Properties

Label 9405.2.a.z.1.3
Level $9405$
Weight $2$
Character 9405.1
Self dual yes
Analytic conductor $75.099$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9405,2,Mod(1,9405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9405, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9405.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9405 = 3^{2} \cdot 5 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9405.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.0993031010\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.7281497.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 5x^{4} + 7x^{3} + 6x^{2} - 2x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1045)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.77015\) of defining polynomial
Character \(\chi\) \(=\) 9405.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.205229 q^{2} -1.95788 q^{4} +1.00000 q^{5} +2.33231 q^{7} +0.812271 q^{8} +O(q^{10})\) \(q-0.205229 q^{2} -1.95788 q^{4} +1.00000 q^{5} +2.33231 q^{7} +0.812271 q^{8} -0.205229 q^{10} +1.00000 q^{11} -4.30769 q^{13} -0.478657 q^{14} +3.74906 q^{16} -6.71096 q^{17} -1.00000 q^{19} -1.95788 q^{20} -0.205229 q^{22} -8.24907 q^{23} +1.00000 q^{25} +0.884062 q^{26} -4.56638 q^{28} -3.02355 q^{29} -10.2077 q^{31} -2.39396 q^{32} +1.37728 q^{34} +2.33231 q^{35} -5.06393 q^{37} +0.205229 q^{38} +0.812271 q^{40} +6.47966 q^{41} +1.64130 q^{43} -1.95788 q^{44} +1.69295 q^{46} +8.15593 q^{47} -1.56033 q^{49} -0.205229 q^{50} +8.43395 q^{52} +2.35693 q^{53} +1.00000 q^{55} +1.89447 q^{56} +0.620519 q^{58} +4.65880 q^{59} +8.93722 q^{61} +2.09491 q^{62} -7.00681 q^{64} -4.30769 q^{65} +13.2994 q^{67} +13.1393 q^{68} -0.478657 q^{70} +8.76859 q^{71} -2.66639 q^{73} +1.03926 q^{74} +1.95788 q^{76} +2.33231 q^{77} -12.1246 q^{79} +3.74906 q^{80} -1.32981 q^{82} +17.8672 q^{83} -6.71096 q^{85} -0.336843 q^{86} +0.812271 q^{88} +1.27875 q^{89} -10.0469 q^{91} +16.1507 q^{92} -1.67383 q^{94} -1.00000 q^{95} +14.9748 q^{97} +0.320225 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} + 4 q^{4} + 6 q^{5} + 5 q^{7} + 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 2 q^{2} + 4 q^{4} + 6 q^{5} + 5 q^{7} + 12 q^{8} + 2 q^{10} + 6 q^{11} - 5 q^{13} + 8 q^{14} + 4 q^{16} - q^{17} - 6 q^{19} + 4 q^{20} + 2 q^{22} - 4 q^{23} + 6 q^{25} + 14 q^{26} + 10 q^{28} + 9 q^{29} - 21 q^{31} + q^{32} + 5 q^{35} - 3 q^{37} - 2 q^{38} + 12 q^{40} + 23 q^{41} + 7 q^{43} + 4 q^{44} - 12 q^{46} + 18 q^{47} - 3 q^{49} + 2 q^{50} + 13 q^{52} + 17 q^{53} + 6 q^{55} + 2 q^{56} + 23 q^{58} + 29 q^{59} + 17 q^{61} - 2 q^{62} - 18 q^{64} - 5 q^{65} + 8 q^{67} + q^{68} + 8 q^{70} + 12 q^{71} + 2 q^{73} + 37 q^{74} - 4 q^{76} + 5 q^{77} + 3 q^{79} + 4 q^{80} + 24 q^{82} + 11 q^{83} - q^{85} + 12 q^{86} + 12 q^{88} + 22 q^{89} - 18 q^{91} + 15 q^{92} + 22 q^{94} - 6 q^{95} - 2 q^{97} + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.205229 −0.145119 −0.0725593 0.997364i \(-0.523117\pi\)
−0.0725593 + 0.997364i \(0.523117\pi\)
\(3\) 0 0
\(4\) −1.95788 −0.978941
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 2.33231 0.881530 0.440765 0.897623i \(-0.354707\pi\)
0.440765 + 0.897623i \(0.354707\pi\)
\(8\) 0.812271 0.287181
\(9\) 0 0
\(10\) −0.205229 −0.0648990
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −4.30769 −1.19474 −0.597369 0.801966i \(-0.703787\pi\)
−0.597369 + 0.801966i \(0.703787\pi\)
\(14\) −0.478657 −0.127926
\(15\) 0 0
\(16\) 3.74906 0.937265
\(17\) −6.71096 −1.62765 −0.813824 0.581111i \(-0.802618\pi\)
−0.813824 + 0.581111i \(0.802618\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) −1.95788 −0.437796
\(21\) 0 0
\(22\) −0.205229 −0.0437549
\(23\) −8.24907 −1.72005 −0.860025 0.510252i \(-0.829552\pi\)
−0.860025 + 0.510252i \(0.829552\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0.884062 0.173379
\(27\) 0 0
\(28\) −4.56638 −0.862966
\(29\) −3.02355 −0.561459 −0.280730 0.959787i \(-0.590576\pi\)
−0.280730 + 0.959787i \(0.590576\pi\)
\(30\) 0 0
\(31\) −10.2077 −1.83335 −0.916677 0.399628i \(-0.869139\pi\)
−0.916677 + 0.399628i \(0.869139\pi\)
\(32\) −2.39396 −0.423196
\(33\) 0 0
\(34\) 1.37728 0.236202
\(35\) 2.33231 0.394232
\(36\) 0 0
\(37\) −5.06393 −0.832506 −0.416253 0.909249i \(-0.636657\pi\)
−0.416253 + 0.909249i \(0.636657\pi\)
\(38\) 0.205229 0.0332925
\(39\) 0 0
\(40\) 0.812271 0.128431
\(41\) 6.47966 1.01195 0.505976 0.862548i \(-0.331132\pi\)
0.505976 + 0.862548i \(0.331132\pi\)
\(42\) 0 0
\(43\) 1.64130 0.250296 0.125148 0.992138i \(-0.460059\pi\)
0.125148 + 0.992138i \(0.460059\pi\)
\(44\) −1.95788 −0.295162
\(45\) 0 0
\(46\) 1.69295 0.249611
\(47\) 8.15593 1.18966 0.594832 0.803850i \(-0.297219\pi\)
0.594832 + 0.803850i \(0.297219\pi\)
\(48\) 0 0
\(49\) −1.56033 −0.222905
\(50\) −0.205229 −0.0290237
\(51\) 0 0
\(52\) 8.43395 1.16958
\(53\) 2.35693 0.323749 0.161875 0.986811i \(-0.448246\pi\)
0.161875 + 0.986811i \(0.448246\pi\)
\(54\) 0 0
\(55\) 1.00000 0.134840
\(56\) 1.89447 0.253159
\(57\) 0 0
\(58\) 0.620519 0.0814782
\(59\) 4.65880 0.606525 0.303262 0.952907i \(-0.401924\pi\)
0.303262 + 0.952907i \(0.401924\pi\)
\(60\) 0 0
\(61\) 8.93722 1.14429 0.572147 0.820151i \(-0.306111\pi\)
0.572147 + 0.820151i \(0.306111\pi\)
\(62\) 2.09491 0.266054
\(63\) 0 0
\(64\) −7.00681 −0.875852
\(65\) −4.30769 −0.534303
\(66\) 0 0
\(67\) 13.2994 1.62478 0.812392 0.583111i \(-0.198165\pi\)
0.812392 + 0.583111i \(0.198165\pi\)
\(68\) 13.1393 1.59337
\(69\) 0 0
\(70\) −0.478657 −0.0572104
\(71\) 8.76859 1.04064 0.520320 0.853971i \(-0.325813\pi\)
0.520320 + 0.853971i \(0.325813\pi\)
\(72\) 0 0
\(73\) −2.66639 −0.312077 −0.156038 0.987751i \(-0.549872\pi\)
−0.156038 + 0.987751i \(0.549872\pi\)
\(74\) 1.03926 0.120812
\(75\) 0 0
\(76\) 1.95788 0.224584
\(77\) 2.33231 0.265791
\(78\) 0 0
\(79\) −12.1246 −1.36413 −0.682065 0.731292i \(-0.738918\pi\)
−0.682065 + 0.731292i \(0.738918\pi\)
\(80\) 3.74906 0.419158
\(81\) 0 0
\(82\) −1.32981 −0.146853
\(83\) 17.8672 1.96117 0.980587 0.196082i \(-0.0628220\pi\)
0.980587 + 0.196082i \(0.0628220\pi\)
\(84\) 0 0
\(85\) −6.71096 −0.727906
\(86\) −0.336843 −0.0363227
\(87\) 0 0
\(88\) 0.812271 0.0865884
\(89\) 1.27875 0.135548 0.0677739 0.997701i \(-0.478410\pi\)
0.0677739 + 0.997701i \(0.478410\pi\)
\(90\) 0 0
\(91\) −10.0469 −1.05320
\(92\) 16.1507 1.68383
\(93\) 0 0
\(94\) −1.67383 −0.172642
\(95\) −1.00000 −0.102598
\(96\) 0 0
\(97\) 14.9748 1.52046 0.760230 0.649654i \(-0.225086\pi\)
0.760230 + 0.649654i \(0.225086\pi\)
\(98\) 0.320225 0.0323476
\(99\) 0 0
\(100\) −1.95788 −0.195788
\(101\) −0.465796 −0.0463484 −0.0231742 0.999731i \(-0.507377\pi\)
−0.0231742 + 0.999731i \(0.507377\pi\)
\(102\) 0 0
\(103\) 12.7767 1.25892 0.629462 0.777031i \(-0.283275\pi\)
0.629462 + 0.777031i \(0.283275\pi\)
\(104\) −3.49901 −0.343106
\(105\) 0 0
\(106\) −0.483709 −0.0469820
\(107\) −3.81929 −0.369225 −0.184612 0.982811i \(-0.559103\pi\)
−0.184612 + 0.982811i \(0.559103\pi\)
\(108\) 0 0
\(109\) 9.14480 0.875913 0.437956 0.898996i \(-0.355702\pi\)
0.437956 + 0.898996i \(0.355702\pi\)
\(110\) −0.205229 −0.0195678
\(111\) 0 0
\(112\) 8.74397 0.826228
\(113\) −1.55378 −0.146167 −0.0730837 0.997326i \(-0.523284\pi\)
−0.0730837 + 0.997326i \(0.523284\pi\)
\(114\) 0 0
\(115\) −8.24907 −0.769230
\(116\) 5.91975 0.549635
\(117\) 0 0
\(118\) −0.956120 −0.0880180
\(119\) −15.6520 −1.43482
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −1.83417 −0.166058
\(123\) 0 0
\(124\) 19.9854 1.79475
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −6.95455 −0.617117 −0.308558 0.951205i \(-0.599846\pi\)
−0.308558 + 0.951205i \(0.599846\pi\)
\(128\) 6.22591 0.550298
\(129\) 0 0
\(130\) 0.884062 0.0775373
\(131\) 12.3544 1.07941 0.539703 0.841855i \(-0.318537\pi\)
0.539703 + 0.841855i \(0.318537\pi\)
\(132\) 0 0
\(133\) −2.33231 −0.202237
\(134\) −2.72943 −0.235787
\(135\) 0 0
\(136\) −5.45112 −0.467430
\(137\) 5.14851 0.439867 0.219934 0.975515i \(-0.429416\pi\)
0.219934 + 0.975515i \(0.429416\pi\)
\(138\) 0 0
\(139\) −6.46045 −0.547968 −0.273984 0.961734i \(-0.588342\pi\)
−0.273984 + 0.961734i \(0.588342\pi\)
\(140\) −4.56638 −0.385930
\(141\) 0 0
\(142\) −1.79957 −0.151016
\(143\) −4.30769 −0.360227
\(144\) 0 0
\(145\) −3.02355 −0.251092
\(146\) 0.547219 0.0452882
\(147\) 0 0
\(148\) 9.91458 0.814974
\(149\) −1.25732 −0.103004 −0.0515019 0.998673i \(-0.516401\pi\)
−0.0515019 + 0.998673i \(0.516401\pi\)
\(150\) 0 0
\(151\) −3.48878 −0.283913 −0.141956 0.989873i \(-0.545339\pi\)
−0.141956 + 0.989873i \(0.545339\pi\)
\(152\) −0.812271 −0.0658839
\(153\) 0 0
\(154\) −0.478657 −0.0385713
\(155\) −10.2077 −0.819901
\(156\) 0 0
\(157\) 6.34241 0.506180 0.253090 0.967443i \(-0.418553\pi\)
0.253090 + 0.967443i \(0.418553\pi\)
\(158\) 2.48832 0.197960
\(159\) 0 0
\(160\) −2.39396 −0.189259
\(161\) −19.2394 −1.51628
\(162\) 0 0
\(163\) −23.4566 −1.83726 −0.918630 0.395119i \(-0.870704\pi\)
−0.918630 + 0.395119i \(0.870704\pi\)
\(164\) −12.6864 −0.990641
\(165\) 0 0
\(166\) −3.66685 −0.284603
\(167\) −6.70854 −0.519122 −0.259561 0.965727i \(-0.583578\pi\)
−0.259561 + 0.965727i \(0.583578\pi\)
\(168\) 0 0
\(169\) 5.55619 0.427399
\(170\) 1.37728 0.105633
\(171\) 0 0
\(172\) −3.21348 −0.245025
\(173\) 8.18749 0.622483 0.311242 0.950331i \(-0.399255\pi\)
0.311242 + 0.950331i \(0.399255\pi\)
\(174\) 0 0
\(175\) 2.33231 0.176306
\(176\) 3.74906 0.282596
\(177\) 0 0
\(178\) −0.262437 −0.0196705
\(179\) 13.0297 0.973885 0.486943 0.873434i \(-0.338112\pi\)
0.486943 + 0.873434i \(0.338112\pi\)
\(180\) 0 0
\(181\) −13.6260 −1.01281 −0.506407 0.862294i \(-0.669027\pi\)
−0.506407 + 0.862294i \(0.669027\pi\)
\(182\) 2.06190 0.152839
\(183\) 0 0
\(184\) −6.70048 −0.493966
\(185\) −5.06393 −0.372308
\(186\) 0 0
\(187\) −6.71096 −0.490754
\(188\) −15.9683 −1.16461
\(189\) 0 0
\(190\) 0.205229 0.0148889
\(191\) −2.87940 −0.208346 −0.104173 0.994559i \(-0.533220\pi\)
−0.104173 + 0.994559i \(0.533220\pi\)
\(192\) 0 0
\(193\) 23.3069 1.67767 0.838834 0.544387i \(-0.183238\pi\)
0.838834 + 0.544387i \(0.183238\pi\)
\(194\) −3.07326 −0.220647
\(195\) 0 0
\(196\) 3.05495 0.218211
\(197\) 21.4910 1.53117 0.765585 0.643335i \(-0.222450\pi\)
0.765585 + 0.643335i \(0.222450\pi\)
\(198\) 0 0
\(199\) −11.8592 −0.840678 −0.420339 0.907367i \(-0.638089\pi\)
−0.420339 + 0.907367i \(0.638089\pi\)
\(200\) 0.812271 0.0574362
\(201\) 0 0
\(202\) 0.0955946 0.00672601
\(203\) −7.05185 −0.494943
\(204\) 0 0
\(205\) 6.47966 0.452559
\(206\) −2.62214 −0.182693
\(207\) 0 0
\(208\) −16.1498 −1.11979
\(209\) −1.00000 −0.0691714
\(210\) 0 0
\(211\) −12.2769 −0.845175 −0.422587 0.906322i \(-0.638878\pi\)
−0.422587 + 0.906322i \(0.638878\pi\)
\(212\) −4.61459 −0.316931
\(213\) 0 0
\(214\) 0.783828 0.0535814
\(215\) 1.64130 0.111936
\(216\) 0 0
\(217\) −23.8075 −1.61616
\(218\) −1.87678 −0.127111
\(219\) 0 0
\(220\) −1.95788 −0.132000
\(221\) 28.9088 1.94461
\(222\) 0 0
\(223\) 18.1532 1.21563 0.607813 0.794080i \(-0.292047\pi\)
0.607813 + 0.794080i \(0.292047\pi\)
\(224\) −5.58345 −0.373060
\(225\) 0 0
\(226\) 0.318880 0.0212116
\(227\) 18.9555 1.25812 0.629061 0.777356i \(-0.283440\pi\)
0.629061 + 0.777356i \(0.283440\pi\)
\(228\) 0 0
\(229\) −16.3134 −1.07802 −0.539009 0.842300i \(-0.681201\pi\)
−0.539009 + 0.842300i \(0.681201\pi\)
\(230\) 1.69295 0.111630
\(231\) 0 0
\(232\) −2.45594 −0.161240
\(233\) 22.9853 1.50582 0.752910 0.658124i \(-0.228650\pi\)
0.752910 + 0.658124i \(0.228650\pi\)
\(234\) 0 0
\(235\) 8.15593 0.532034
\(236\) −9.12138 −0.593751
\(237\) 0 0
\(238\) 3.21225 0.208219
\(239\) 17.2793 1.11771 0.558853 0.829267i \(-0.311241\pi\)
0.558853 + 0.829267i \(0.311241\pi\)
\(240\) 0 0
\(241\) 13.4260 0.864843 0.432422 0.901672i \(-0.357659\pi\)
0.432422 + 0.901672i \(0.357659\pi\)
\(242\) −0.205229 −0.0131926
\(243\) 0 0
\(244\) −17.4980 −1.12020
\(245\) −1.56033 −0.0996860
\(246\) 0 0
\(247\) 4.30769 0.274092
\(248\) −8.29141 −0.526505
\(249\) 0 0
\(250\) −0.205229 −0.0129798
\(251\) −1.20422 −0.0760099 −0.0380050 0.999278i \(-0.512100\pi\)
−0.0380050 + 0.999278i \(0.512100\pi\)
\(252\) 0 0
\(253\) −8.24907 −0.518615
\(254\) 1.42727 0.0895551
\(255\) 0 0
\(256\) 12.7359 0.795993
\(257\) 17.1513 1.06987 0.534935 0.844893i \(-0.320336\pi\)
0.534935 + 0.844893i \(0.320336\pi\)
\(258\) 0 0
\(259\) −11.8107 −0.733879
\(260\) 8.43395 0.523051
\(261\) 0 0
\(262\) −2.53547 −0.156642
\(263\) −6.60962 −0.407567 −0.203783 0.979016i \(-0.565324\pi\)
−0.203783 + 0.979016i \(0.565324\pi\)
\(264\) 0 0
\(265\) 2.35693 0.144785
\(266\) 0.478657 0.0293483
\(267\) 0 0
\(268\) −26.0387 −1.59057
\(269\) 2.85724 0.174209 0.0871046 0.996199i \(-0.472239\pi\)
0.0871046 + 0.996199i \(0.472239\pi\)
\(270\) 0 0
\(271\) −1.28250 −0.0779062 −0.0389531 0.999241i \(-0.512402\pi\)
−0.0389531 + 0.999241i \(0.512402\pi\)
\(272\) −25.1598 −1.52554
\(273\) 0 0
\(274\) −1.05662 −0.0638329
\(275\) 1.00000 0.0603023
\(276\) 0 0
\(277\) 16.2492 0.976322 0.488161 0.872753i \(-0.337668\pi\)
0.488161 + 0.872753i \(0.337668\pi\)
\(278\) 1.32587 0.0795204
\(279\) 0 0
\(280\) 1.89447 0.113216
\(281\) 29.4723 1.75817 0.879085 0.476664i \(-0.158154\pi\)
0.879085 + 0.476664i \(0.158154\pi\)
\(282\) 0 0
\(283\) −32.9008 −1.95575 −0.977874 0.209196i \(-0.932915\pi\)
−0.977874 + 0.209196i \(0.932915\pi\)
\(284\) −17.1679 −1.01872
\(285\) 0 0
\(286\) 0.884062 0.0522757
\(287\) 15.1126 0.892066
\(288\) 0 0
\(289\) 28.0370 1.64924
\(290\) 0.620519 0.0364381
\(291\) 0 0
\(292\) 5.22047 0.305505
\(293\) −27.9704 −1.63405 −0.817023 0.576605i \(-0.804377\pi\)
−0.817023 + 0.576605i \(0.804377\pi\)
\(294\) 0 0
\(295\) 4.65880 0.271246
\(296\) −4.11329 −0.239080
\(297\) 0 0
\(298\) 0.258038 0.0149478
\(299\) 35.5344 2.05501
\(300\) 0 0
\(301\) 3.82803 0.220644
\(302\) 0.715997 0.0412010
\(303\) 0 0
\(304\) −3.74906 −0.215023
\(305\) 8.93722 0.511744
\(306\) 0 0
\(307\) −0.783038 −0.0446903 −0.0223452 0.999750i \(-0.507113\pi\)
−0.0223452 + 0.999750i \(0.507113\pi\)
\(308\) −4.56638 −0.260194
\(309\) 0 0
\(310\) 2.09491 0.118983
\(311\) 10.0442 0.569555 0.284777 0.958594i \(-0.408080\pi\)
0.284777 + 0.958594i \(0.408080\pi\)
\(312\) 0 0
\(313\) −1.80765 −0.102174 −0.0510872 0.998694i \(-0.516269\pi\)
−0.0510872 + 0.998694i \(0.516269\pi\)
\(314\) −1.30165 −0.0734561
\(315\) 0 0
\(316\) 23.7386 1.33540
\(317\) −14.2824 −0.802182 −0.401091 0.916038i \(-0.631369\pi\)
−0.401091 + 0.916038i \(0.631369\pi\)
\(318\) 0 0
\(319\) −3.02355 −0.169286
\(320\) −7.00681 −0.391693
\(321\) 0 0
\(322\) 3.94847 0.220040
\(323\) 6.71096 0.373408
\(324\) 0 0
\(325\) −4.30769 −0.238948
\(326\) 4.81396 0.266621
\(327\) 0 0
\(328\) 5.26323 0.290614
\(329\) 19.0221 1.04872
\(330\) 0 0
\(331\) −14.4996 −0.796969 −0.398484 0.917175i \(-0.630464\pi\)
−0.398484 + 0.917175i \(0.630464\pi\)
\(332\) −34.9818 −1.91987
\(333\) 0 0
\(334\) 1.37678 0.0753343
\(335\) 13.2994 0.726626
\(336\) 0 0
\(337\) 17.0292 0.927638 0.463819 0.885930i \(-0.346479\pi\)
0.463819 + 0.885930i \(0.346479\pi\)
\(338\) −1.14029 −0.0620236
\(339\) 0 0
\(340\) 13.1393 0.712577
\(341\) −10.2077 −0.552777
\(342\) 0 0
\(343\) −19.9653 −1.07803
\(344\) 1.33318 0.0718804
\(345\) 0 0
\(346\) −1.68031 −0.0903339
\(347\) 12.4889 0.670439 0.335220 0.942140i \(-0.391189\pi\)
0.335220 + 0.942140i \(0.391189\pi\)
\(348\) 0 0
\(349\) −20.9482 −1.12133 −0.560667 0.828042i \(-0.689455\pi\)
−0.560667 + 0.828042i \(0.689455\pi\)
\(350\) −0.478657 −0.0255853
\(351\) 0 0
\(352\) −2.39396 −0.127598
\(353\) 11.3626 0.604769 0.302384 0.953186i \(-0.402217\pi\)
0.302384 + 0.953186i \(0.402217\pi\)
\(354\) 0 0
\(355\) 8.76859 0.465388
\(356\) −2.50365 −0.132693
\(357\) 0 0
\(358\) −2.67407 −0.141329
\(359\) 3.59897 0.189946 0.0949732 0.995480i \(-0.469723\pi\)
0.0949732 + 0.995480i \(0.469723\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 2.79645 0.146978
\(363\) 0 0
\(364\) 19.6706 1.03102
\(365\) −2.66639 −0.139565
\(366\) 0 0
\(367\) 22.8321 1.19183 0.595914 0.803048i \(-0.296790\pi\)
0.595914 + 0.803048i \(0.296790\pi\)
\(368\) −30.9263 −1.61214
\(369\) 0 0
\(370\) 1.03926 0.0540288
\(371\) 5.49709 0.285395
\(372\) 0 0
\(373\) −14.5973 −0.755822 −0.377911 0.925842i \(-0.623357\pi\)
−0.377911 + 0.925842i \(0.623357\pi\)
\(374\) 1.37728 0.0712176
\(375\) 0 0
\(376\) 6.62482 0.341649
\(377\) 13.0245 0.670797
\(378\) 0 0
\(379\) 11.8706 0.609752 0.304876 0.952392i \(-0.401385\pi\)
0.304876 + 0.952392i \(0.401385\pi\)
\(380\) 1.95788 0.100437
\(381\) 0 0
\(382\) 0.590936 0.0302349
\(383\) −12.6086 −0.644268 −0.322134 0.946694i \(-0.604400\pi\)
−0.322134 + 0.946694i \(0.604400\pi\)
\(384\) 0 0
\(385\) 2.33231 0.118865
\(386\) −4.78325 −0.243461
\(387\) 0 0
\(388\) −29.3189 −1.48844
\(389\) −35.3815 −1.79391 −0.896956 0.442120i \(-0.854227\pi\)
−0.896956 + 0.442120i \(0.854227\pi\)
\(390\) 0 0
\(391\) 55.3592 2.79964
\(392\) −1.26741 −0.0640140
\(393\) 0 0
\(394\) −4.41057 −0.222201
\(395\) −12.1246 −0.610057
\(396\) 0 0
\(397\) −3.65851 −0.183615 −0.0918076 0.995777i \(-0.529264\pi\)
−0.0918076 + 0.995777i \(0.529264\pi\)
\(398\) 2.43385 0.121998
\(399\) 0 0
\(400\) 3.74906 0.187453
\(401\) −7.80707 −0.389867 −0.194933 0.980816i \(-0.562449\pi\)
−0.194933 + 0.980816i \(0.562449\pi\)
\(402\) 0 0
\(403\) 43.9716 2.19038
\(404\) 0.911972 0.0453723
\(405\) 0 0
\(406\) 1.44724 0.0718255
\(407\) −5.06393 −0.251010
\(408\) 0 0
\(409\) 18.6176 0.920582 0.460291 0.887768i \(-0.347745\pi\)
0.460291 + 0.887768i \(0.347745\pi\)
\(410\) −1.32981 −0.0656747
\(411\) 0 0
\(412\) −25.0152 −1.23241
\(413\) 10.8658 0.534670
\(414\) 0 0
\(415\) 17.8672 0.877064
\(416\) 10.3124 0.505608
\(417\) 0 0
\(418\) 0.205229 0.0100381
\(419\) −4.36059 −0.213029 −0.106514 0.994311i \(-0.533969\pi\)
−0.106514 + 0.994311i \(0.533969\pi\)
\(420\) 0 0
\(421\) 13.8050 0.672813 0.336407 0.941717i \(-0.390788\pi\)
0.336407 + 0.941717i \(0.390788\pi\)
\(422\) 2.51957 0.122651
\(423\) 0 0
\(424\) 1.91446 0.0929746
\(425\) −6.71096 −0.325530
\(426\) 0 0
\(427\) 20.8444 1.00873
\(428\) 7.47771 0.361449
\(429\) 0 0
\(430\) −0.336843 −0.0162440
\(431\) 22.3219 1.07521 0.537603 0.843198i \(-0.319330\pi\)
0.537603 + 0.843198i \(0.319330\pi\)
\(432\) 0 0
\(433\) −32.5287 −1.56323 −0.781614 0.623762i \(-0.785603\pi\)
−0.781614 + 0.623762i \(0.785603\pi\)
\(434\) 4.88598 0.234535
\(435\) 0 0
\(436\) −17.9044 −0.857467
\(437\) 8.24907 0.394607
\(438\) 0 0
\(439\) −11.6856 −0.557723 −0.278862 0.960331i \(-0.589957\pi\)
−0.278862 + 0.960331i \(0.589957\pi\)
\(440\) 0.812271 0.0387235
\(441\) 0 0
\(442\) −5.93291 −0.282200
\(443\) 24.6321 1.17031 0.585154 0.810923i \(-0.301034\pi\)
0.585154 + 0.810923i \(0.301034\pi\)
\(444\) 0 0
\(445\) 1.27875 0.0606188
\(446\) −3.72555 −0.176410
\(447\) 0 0
\(448\) −16.3421 −0.772090
\(449\) 0.271967 0.0128349 0.00641746 0.999979i \(-0.497957\pi\)
0.00641746 + 0.999979i \(0.497957\pi\)
\(450\) 0 0
\(451\) 6.47966 0.305115
\(452\) 3.04212 0.143089
\(453\) 0 0
\(454\) −3.89021 −0.182577
\(455\) −10.0469 −0.471004
\(456\) 0 0
\(457\) −26.6203 −1.24524 −0.622622 0.782523i \(-0.713933\pi\)
−0.622622 + 0.782523i \(0.713933\pi\)
\(458\) 3.34797 0.156440
\(459\) 0 0
\(460\) 16.1507 0.753030
\(461\) −18.5239 −0.862742 −0.431371 0.902175i \(-0.641970\pi\)
−0.431371 + 0.902175i \(0.641970\pi\)
\(462\) 0 0
\(463\) 14.9154 0.693178 0.346589 0.938017i \(-0.387340\pi\)
0.346589 + 0.938017i \(0.387340\pi\)
\(464\) −11.3355 −0.526236
\(465\) 0 0
\(466\) −4.71725 −0.218522
\(467\) −24.4100 −1.12956 −0.564780 0.825242i \(-0.691039\pi\)
−0.564780 + 0.825242i \(0.691039\pi\)
\(468\) 0 0
\(469\) 31.0184 1.43230
\(470\) −1.67383 −0.0772080
\(471\) 0 0
\(472\) 3.78421 0.174182
\(473\) 1.64130 0.0754672
\(474\) 0 0
\(475\) −1.00000 −0.0458831
\(476\) 30.6448 1.40460
\(477\) 0 0
\(478\) −3.54621 −0.162200
\(479\) −12.0531 −0.550722 −0.275361 0.961341i \(-0.588797\pi\)
−0.275361 + 0.961341i \(0.588797\pi\)
\(480\) 0 0
\(481\) 21.8139 0.994626
\(482\) −2.75540 −0.125505
\(483\) 0 0
\(484\) −1.95788 −0.0889946
\(485\) 14.9748 0.679971
\(486\) 0 0
\(487\) 27.5058 1.24641 0.623204 0.782059i \(-0.285831\pi\)
0.623204 + 0.782059i \(0.285831\pi\)
\(488\) 7.25944 0.328620
\(489\) 0 0
\(490\) 0.320225 0.0144663
\(491\) −33.0788 −1.49283 −0.746413 0.665483i \(-0.768226\pi\)
−0.746413 + 0.665483i \(0.768226\pi\)
\(492\) 0 0
\(493\) 20.2909 0.913858
\(494\) −0.884062 −0.0397758
\(495\) 0 0
\(496\) −38.2692 −1.71834
\(497\) 20.4511 0.917356
\(498\) 0 0
\(499\) 9.58033 0.428874 0.214437 0.976738i \(-0.431208\pi\)
0.214437 + 0.976738i \(0.431208\pi\)
\(500\) −1.95788 −0.0875591
\(501\) 0 0
\(502\) 0.247141 0.0110305
\(503\) −16.0390 −0.715142 −0.357571 0.933886i \(-0.616395\pi\)
−0.357571 + 0.933886i \(0.616395\pi\)
\(504\) 0 0
\(505\) −0.465796 −0.0207276
\(506\) 1.69295 0.0752606
\(507\) 0 0
\(508\) 13.6162 0.604121
\(509\) −11.7844 −0.522334 −0.261167 0.965294i \(-0.584107\pi\)
−0.261167 + 0.965294i \(0.584107\pi\)
\(510\) 0 0
\(511\) −6.21884 −0.275105
\(512\) −15.0656 −0.665811
\(513\) 0 0
\(514\) −3.51994 −0.155258
\(515\) 12.7767 0.563008
\(516\) 0 0
\(517\) 8.15593 0.358697
\(518\) 2.42389 0.106499
\(519\) 0 0
\(520\) −3.49901 −0.153442
\(521\) 7.41167 0.324711 0.162356 0.986732i \(-0.448091\pi\)
0.162356 + 0.986732i \(0.448091\pi\)
\(522\) 0 0
\(523\) 5.89974 0.257977 0.128989 0.991646i \(-0.458827\pi\)
0.128989 + 0.991646i \(0.458827\pi\)
\(524\) −24.1884 −1.05667
\(525\) 0 0
\(526\) 1.35648 0.0591455
\(527\) 68.5034 2.98406
\(528\) 0 0
\(529\) 45.0472 1.95857
\(530\) −0.483709 −0.0210110
\(531\) 0 0
\(532\) 4.56638 0.197978
\(533\) −27.9123 −1.20902
\(534\) 0 0
\(535\) −3.81929 −0.165122
\(536\) 10.8027 0.466608
\(537\) 0 0
\(538\) −0.586388 −0.0252810
\(539\) −1.56033 −0.0672083
\(540\) 0 0
\(541\) 23.5417 1.01214 0.506068 0.862493i \(-0.331098\pi\)
0.506068 + 0.862493i \(0.331098\pi\)
\(542\) 0.263205 0.0113056
\(543\) 0 0
\(544\) 16.0658 0.688814
\(545\) 9.14480 0.391720
\(546\) 0 0
\(547\) 1.63464 0.0698923 0.0349461 0.999389i \(-0.488874\pi\)
0.0349461 + 0.999389i \(0.488874\pi\)
\(548\) −10.0802 −0.430604
\(549\) 0 0
\(550\) −0.205229 −0.00875098
\(551\) 3.02355 0.128808
\(552\) 0 0
\(553\) −28.2784 −1.20252
\(554\) −3.33481 −0.141683
\(555\) 0 0
\(556\) 12.6488 0.536428
\(557\) 9.30739 0.394367 0.197183 0.980367i \(-0.436821\pi\)
0.197183 + 0.980367i \(0.436821\pi\)
\(558\) 0 0
\(559\) −7.07023 −0.299039
\(560\) 8.74397 0.369500
\(561\) 0 0
\(562\) −6.04856 −0.255143
\(563\) 1.61027 0.0678646 0.0339323 0.999424i \(-0.489197\pi\)
0.0339323 + 0.999424i \(0.489197\pi\)
\(564\) 0 0
\(565\) −1.55378 −0.0653681
\(566\) 6.75218 0.283815
\(567\) 0 0
\(568\) 7.12247 0.298852
\(569\) 17.0331 0.714064 0.357032 0.934092i \(-0.383789\pi\)
0.357032 + 0.934092i \(0.383789\pi\)
\(570\) 0 0
\(571\) −5.32472 −0.222833 −0.111416 0.993774i \(-0.535539\pi\)
−0.111416 + 0.993774i \(0.535539\pi\)
\(572\) 8.43395 0.352641
\(573\) 0 0
\(574\) −3.10153 −0.129455
\(575\) −8.24907 −0.344010
\(576\) 0 0
\(577\) −12.6976 −0.528608 −0.264304 0.964439i \(-0.585142\pi\)
−0.264304 + 0.964439i \(0.585142\pi\)
\(578\) −5.75401 −0.239335
\(579\) 0 0
\(580\) 5.91975 0.245804
\(581\) 41.6717 1.72883
\(582\) 0 0
\(583\) 2.35693 0.0976140
\(584\) −2.16583 −0.0896226
\(585\) 0 0
\(586\) 5.74032 0.237131
\(587\) 28.4780 1.17541 0.587707 0.809074i \(-0.300031\pi\)
0.587707 + 0.809074i \(0.300031\pi\)
\(588\) 0 0
\(589\) 10.2077 0.420600
\(590\) −0.956120 −0.0393628
\(591\) 0 0
\(592\) −18.9850 −0.780279
\(593\) 34.7604 1.42744 0.713719 0.700433i \(-0.247010\pi\)
0.713719 + 0.700433i \(0.247010\pi\)
\(594\) 0 0
\(595\) −15.6520 −0.641671
\(596\) 2.46169 0.100835
\(597\) 0 0
\(598\) −7.29269 −0.298220
\(599\) −28.1663 −1.15084 −0.575422 0.817857i \(-0.695162\pi\)
−0.575422 + 0.817857i \(0.695162\pi\)
\(600\) 0 0
\(601\) 35.3257 1.44097 0.720484 0.693472i \(-0.243920\pi\)
0.720484 + 0.693472i \(0.243920\pi\)
\(602\) −0.785621 −0.0320195
\(603\) 0 0
\(604\) 6.83061 0.277934
\(605\) 1.00000 0.0406558
\(606\) 0 0
\(607\) −20.4938 −0.831816 −0.415908 0.909407i \(-0.636536\pi\)
−0.415908 + 0.909407i \(0.636536\pi\)
\(608\) 2.39396 0.0970878
\(609\) 0 0
\(610\) −1.83417 −0.0742635
\(611\) −35.1332 −1.42134
\(612\) 0 0
\(613\) −2.87465 −0.116106 −0.0580530 0.998314i \(-0.518489\pi\)
−0.0580530 + 0.998314i \(0.518489\pi\)
\(614\) 0.160702 0.00648540
\(615\) 0 0
\(616\) 1.89447 0.0763302
\(617\) −13.0363 −0.524820 −0.262410 0.964956i \(-0.584517\pi\)
−0.262410 + 0.964956i \(0.584517\pi\)
\(618\) 0 0
\(619\) −36.8449 −1.48092 −0.740461 0.672099i \(-0.765393\pi\)
−0.740461 + 0.672099i \(0.765393\pi\)
\(620\) 19.9854 0.802635
\(621\) 0 0
\(622\) −2.06136 −0.0826530
\(623\) 2.98245 0.119489
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0.370981 0.0148274
\(627\) 0 0
\(628\) −12.4177 −0.495520
\(629\) 33.9839 1.35503
\(630\) 0 0
\(631\) −31.5517 −1.25605 −0.628026 0.778192i \(-0.716137\pi\)
−0.628026 + 0.778192i \(0.716137\pi\)
\(632\) −9.84849 −0.391752
\(633\) 0 0
\(634\) 2.93117 0.116412
\(635\) −6.95455 −0.275983
\(636\) 0 0
\(637\) 6.72143 0.266313
\(638\) 0.620519 0.0245666
\(639\) 0 0
\(640\) 6.22591 0.246101
\(641\) 13.4739 0.532188 0.266094 0.963947i \(-0.414267\pi\)
0.266094 + 0.963947i \(0.414267\pi\)
\(642\) 0 0
\(643\) −25.9686 −1.02410 −0.512051 0.858955i \(-0.671114\pi\)
−0.512051 + 0.858955i \(0.671114\pi\)
\(644\) 37.6684 1.48434
\(645\) 0 0
\(646\) −1.37728 −0.0541885
\(647\) 48.7918 1.91820 0.959101 0.283063i \(-0.0913505\pi\)
0.959101 + 0.283063i \(0.0913505\pi\)
\(648\) 0 0
\(649\) 4.65880 0.182874
\(650\) 0.884062 0.0346757
\(651\) 0 0
\(652\) 45.9252 1.79857
\(653\) −5.61760 −0.219834 −0.109917 0.993941i \(-0.535058\pi\)
−0.109917 + 0.993941i \(0.535058\pi\)
\(654\) 0 0
\(655\) 12.3544 0.482725
\(656\) 24.2926 0.948468
\(657\) 0 0
\(658\) −3.90389 −0.152189
\(659\) 8.87841 0.345854 0.172927 0.984935i \(-0.444678\pi\)
0.172927 + 0.984935i \(0.444678\pi\)
\(660\) 0 0
\(661\) −19.6584 −0.764625 −0.382312 0.924033i \(-0.624872\pi\)
−0.382312 + 0.924033i \(0.624872\pi\)
\(662\) 2.97573 0.115655
\(663\) 0 0
\(664\) 14.5130 0.563212
\(665\) −2.33231 −0.0904431
\(666\) 0 0
\(667\) 24.9415 0.965738
\(668\) 13.1345 0.508190
\(669\) 0 0
\(670\) −2.72943 −0.105447
\(671\) 8.93722 0.345018
\(672\) 0 0
\(673\) −14.2191 −0.548106 −0.274053 0.961715i \(-0.588364\pi\)
−0.274053 + 0.961715i \(0.588364\pi\)
\(674\) −3.49487 −0.134618
\(675\) 0 0
\(676\) −10.8784 −0.418399
\(677\) −51.0566 −1.96226 −0.981132 0.193339i \(-0.938068\pi\)
−0.981132 + 0.193339i \(0.938068\pi\)
\(678\) 0 0
\(679\) 34.9259 1.34033
\(680\) −5.45112 −0.209041
\(681\) 0 0
\(682\) 2.09491 0.0802183
\(683\) 36.1772 1.38428 0.692142 0.721762i \(-0.256667\pi\)
0.692142 + 0.721762i \(0.256667\pi\)
\(684\) 0 0
\(685\) 5.14851 0.196715
\(686\) 4.09746 0.156442
\(687\) 0 0
\(688\) 6.15335 0.234594
\(689\) −10.1529 −0.386795
\(690\) 0 0
\(691\) 44.3403 1.68678 0.843392 0.537299i \(-0.180555\pi\)
0.843392 + 0.537299i \(0.180555\pi\)
\(692\) −16.0301 −0.609374
\(693\) 0 0
\(694\) −2.56308 −0.0972932
\(695\) −6.46045 −0.245059
\(696\) 0 0
\(697\) −43.4847 −1.64710
\(698\) 4.29918 0.162726
\(699\) 0 0
\(700\) −4.56638 −0.172593
\(701\) 19.4759 0.735594 0.367797 0.929906i \(-0.380112\pi\)
0.367797 + 0.929906i \(0.380112\pi\)
\(702\) 0 0
\(703\) 5.06393 0.190990
\(704\) −7.00681 −0.264079
\(705\) 0 0
\(706\) −2.33193 −0.0877632
\(707\) −1.08638 −0.0408575
\(708\) 0 0
\(709\) 34.6294 1.30053 0.650266 0.759706i \(-0.274657\pi\)
0.650266 + 0.759706i \(0.274657\pi\)
\(710\) −1.79957 −0.0675365
\(711\) 0 0
\(712\) 1.03870 0.0389268
\(713\) 84.2039 3.15346
\(714\) 0 0
\(715\) −4.30769 −0.161098
\(716\) −25.5106 −0.953376
\(717\) 0 0
\(718\) −0.738612 −0.0275648
\(719\) 38.7823 1.44633 0.723167 0.690673i \(-0.242686\pi\)
0.723167 + 0.690673i \(0.242686\pi\)
\(720\) 0 0
\(721\) 29.7992 1.10978
\(722\) −0.205229 −0.00763782
\(723\) 0 0
\(724\) 26.6781 0.991485
\(725\) −3.02355 −0.112292
\(726\) 0 0
\(727\) −11.1719 −0.414343 −0.207171 0.978305i \(-0.566426\pi\)
−0.207171 + 0.978305i \(0.566426\pi\)
\(728\) −8.16077 −0.302458
\(729\) 0 0
\(730\) 0.547219 0.0202535
\(731\) −11.0147 −0.407395
\(732\) 0 0
\(733\) −34.8431 −1.28696 −0.643479 0.765464i \(-0.722510\pi\)
−0.643479 + 0.765464i \(0.722510\pi\)
\(734\) −4.68581 −0.172956
\(735\) 0 0
\(736\) 19.7479 0.727918
\(737\) 13.2994 0.489891
\(738\) 0 0
\(739\) 32.1054 1.18102 0.590508 0.807032i \(-0.298928\pi\)
0.590508 + 0.807032i \(0.298928\pi\)
\(740\) 9.91458 0.364467
\(741\) 0 0
\(742\) −1.12816 −0.0414161
\(743\) 27.4635 1.00754 0.503769 0.863838i \(-0.331946\pi\)
0.503769 + 0.863838i \(0.331946\pi\)
\(744\) 0 0
\(745\) −1.25732 −0.0460647
\(746\) 2.99579 0.109684
\(747\) 0 0
\(748\) 13.1393 0.480419
\(749\) −8.90776 −0.325483
\(750\) 0 0
\(751\) −13.0173 −0.475007 −0.237504 0.971387i \(-0.576329\pi\)
−0.237504 + 0.971387i \(0.576329\pi\)
\(752\) 30.5771 1.11503
\(753\) 0 0
\(754\) −2.67300 −0.0973451
\(755\) −3.48878 −0.126970
\(756\) 0 0
\(757\) 7.87306 0.286151 0.143076 0.989712i \(-0.454301\pi\)
0.143076 + 0.989712i \(0.454301\pi\)
\(758\) −2.43619 −0.0884864
\(759\) 0 0
\(760\) −0.812271 −0.0294642
\(761\) −49.9368 −1.81021 −0.905104 0.425189i \(-0.860208\pi\)
−0.905104 + 0.425189i \(0.860208\pi\)
\(762\) 0 0
\(763\) 21.3285 0.772144
\(764\) 5.63753 0.203959
\(765\) 0 0
\(766\) 2.58764 0.0934953
\(767\) −20.0687 −0.724638
\(768\) 0 0
\(769\) 20.1374 0.726173 0.363086 0.931755i \(-0.381723\pi\)
0.363086 + 0.931755i \(0.381723\pi\)
\(770\) −0.478657 −0.0172496
\(771\) 0 0
\(772\) −45.6322 −1.64234
\(773\) −6.99436 −0.251570 −0.125785 0.992058i \(-0.540145\pi\)
−0.125785 + 0.992058i \(0.540145\pi\)
\(774\) 0 0
\(775\) −10.2077 −0.366671
\(776\) 12.1636 0.436648
\(777\) 0 0
\(778\) 7.26129 0.260330
\(779\) −6.47966 −0.232158
\(780\) 0 0
\(781\) 8.76859 0.313765
\(782\) −11.3613 −0.406279
\(783\) 0 0
\(784\) −5.84979 −0.208921
\(785\) 6.34241 0.226370
\(786\) 0 0
\(787\) 49.1498 1.75200 0.876000 0.482311i \(-0.160203\pi\)
0.876000 + 0.482311i \(0.160203\pi\)
\(788\) −42.0768 −1.49892
\(789\) 0 0
\(790\) 2.48832 0.0885306
\(791\) −3.62390 −0.128851
\(792\) 0 0
\(793\) −38.4988 −1.36713
\(794\) 0.750831 0.0266460
\(795\) 0 0
\(796\) 23.2190 0.822974
\(797\) −29.6783 −1.05126 −0.525630 0.850713i \(-0.676170\pi\)
−0.525630 + 0.850713i \(0.676170\pi\)
\(798\) 0 0
\(799\) −54.7341 −1.93635
\(800\) −2.39396 −0.0846391
\(801\) 0 0
\(802\) 1.60224 0.0565769
\(803\) −2.66639 −0.0940947
\(804\) 0 0
\(805\) −19.2394 −0.678099
\(806\) −9.02422 −0.317865
\(807\) 0 0
\(808\) −0.378352 −0.0133104
\(809\) −11.9905 −0.421562 −0.210781 0.977533i \(-0.567601\pi\)
−0.210781 + 0.977533i \(0.567601\pi\)
\(810\) 0 0
\(811\) −17.0389 −0.598318 −0.299159 0.954203i \(-0.596706\pi\)
−0.299159 + 0.954203i \(0.596706\pi\)
\(812\) 13.8067 0.484520
\(813\) 0 0
\(814\) 1.03926 0.0364262
\(815\) −23.4566 −0.821648
\(816\) 0 0
\(817\) −1.64130 −0.0574220
\(818\) −3.82087 −0.133594
\(819\) 0 0
\(820\) −12.6864 −0.443028
\(821\) 4.91990 0.171706 0.0858529 0.996308i \(-0.472638\pi\)
0.0858529 + 0.996308i \(0.472638\pi\)
\(822\) 0 0
\(823\) 14.9864 0.522392 0.261196 0.965286i \(-0.415883\pi\)
0.261196 + 0.965286i \(0.415883\pi\)
\(824\) 10.3781 0.361539
\(825\) 0 0
\(826\) −2.22997 −0.0775905
\(827\) −18.0947 −0.629213 −0.314607 0.949222i \(-0.601873\pi\)
−0.314607 + 0.949222i \(0.601873\pi\)
\(828\) 0 0
\(829\) −20.2361 −0.702827 −0.351414 0.936220i \(-0.614299\pi\)
−0.351414 + 0.936220i \(0.614299\pi\)
\(830\) −3.66685 −0.127278
\(831\) 0 0
\(832\) 30.1832 1.04641
\(833\) 10.4713 0.362810
\(834\) 0 0
\(835\) −6.70854 −0.232159
\(836\) 1.95788 0.0677147
\(837\) 0 0
\(838\) 0.894919 0.0309145
\(839\) 11.4706 0.396008 0.198004 0.980201i \(-0.436554\pi\)
0.198004 + 0.980201i \(0.436554\pi\)
\(840\) 0 0
\(841\) −19.8581 −0.684764
\(842\) −2.83318 −0.0976377
\(843\) 0 0
\(844\) 24.0367 0.827376
\(845\) 5.55619 0.191139
\(846\) 0 0
\(847\) 2.33231 0.0801391
\(848\) 8.83627 0.303439
\(849\) 0 0
\(850\) 1.37728 0.0472404
\(851\) 41.7727 1.43195
\(852\) 0 0
\(853\) −48.1136 −1.64738 −0.823690 0.567040i \(-0.808088\pi\)
−0.823690 + 0.567040i \(0.808088\pi\)
\(854\) −4.27786 −0.146385
\(855\) 0 0
\(856\) −3.10230 −0.106034
\(857\) −16.5752 −0.566197 −0.283099 0.959091i \(-0.591362\pi\)
−0.283099 + 0.959091i \(0.591362\pi\)
\(858\) 0 0
\(859\) −8.14570 −0.277928 −0.138964 0.990297i \(-0.544377\pi\)
−0.138964 + 0.990297i \(0.544377\pi\)
\(860\) −3.21348 −0.109579
\(861\) 0 0
\(862\) −4.58109 −0.156032
\(863\) 2.28140 0.0776597 0.0388298 0.999246i \(-0.487637\pi\)
0.0388298 + 0.999246i \(0.487637\pi\)
\(864\) 0 0
\(865\) 8.18749 0.278383
\(866\) 6.67582 0.226853
\(867\) 0 0
\(868\) 46.6122 1.58212
\(869\) −12.1246 −0.411300
\(870\) 0 0
\(871\) −57.2899 −1.94119
\(872\) 7.42805 0.251546
\(873\) 0 0
\(874\) −1.69295 −0.0572647
\(875\) 2.33231 0.0788464
\(876\) 0 0
\(877\) 31.4497 1.06198 0.530991 0.847378i \(-0.321820\pi\)
0.530991 + 0.847378i \(0.321820\pi\)
\(878\) 2.39822 0.0809360
\(879\) 0 0
\(880\) 3.74906 0.126381
\(881\) 29.6609 0.999301 0.499651 0.866227i \(-0.333462\pi\)
0.499651 + 0.866227i \(0.333462\pi\)
\(882\) 0 0
\(883\) 44.7897 1.50729 0.753647 0.657279i \(-0.228293\pi\)
0.753647 + 0.657279i \(0.228293\pi\)
\(884\) −56.5999 −1.90366
\(885\) 0 0
\(886\) −5.05522 −0.169833
\(887\) 51.6475 1.73415 0.867077 0.498175i \(-0.165996\pi\)
0.867077 + 0.498175i \(0.165996\pi\)
\(888\) 0 0
\(889\) −16.2202 −0.544007
\(890\) −0.262437 −0.00879692
\(891\) 0 0
\(892\) −35.5417 −1.19003
\(893\) −8.15593 −0.272928
\(894\) 0 0
\(895\) 13.0297 0.435535
\(896\) 14.5208 0.485104
\(897\) 0 0
\(898\) −0.0558154 −0.00186258
\(899\) 30.8635 1.02935
\(900\) 0 0
\(901\) −15.8173 −0.526949
\(902\) −1.32981 −0.0442779
\(903\) 0 0
\(904\) −1.26209 −0.0419765
\(905\) −13.6260 −0.452945
\(906\) 0 0
\(907\) 24.5110 0.813874 0.406937 0.913456i \(-0.366597\pi\)
0.406937 + 0.913456i \(0.366597\pi\)
\(908\) −37.1126 −1.23163
\(909\) 0 0
\(910\) 2.06190 0.0683515
\(911\) −50.0214 −1.65728 −0.828641 0.559781i \(-0.810885\pi\)
−0.828641 + 0.559781i \(0.810885\pi\)
\(912\) 0 0
\(913\) 17.8672 0.591316
\(914\) 5.46324 0.180708
\(915\) 0 0
\(916\) 31.9396 1.05532
\(917\) 28.8142 0.951529
\(918\) 0 0
\(919\) −30.0880 −0.992511 −0.496255 0.868177i \(-0.665292\pi\)
−0.496255 + 0.868177i \(0.665292\pi\)
\(920\) −6.70048 −0.220908
\(921\) 0 0
\(922\) 3.80163 0.125200
\(923\) −37.7724 −1.24329
\(924\) 0 0
\(925\) −5.06393 −0.166501
\(926\) −3.06107 −0.100593
\(927\) 0 0
\(928\) 7.23825 0.237607
\(929\) −13.6447 −0.447669 −0.223834 0.974627i \(-0.571857\pi\)
−0.223834 + 0.974627i \(0.571857\pi\)
\(930\) 0 0
\(931\) 1.56033 0.0511379
\(932\) −45.0026 −1.47411
\(933\) 0 0
\(934\) 5.00963 0.163920
\(935\) −6.71096 −0.219472
\(936\) 0 0
\(937\) 18.1311 0.592318 0.296159 0.955139i \(-0.404294\pi\)
0.296159 + 0.955139i \(0.404294\pi\)
\(938\) −6.36587 −0.207853
\(939\) 0 0
\(940\) −15.9683 −0.520830
\(941\) 48.2974 1.57445 0.787224 0.616667i \(-0.211517\pi\)
0.787224 + 0.616667i \(0.211517\pi\)
\(942\) 0 0
\(943\) −53.4511 −1.74061
\(944\) 17.4661 0.568474
\(945\) 0 0
\(946\) −0.336843 −0.0109517
\(947\) −14.7816 −0.480337 −0.240169 0.970731i \(-0.577203\pi\)
−0.240169 + 0.970731i \(0.577203\pi\)
\(948\) 0 0
\(949\) 11.4860 0.372850
\(950\) 0.205229 0.00665850
\(951\) 0 0
\(952\) −12.7137 −0.412053
\(953\) 16.9908 0.550387 0.275193 0.961389i \(-0.411258\pi\)
0.275193 + 0.961389i \(0.411258\pi\)
\(954\) 0 0
\(955\) −2.87940 −0.0931752
\(956\) −33.8309 −1.09417
\(957\) 0 0
\(958\) 2.47365 0.0799200
\(959\) 12.0079 0.387756
\(960\) 0 0
\(961\) 73.1969 2.36119
\(962\) −4.47683 −0.144339
\(963\) 0 0
\(964\) −26.2865 −0.846630
\(965\) 23.3069 0.750276
\(966\) 0 0
\(967\) −27.7887 −0.893626 −0.446813 0.894627i \(-0.647441\pi\)
−0.446813 + 0.894627i \(0.647441\pi\)
\(968\) 0.812271 0.0261074
\(969\) 0 0
\(970\) −3.07326 −0.0986764
\(971\) −24.0365 −0.771367 −0.385683 0.922631i \(-0.626034\pi\)
−0.385683 + 0.922631i \(0.626034\pi\)
\(972\) 0 0
\(973\) −15.0678 −0.483051
\(974\) −5.64499 −0.180877
\(975\) 0 0
\(976\) 33.5062 1.07251
\(977\) 13.6409 0.436412 0.218206 0.975903i \(-0.429980\pi\)
0.218206 + 0.975903i \(0.429980\pi\)
\(978\) 0 0
\(979\) 1.27875 0.0408692
\(980\) 3.05495 0.0975867
\(981\) 0 0
\(982\) 6.78872 0.216637
\(983\) −7.81613 −0.249296 −0.124648 0.992201i \(-0.539780\pi\)
−0.124648 + 0.992201i \(0.539780\pi\)
\(984\) 0 0
\(985\) 21.4910 0.684760
\(986\) −4.16428 −0.132618
\(987\) 0 0
\(988\) −8.43395 −0.268320
\(989\) −13.5392 −0.430522
\(990\) 0 0
\(991\) −44.7494 −1.42151 −0.710756 0.703439i \(-0.751647\pi\)
−0.710756 + 0.703439i \(0.751647\pi\)
\(992\) 24.4368 0.775868
\(993\) 0 0
\(994\) −4.19714 −0.133125
\(995\) −11.8592 −0.375963
\(996\) 0 0
\(997\) 31.3614 0.993227 0.496613 0.867972i \(-0.334577\pi\)
0.496613 + 0.867972i \(0.334577\pi\)
\(998\) −1.96616 −0.0622376
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9405.2.a.z.1.3 6
3.2 odd 2 1045.2.a.f.1.4 6
15.14 odd 2 5225.2.a.l.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1045.2.a.f.1.4 6 3.2 odd 2
5225.2.a.l.1.3 6 15.14 odd 2
9405.2.a.z.1.3 6 1.1 even 1 trivial