 0
\(457\) −6.85848 −0.320826 −0.160413 0.987050i \(-0.551283\pi\)
−0.160413 + 0.987050i \(0.551283\pi\)
\(458\) −18.3082 −0.855487
\(459\) 0 0
\(460\) −24.9553 −1.16355
\(461\) 24.9007 1.15974 0.579870 0.814709i \(-0.303104\pi\)
0.579870 + 0.814709i \(0.303104\pi\)
\(462\) 0 0
\(463\) −2.79250 −0.129778 −0.0648892 0.997892i \(-0.520669\pi\)
−0.0648892 + 0.997892i \(0.520669\pi\)
\(464\) −3.52137 −0.163475
\(465\) 0 0
\(466\) −37.9222 −1.75671
\(467\) 7.55358 0.349538 0.174769 0.984609i \(-0.444082\pi\)
0.174769 + 0.984609i \(0.444082\pi\)
\(468\) 0 0
\(469\) −32.4050 −1.49632
\(470\) −8.61430 −0.397348
\(471\) 0 0
\(472\) 22.9770 1.05760
\(473\) 8.52642 0.392045
\(474\) 0 0
\(475\) −1.00000 −0.0458831
\(476\) 86.2547 3.95348
\(477\) 0 0
\(478\) 34.0467 1.55726
\(479\) −28.2961 −1.29288 −0.646440 0.762965i \(-0.723743\pi\)
−0.646440 + 0.762965i \(0.723743\pi\)
\(480\) 0 0
\(481\) 0.0755172 0.00344329
\(482\) −3.42928 −0.156199
\(483\) 0 0
\(484\) 2.98176 0.135534
\(485\) −10.8858 −0.494299
\(486\) 0 0
\(487\) −22.0840 −1.00072 −0.500361 0.865817i \(-0.666799\pi\)
−0.500361 + 0.865817i \(0.666799\pi\)
\(488\) −7.73870 −0.350315
\(489\) 0 0
\(490\) 22.5013 1.01650
\(491\) −34.1421 −1.54081 −0.770405 0.637555i \(-0.779946\pi\)
−0.770405 + 0.637555i \(0.779946\pi\)
\(492\) 0 0
\(493\) 22.9777 1.03487
\(494\) 0.246577 0.0110940
\(495\) 0 0
\(496\) 0.217715 0.00977571
\(497\) 6.56851 0.294638
\(498\) 0 0
\(499\) −9.33688 −0.417976 −0.208988 0.977918i \(-0.567017\pi\)
−0.208988 + 0.977918i \(0.567017\pi\)
\(500\) 2.98176 0.133348
\(501\) 0 0
\(502\) −55.0678 −2.45780
\(503\) −16.8794 −0.752616 −0.376308 0.926495i \(-0.622807\pi\)
−0.376308 + 0.926495i \(0.622807\pi\)
\(504\) 0 0
\(505\) −9.08470 −0.404264
\(506\) −18.6802 −0.830438
\(507\) 0 0
\(508\) −39.0010 −1.73039
\(509\) −13.2971 −0.589383 −0.294691 0.955592i \(-0.595217\pi\)
−0.294691 + 0.955592i \(0.595217\pi\)
\(510\) 0 0
\(511\) 34.7827 1.53870
\(512\) 11.9698 0.528995
\(513\) 0 0
\(514\) −26.5722 −1.17205
\(515\) −3.59063 −0.158222
\(516\) 0 0
\(517\) −3.85948 −0.169740
\(518\) −6.30574 −0.277058
\(519\) 0 0
\(520\) −0.242079 −0.0106158
\(521\) 20.5200 0.898997 0.449499 0.893281i \(-0.351603\pi\)
0.449499 + 0.893281i \(0.351603\pi\)
\(522\) 0 0
\(523\) 19.6848 0.860757 0.430378 0.902649i \(-0.358380\pi\)
0.430378 + 0.902649i \(0.358380\pi\)
\(524\) 24.8539 1.08575
\(525\) 0 0
\(526\) 1.89608 0.0826731
\(527\) −1.42064 −0.0618842
\(528\) 0 0
\(529\) 47.0458 2.04547
\(530\) 22.6668 0.984581
\(531\) 0 0
\(532\) −12.3235 −0.534289
\(533\) −0.549634 −0.0238073
\(534\) 0 0
\(535\) 7.13069 0.308287
\(536\) −17.1809 −0.742102
\(537\) 0 0
\(538\) 37.2306 1.60513
\(539\) 10.0813 0.434231
\(540\) 0 0
\(541\) −15.9758 −0.686852 −0.343426 0.939180i \(-0.611587\pi\)
−0.343426 + 0.939180i \(0.611587\pi\)
\(542\) −29.5522 −1.26937
\(543\) 0 0
\(544\) −47.4314 −2.03360
\(545\) −15.1412 −0.648577
\(546\) 0 0
\(547\) −41.5489 −1.77650 −0.888252 0.459357i \(-0.848080\pi\)
−0.888252 + 0.459357i \(0.848080\pi\)
\(548\) 39.0024 1.66610
\(549\) 0 0
\(550\) 2.23198 0.0951722
\(551\) −3.28289 −0.139856
\(552\) 0 0
\(553\) 11.5970 0.493153
\(554\) −38.4178 −1.63222
\(555\) 0 0
\(556\) −54.5075 −2.31163
\(557\) −30.0766 −1.27439 −0.637194 0.770703i \(-0.719905\pi\)
−0.637194 + 0.770703i \(0.719905\pi\)
\(558\) 0 0
\(559\) −0.941951 −0.0398403
\(560\) −4.43317 −0.187336
\(561\) 0 0
\(562\) −20.8121 −0.877906
\(563\) −21.3804 −0.901079 −0.450539 0.892757i \(-0.648768\pi\)
−0.450539 + 0.892757i \(0.648768\pi\)
\(564\) 0 0
\(565\) 2.67686 0.112617
\(566\) 28.7127 1.20689
\(567\) 0 0
\(568\) 3.48258 0.146126
\(569\) −11.5873 −0.485767 −0.242883 0.970055i \(-0.578093\pi\)
−0.242883 + 0.970055i \(0.578093\pi\)
\(570\) 0 0
\(571\) −25.1618 −1.05299 −0.526494 0.850179i \(-0.676494\pi\)
−0.526494 + 0.850179i \(0.676494\pi\)
\(572\) −0.329408 −0.0137732
\(573\) 0 0
\(574\) 45.8948 1.91561
\(575\) −8.36934 −0.349026
\(576\) 0 0
\(577\) −1.55228 −0.0646222 −0.0323111 0.999478i \(-0.510287\pi\)
−0.0323111 + 0.999478i \(0.510287\pi\)
\(578\) 71.3996 2.96983
\(579\) 0 0
\(580\) 9.78879 0.406457
\(581\) 22.8378 0.947473
\(582\) 0 0
\(583\) 10.1554 0.420595
\(584\) 18.4416 0.763118
\(585\) 0 0
\(586\) 32.1612 1.32857
\(587\) 5.32002 0.219581 0.109790 0.993955i \(-0.464982\pi\)
0.109790 + 0.993955i \(0.464982\pi\)
\(588\) 0 0
\(589\) 0.202971 0.00836329
\(590\) 23.4039 0.963525
\(591\) 0 0
\(592\) 0.733228 0.0301355
\(593\) −36.2723 −1.48952 −0.744762 0.667331i \(-0.767437\pi\)
−0.744762 + 0.667331i \(0.767437\pi\)
\(594\) 0 0
\(595\) 28.9275 1.18591
\(596\) −54.6271 −2.23761
\(597\) 0 0
\(598\) 2.06369 0.0843904
\(599\) 40.0043 1.63453 0.817266 0.576261i \(-0.195489\pi\)
0.817266 + 0.576261i \(0.195489\pi\)
\(600\) 0 0
\(601\) 36.6257 1.49400 0.746998 0.664827i \(-0.231495\pi\)
0.746998 + 0.664827i \(0.231495\pi\)
\(602\) 78.6535 3.20568
\(603\) 0 0
\(604\) 25.8393 1.05139
\(605\) 1.00000 0.0406558
\(606\) 0 0
\(607\) 23.7724 0.964893 0.482446 0.875926i \(-0.339748\pi\)
0.482446 + 0.875926i \(0.339748\pi\)
\(608\) 6.77665 0.274829
\(609\) 0 0
\(610\) −7.88251 −0.319153
\(611\) 0.426374 0.0172492
\(612\) 0 0
\(613\) −2.77756 −0.112184 −0.0560922 0.998426i \(-0.517864\pi\)
−0.0560922 + 0.998426i \(0.517864\pi\)
\(614\) −63.1291 −2.54768
\(615\) 0 0
\(616\) 9.05639 0.364892
\(617\) −39.0259 −1.57112 −0.785562 0.618783i \(-0.787626\pi\)
−0.785562 + 0.618783i \(0.787626\pi\)
\(618\) 0 0
\(619\) 45.6890 1.83639 0.918197 0.396123i \(-0.129645\pi\)
0.918197 + 0.396123i \(0.129645\pi\)
\(620\) −0.605211 −0.0243059
\(621\) 0 0
\(622\) 27.6636 1.10921
\(623\) −2.70517 −0.108380
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −73.7806 −2.94886
\(627\) 0 0
\(628\) −55.9115 −2.23111
\(629\) −4.78448 −0.190770
\(630\) 0 0
\(631\) −20.2465 −0.806000 −0.403000 0.915200i \(-0.632032\pi\)
−0.403000 + 0.915200i \(0.632032\pi\)
\(632\) 6.14864 0.244580
\(633\) 0 0
\(634\) −22.2260 −0.882707
\(635\) −13.0799 −0.519059
\(636\) 0 0
\(637\) −1.11372 −0.0441273
\(638\) 7.32737 0.290093
\(639\) 0 0
\(640\) −15.4181 −0.609453
\(641\) −22.9945 −0.908229 −0.454115 0.890943i \(-0.650044\pi\)
−0.454115 + 0.890943i \(0.650044\pi\)
\(642\) 0 0
\(643\) −36.6452 −1.44514 −0.722572 0.691295i \(-0.757040\pi\)
−0.722572 + 0.691295i \(0.757040\pi\)
\(644\) −103.139 −4.06425
\(645\) 0 0
\(646\) −15.6222 −0.614647
\(647\) −36.1179 −1.41994 −0.709970 0.704232i \(-0.751291\pi\)
−0.709970 + 0.704232i \(0.751291\pi\)
\(648\) 0 0
\(649\) 10.4857 0.411600
\(650\) −0.246577 −0.00967155
\(651\) 0 0
\(652\) 59.0455 2.31240
\(653\) −28.1710 −1.10242 −0.551208 0.834368i \(-0.685833\pi\)
−0.551208 + 0.834368i \(0.685833\pi\)
\(654\) 0 0
\(655\) 8.33532 0.325688
\(656\) −5.33663 −0.208360
\(657\) 0 0
\(658\) −35.6025 −1.38793
\(659\) 46.4859 1.81083 0.905416 0.424525i \(-0.139559\pi\)
0.905416 + 0.424525i \(0.139559\pi\)
\(660\) 0 0
\(661\) −37.2017 −1.44698 −0.723489 0.690336i \(-0.757463\pi\)
−0.723489 + 0.690336i \(0.757463\pi\)
\(662\) 66.8648 2.59877
\(663\) 0 0
\(664\) 12.1085 0.469900
\(665\) −4.13295 −0.160269
\(666\) 0 0
\(667\) −27.4756 −1.06386
\(668\) −5.71296 −0.221041
\(669\) 0 0
\(670\) −17.5002 −0.676091
\(671\) −3.53161 −0.136336
\(672\) 0 0
\(673\) 31.3183 1.20723 0.603616 0.797276i \(-0.293726\pi\)
0.603616 + 0.797276i \(0.293726\pi\)
\(674\) 26.2094 1.00955
\(675\) 0 0
\(676\) −38.7264 −1.48948
\(677\) −44.6151 −1.71470 −0.857349 0.514736i \(-0.827890\pi\)
−0.857349 + 0.514736i \(0.827890\pi\)
\(678\) 0 0
\(679\) −44.9905 −1.72658
\(680\) 15.3372 0.588154
\(681\) 0 0
\(682\) −0.453029 −0.0173474
\(683\) −11.0815 −0.424024 −0.212012 0.977267i \(-0.568002\pi\)
−0.212012 + 0.977267i \(0.568002\pi\)
\(684\) 0 0
\(685\) 13.0803 0.499774
\(686\) 28.4238 1.08523
\(687\) 0 0
\(688\) −9.14579 −0.348680
\(689\) −1.12191 −0.0427415
\(690\) 0 0
\(691\) −28.3303 −1.07773 −0.538867 0.842391i \(-0.681148\pi\)
−0.538867 + 0.842391i \(0.681148\pi\)
\(692\) 9.86419 0.374980
\(693\) 0 0
\(694\) −15.6610 −0.594482
\(695\) −18.2803 −0.693412
\(696\) 0 0
\(697\) 34.8227 1.31900
\(698\) 10.4018 0.393714
\(699\) 0 0
\(700\) 12.3235 0.465783
\(701\) −41.4446 −1.56534 −0.782671 0.622435i \(-0.786143\pi\)
−0.782671 + 0.622435i \(0.786143\pi\)
\(702\) 0 0
\(703\) 0.683573 0.0257814
\(704\) −12.9801 −0.489206
\(705\) 0 0
\(706\) 81.6635 3.07345
\(707\) −37.5466 −1.41208
\(708\) 0 0
\(709\) −39.1483 −1.47025 −0.735123 0.677933i \(-0.762876\pi\)
−0.735123 + 0.677933i \(0.762876\pi\)
\(710\) 3.54730 0.133128
\(711\) 0 0
\(712\) −1.43426 −0.0537513
\(713\) 1.69874 0.0636182
\(714\) 0 0
\(715\) −0.110474 −0.00413151
\(716\) 65.5607 2.45012
\(717\) 0 0
\(718\) −2.44170 −0.0911233
\(719\) −27.5810 −1.02860 −0.514299 0.857611i \(-0.671948\pi\)
−0.514299 + 0.857611i \(0.671948\pi\)
\(720\) 0 0
\(721\) −14.8399 −0.552666
\(722\) 2.23198 0.0830659
\(723\) 0 0
\(724\) −50.7628 −1.88659
\(725\) 3.28289 0.121924
\(726\) 0 0
\(727\) 44.7807 1.66083 0.830413 0.557149i \(-0.188105\pi\)
0.830413 + 0.557149i \(0.188105\pi\)
\(728\) −1.00050 −0.0370810
\(729\) 0 0
\(730\) 18.7843 0.695237
\(731\) 59.6784 2.20729
\(732\) 0 0
\(733\) −15.0617 −0.556316 −0.278158 0.960535i \(-0.589724\pi\)
−0.278158 + 0.960535i \(0.589724\pi\)
\(734\) −27.5281 −1.01608
\(735\) 0 0
\(736\) 56.7161 2.09058
\(737\) −7.84063 −0.288813
\(738\) 0 0
\(739\) −16.7492 −0.616128 −0.308064 0.951366i \(-0.599681\pi\)
−0.308064 + 0.951366i \(0.599681\pi\)
\(740\) −2.03825 −0.0749274
\(741\) 0 0
\(742\) 93.6806 3.43912
\(743\) −38.4706 −1.41135 −0.705674 0.708537i \(-0.749356\pi\)
−0.705674 + 0.708537i \(0.749356\pi\)
\(744\) 0 0
\(745\) −18.3204 −0.671209
\(746\) −20.5364 −0.751890
\(747\) 0 0
\(748\) 20.8700 0.763083
\(749\) 29.4708 1.07684
\(750\) 0 0
\(751\) −38.7951 −1.41565 −0.707827 0.706386i \(-0.750324\pi\)
−0.707827 + 0.706386i \(0.750324\pi\)
\(752\) 4.13984 0.150964
\(753\) 0 0
\(754\) −0.809486 −0.0294797
\(755\) 8.66581 0.315381
\(756\) 0 0
\(757\) 49.3111 1.79224 0.896120 0.443811i \(-0.146374\pi\)
0.896120 + 0.443811i \(0.146374\pi\)
\(758\) 82.0937 2.98178
\(759\) 0 0
\(760\) −2.19127 −0.0794856
\(761\) 7.21992 0.261722 0.130861 0.991401i \(-0.458226\pi\)
0.130861 + 0.991401i \(0.458226\pi\)
\(762\) 0 0
\(763\) −62.5777 −2.26547
\(764\) 38.3896 1.38889
\(765\) 0 0
\(766\) −53.1460 −1.92024
\(767\) −1.15840 −0.0418274
\(768\) 0 0
\(769\) 15.7986 0.569714 0.284857 0.958570i \(-0.408054\pi\)
0.284857 + 0.958570i \(0.408054\pi\)
\(770\) 9.22468 0.332434
\(771\) 0 0
\(772\) 7.43196 0.267482
\(773\) −13.1031 −0.471287 −0.235643 0.971840i \(-0.575720\pi\)
−0.235643 + 0.971840i \(0.575720\pi\)
\(774\) 0 0
\(775\) −0.202971 −0.00729095
\(776\) −23.8537 −0.856298
\(777\) 0 0
\(778\) −6.82272 −0.244606
\(779\) −4.97522 −0.178256
\(780\) 0 0
\(781\) 1.58930 0.0568697
\(782\) −130.747 −4.67552
\(783\) 0 0
\(784\) −10.8136 −0.386200
\(785\) −18.7512 −0.669259
\(786\) 0 0
\(787\) −4.60737 −0.164235 −0.0821176 0.996623i \(-0.526168\pi\)
−0.0821176 + 0.996623i \(0.526168\pi\)
\(788\) −1.80158 −0.0641787
\(789\) 0 0
\(790\) 6.26290 0.222824
\(791\) 11.0633 0.393367
\(792\) 0 0
\(793\) 0.390153 0.0138547
\(794\) 14.8519 0.527073
\(795\) 0 0
\(796\) −52.5901 −1.86401
\(797\) −12.6952 −0.449687 −0.224844 0.974395i \(-0.572187\pi\)
−0.224844 + 0.974395i \(0.572187\pi\)
\(798\) 0 0
\(799\) −27.0134 −0.955666
\(800\) −6.77665 −0.239591
\(801\) 0 0
\(802\) −40.3219 −1.42382
\(803\) 8.41595 0.296992
\(804\) 0 0
\(805\) −34.5901 −1.21914
\(806\) 0.0500481 0.00176287
\(807\) 0 0
\(808\) −19.9070 −0.700325
\(809\) 3.22295 0.113313 0.0566564 0.998394i \(-0.481956\pi\)
0.0566564 + 0.998394i \(0.481956\pi\)
\(810\) 0 0
\(811\) 18.0724 0.634609 0.317304 0.948324i \(-0.397222\pi\)
0.317304 + 0.948324i \(0.397222\pi\)
\(812\) 40.4566 1.41975
\(813\) 0 0
\(814\) −1.52572 −0.0534766
\(815\) 19.8023 0.693643
\(816\) 0 0
\(817\) −8.52642 −0.298302
\(818\) 68.3410 2.38949
\(819\) 0 0
\(820\) 14.8349 0.518057
\(821\) −0.572887 −0.0199939 −0.00999694 0.999950i \(-0.503182\pi\)
−0.00999694 + 0.999950i \(0.503182\pi\)
\(822\) 0 0
\(823\) −37.8486 −1.31932 −0.659660 0.751564i \(-0.729300\pi\)
−0.659660 + 0.751564i \(0.729300\pi\)
\(824\) −7.86802 −0.274095
\(825\) 0 0
\(826\) 96.7273 3.36557
\(827\) 10.9219 0.379792 0.189896 0.981804i \(-0.439185\pi\)
0.189896 + 0.981804i \(0.439185\pi\)
\(828\) 0 0
\(829\) 49.6425 1.72415 0.862077 0.506777i \(-0.169163\pi\)
0.862077 + 0.506777i \(0.169163\pi\)
\(830\) 12.3335 0.428102
\(831\) 0 0
\(832\) 1.43397 0.0497139
\(833\) 70.5612 2.44480
\(834\) 0 0
\(835\) −1.91597 −0.0663050
\(836\) −2.98176 −0.103126
\(837\) 0 0
\(838\) 85.9060 2.96757
\(839\) 43.5296 1.50281 0.751404 0.659842i \(-0.229377\pi\)
0.751404 + 0.659842i \(0.229377\pi\)
\(840\) 0 0
\(841\) −18.2226 −0.628366
\(842\) −74.2864 −2.56008
\(843\) 0 0
\(844\) 59.4206 2.04534
\(845\) −12.9878 −0.446794
\(846\) 0 0
\(847\) 4.13295 0.142010
\(848\) −10.8931 −0.374072
\(849\) 0 0
\(850\) 15.6222 0.535837
\(851\) 5.72105 0.196115
\(852\) 0 0
\(853\) 24.4635 0.837616 0.418808 0.908075i \(-0.362448\pi\)
0.418808 + 0.908075i \(0.362448\pi\)
\(854\) −32.5780 −1.11480
\(855\) 0 0
\(856\) 15.6252 0.534060
\(857\) 22.5611 0.770672 0.385336 0.922776i \(-0.374086\pi\)
0.385336 + 0.922776i \(0.374086\pi\)
\(858\) 0 0
\(859\) −14.6892 −0.501189 −0.250595 0.968092i \(-0.580626\pi\)
−0.250595 + 0.968092i \(0.580626\pi\)
\(860\) 25.4237 0.866941
\(861\) 0 0
\(862\) −10.8149 −0.368357
\(863\) 41.8413 1.42429 0.712147 0.702031i \(-0.247723\pi\)
0.712147 + 0.702031i \(0.247723\pi\)
\(864\) 0 0
\(865\) 3.30818 0.112482
\(866\) 65.2453 2.21713
\(867\) 0 0
\(868\) −2.50131 −0.0848999
\(869\) 2.80598 0.0951862
\(870\) 0 0
\(871\) 0.866189 0.0293497
\(872\) −33.1784 −1.12356
\(873\) 0 0
\(874\) 18.6802 0.631868
\(875\) 4.13295 0.139719
\(876\) 0 0
\(877\) −54.9892 −1.85685 −0.928426 0.371516i \(-0.878838\pi\)
−0.928426 + 0.371516i \(0.878838\pi\)
\(878\) −27.2740 −0.920453
\(879\) 0 0
\(880\) −1.07264 −0.0361587
\(881\) 30.1002 1.01410 0.507050 0.861917i \(-0.330736\pi\)
0.507050 + 0.861917i \(0.330736\pi\)
\(882\) 0 0
\(883\) 54.9963 1.85077 0.925386 0.379026i \(-0.123741\pi\)
0.925386 + 0.379026i \(0.123741\pi\)
\(884\) −2.30560 −0.0775458
\(885\) 0 0
\(886\) 53.8633 1.80957
\(887\) −32.8266 −1.10221 −0.551105 0.834436i \(-0.685794\pi\)
−0.551105 + 0.834436i \(0.685794\pi\)
\(888\) 0 0
\(889\) −54.0585 −1.81306
\(890\) −1.46092 −0.0489700
\(891\) 0 0
\(892\) 37.6371 1.26018
\(893\) 3.85948 0.129153
\(894\) 0 0
\(895\) 21.9873 0.734954
\(896\) −63.7222 −2.12881
\(897\) 0 0
\(898\) 19.5795 0.653377
\(899\) −0.666333 −0.0222235
\(900\) 0 0
\(901\) 71.0802 2.36803
\(902\) 11.1046 0.369743
\(903\) 0 0
\(904\) 5.86572 0.195091
\(905\) −17.0245 −0.565913
\(906\) 0 0
\(907\) 14.9631 0.496841 0.248421 0.968652i \(-0.420088\pi\)
0.248421 + 0.968652i \(0.420088\pi\)
\(908\) −22.5723 −0.749087
\(909\) 0 0
\(910\) −1.01909 −0.0337825
\(911\) −26.0121 −0.861818 −0.430909 0.902395i \(-0.641807\pi\)
−0.430909 + 0.902395i \(0.641807\pi\)
\(912\) 0 0
\(913\) 5.52580 0.182877
\(914\) −15.3080 −0.506344
\(915\) 0 0
\(916\) −24.4583 −0.808126
\(917\) 34.4495 1.13762
\(918\) 0 0
\(919\) 40.8366 1.34707 0.673537 0.739153i \(-0.264774\pi\)
0.673537 + 0.739153i \(0.264774\pi\)
\(920\) −18.3394 −0.604633
\(921\) 0 0
\(922\) 55.5779 1.83036
\(923\) −0.175577 −0.00577919
\(924\) 0 0
\(925\) −0.683573 −0.0224757
\(926\) −6.23281 −0.204823
\(927\) 0 0
\(928\) −22.2470 −0.730294
\(929\) −20.3088 −0.666309 −0.333155 0.942872i \(-0.608113\pi\)
−0.333155 + 0.942872i \(0.608113\pi\)
\(930\) 0 0
\(931\) −10.0813 −0.330400
\(932\) −50.6611 −1.65946
\(933\) 0 0
\(934\) 16.8595 0.551659
\(935\) 6.99924 0.228899
\(936\) 0 0
\(937\) 30.8199 1.00684 0.503422 0.864041i \(-0.332074\pi\)
0.503422 + 0.864041i \(0.332074\pi\)
\(938\) −72.3274 −2.36157
\(939\) 0 0
\(940\) −11.5080 −0.375351
\(941\) 18.2874 0.596153 0.298077 0.954542i \(-0.403655\pi\)
0.298077 + 0.954542i \(0.403655\pi\)
\(942\) 0 0
\(943\) −41.6393 −1.35596
\(944\) −11.2474 −0.366072
\(945\) 0 0
\(946\) 19.0308 0.618746
\(947\) 53.3021 1.73209 0.866043 0.499970i \(-0.166656\pi\)
0.866043 + 0.499970i \(0.166656\pi\)
\(948\) 0 0
\(949\) −0.929746 −0.0301808
\(950\) −2.23198 −0.0724152
\(951\) 0 0
\(952\) 63.3878 2.05441
\(953\) −24.4980 −0.793568 −0.396784 0.917912i \(-0.629874\pi\)
−0.396784 + 0.917912i \(0.629874\pi\)
\(954\) 0 0
\(955\) 12.8748 0.416619
\(956\) 45.4837 1.47105
\(957\) 0 0
\(958\) −63.1564 −2.04049
\(959\) 54.0604 1.74570
\(960\) 0 0
\(961\) −30.9588 −0.998671
\(962\) 0.168553 0.00543438
\(963\) 0 0
\(964\) −4.58124 −0.147552
\(965\) 2.49248 0.0802357
\(966\) 0 0
\(967\) 29.9164 0.962047 0.481023 0.876708i \(-0.340265\pi\)
0.481023 + 0.876708i \(0.340265\pi\)
\(968\) 2.19127 0.0704299
\(969\) 0 0
\(970\) −24.2970 −0.780128
\(971\) −42.2300 −1.35522 −0.677612 0.735419i \(-0.736985\pi\)
−0.677612 + 0.735419i \(0.736985\pi\)
\(972\) 0 0
\(973\) −75.5517 −2.42208
\(974\) −49.2912 −1.57939
\(975\) 0 0
\(976\) 3.78816 0.121256
\(977\) −25.2891 −0.809070 −0.404535 0.914523i \(-0.632567\pi\)
−0.404535 + 0.914523i \(0.632567\pi\)
\(978\) 0 0
\(979\) −0.654537 −0.0209191
\(980\) 30.0599 0.960229
\(981\) 0 0
\(982\) −76.2046 −2.43179
\(983\) 9.20537 0.293606 0.146803 0.989166i \(-0.453102\pi\)
0.146803 + 0.989166i \(0.453102\pi\)
\(984\) 0 0
\(985\) −0.604202 −0.0192515
\(986\) 51.2860 1.63328
\(987\) 0 0
\(988\) 0.329408 0.0104799
\(989\) −71.3605 −2.26913
\(990\) 0 0
\(991\) 32.9139 1.04554 0.522772 0.852472i \(-0.324898\pi\)
0.522772 + 0.852472i \(0.324898\pi\)
\(992\) 1.37547 0.0436711
\(993\) 0 0
\(994\) 14.6608 0.465013
\(995\) −17.6373 −0.559139
\(996\) 0 0
\(997\) −6.45140 −0.204318 −0.102159 0.994768i \(-0.532575\pi\)
−0.102159 + 0.994768i \(0.532575\pi\)
\(998\) −20.8398 −0.659671
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9405.2.a.z.1.5 6
3.2 odd 2 1045.2.a.f.1.2 6
15.14 odd 2 5225.2.a.l.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1045.2.a.f.1.2 6 3.2 odd 2
5225.2.a.l.1.5 6 15.14 odd 2
9405.2.a.z.1.5 6 1.1 even 1 trivial