Properties

Label 9405.2.a.z.1.2
Level $9405$
Weight $2$
Character 9405.1
Self dual yes
Analytic conductor $75.099$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9405,2,Mod(1,9405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9405, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9405.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9405 = 3^{2} \cdot 5 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9405.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.0993031010\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.7281497.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 5x^{4} + 7x^{3} + 6x^{2} - 2x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1045)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.59744\) of defining polynomial
Character \(\chi\) \(=\) 9405.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.21244 q^{2} -0.529980 q^{4} +1.00000 q^{5} -3.37010 q^{7} +3.06746 q^{8} +O(q^{10})\) \(q-1.21244 q^{2} -0.529980 q^{4} +1.00000 q^{5} -3.37010 q^{7} +3.06746 q^{8} -1.21244 q^{10} +1.00000 q^{11} -0.439786 q^{13} +4.08605 q^{14} -2.65916 q^{16} +3.08872 q^{17} -1.00000 q^{19} -0.529980 q^{20} -1.21244 q^{22} -1.45571 q^{23} +1.00000 q^{25} +0.533216 q^{26} +1.78608 q^{28} -5.85137 q^{29} -6.80721 q^{31} -2.91083 q^{32} -3.74490 q^{34} -3.37010 q^{35} -2.73402 q^{37} +1.21244 q^{38} +3.06746 q^{40} +3.67980 q^{41} +4.59330 q^{43} -0.529980 q^{44} +1.76497 q^{46} -0.210971 q^{47} +4.35755 q^{49} -1.21244 q^{50} +0.233078 q^{52} -5.17998 q^{53} +1.00000 q^{55} -10.3376 q^{56} +7.09446 q^{58} +10.8732 q^{59} -5.66286 q^{61} +8.25336 q^{62} +8.84754 q^{64} -0.439786 q^{65} +6.14764 q^{67} -1.63696 q^{68} +4.08605 q^{70} +7.15175 q^{71} +4.15351 q^{73} +3.31484 q^{74} +0.529980 q^{76} -3.37010 q^{77} +15.4881 q^{79} -2.65916 q^{80} -4.46155 q^{82} -3.35537 q^{83} +3.08872 q^{85} -5.56911 q^{86} +3.06746 q^{88} +6.26557 q^{89} +1.48212 q^{91} +0.771498 q^{92} +0.255791 q^{94} -1.00000 q^{95} -6.70633 q^{97} -5.28329 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} + 4 q^{4} + 6 q^{5} + 5 q^{7} + 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 2 q^{2} + 4 q^{4} + 6 q^{5} + 5 q^{7} + 12 q^{8} + 2 q^{10} + 6 q^{11} - 5 q^{13} + 8 q^{14} + 4 q^{16} - q^{17} - 6 q^{19} + 4 q^{20} + 2 q^{22} - 4 q^{23} + 6 q^{25} + 14 q^{26} + 10 q^{28} + 9 q^{29} - 21 q^{31} + q^{32} + 5 q^{35} - 3 q^{37} - 2 q^{38} + 12 q^{40} + 23 q^{41} + 7 q^{43} + 4 q^{44} - 12 q^{46} + 18 q^{47} - 3 q^{49} + 2 q^{50} + 13 q^{52} + 17 q^{53} + 6 q^{55} + 2 q^{56} + 23 q^{58} + 29 q^{59} + 17 q^{61} - 2 q^{62} - 18 q^{64} - 5 q^{65} + 8 q^{67} + q^{68} + 8 q^{70} + 12 q^{71} + 2 q^{73} + 37 q^{74} - 4 q^{76} + 5 q^{77} + 3 q^{79} + 4 q^{80} + 24 q^{82} + 11 q^{83} - q^{85} + 12 q^{86} + 12 q^{88} + 22 q^{89} - 18 q^{91} + 15 q^{92} + 22 q^{94} - 6 q^{95} - 2 q^{97} + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.21244 −0.857327 −0.428664 0.903464i \(-0.641015\pi\)
−0.428664 + 0.903464i \(0.641015\pi\)
\(3\) 0 0
\(4\) −0.529980 −0.264990
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −3.37010 −1.27378 −0.636888 0.770956i \(-0.719779\pi\)
−0.636888 + 0.770956i \(0.719779\pi\)
\(8\) 3.06746 1.08451
\(9\) 0 0
\(10\) −1.21244 −0.383408
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −0.439786 −0.121975 −0.0609873 0.998139i \(-0.519425\pi\)
−0.0609873 + 0.998139i \(0.519425\pi\)
\(14\) 4.08605 1.09204
\(15\) 0 0
\(16\) −2.65916 −0.664790
\(17\) 3.08872 0.749125 0.374563 0.927202i \(-0.377793\pi\)
0.374563 + 0.927202i \(0.377793\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) −0.529980 −0.118507
\(21\) 0 0
\(22\) −1.21244 −0.258494
\(23\) −1.45571 −0.303537 −0.151768 0.988416i \(-0.548497\pi\)
−0.151768 + 0.988416i \(0.548497\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0.533216 0.104572
\(27\) 0 0
\(28\) 1.78608 0.337538
\(29\) −5.85137 −1.08657 −0.543286 0.839548i \(-0.682820\pi\)
−0.543286 + 0.839548i \(0.682820\pi\)
\(30\) 0 0
\(31\) −6.80721 −1.22261 −0.611306 0.791394i \(-0.709355\pi\)
−0.611306 + 0.791394i \(0.709355\pi\)
\(32\) −2.91083 −0.514567
\(33\) 0 0
\(34\) −3.74490 −0.642245
\(35\) −3.37010 −0.569650
\(36\) 0 0
\(37\) −2.73402 −0.449470 −0.224735 0.974420i \(-0.572152\pi\)
−0.224735 + 0.974420i \(0.572152\pi\)
\(38\) 1.21244 0.196684
\(39\) 0 0
\(40\) 3.06746 0.485008
\(41\) 3.67980 0.574687 0.287344 0.957828i \(-0.407228\pi\)
0.287344 + 0.957828i \(0.407228\pi\)
\(42\) 0 0
\(43\) 4.59330 0.700471 0.350236 0.936662i \(-0.386102\pi\)
0.350236 + 0.936662i \(0.386102\pi\)
\(44\) −0.529980 −0.0798975
\(45\) 0 0
\(46\) 1.76497 0.260230
\(47\) −0.210971 −0.0307733 −0.0153867 0.999882i \(-0.504898\pi\)
−0.0153867 + 0.999882i \(0.504898\pi\)
\(48\) 0 0
\(49\) 4.35755 0.622507
\(50\) −1.21244 −0.171465
\(51\) 0 0
\(52\) 0.233078 0.0323221
\(53\) −5.17998 −0.711525 −0.355762 0.934576i \(-0.615779\pi\)
−0.355762 + 0.934576i \(0.615779\pi\)
\(54\) 0 0
\(55\) 1.00000 0.134840
\(56\) −10.3376 −1.38142
\(57\) 0 0
\(58\) 7.09446 0.931548
\(59\) 10.8732 1.41557 0.707785 0.706428i \(-0.249695\pi\)
0.707785 + 0.706428i \(0.249695\pi\)
\(60\) 0 0
\(61\) −5.66286 −0.725055 −0.362527 0.931973i \(-0.618086\pi\)
−0.362527 + 0.931973i \(0.618086\pi\)
\(62\) 8.25336 1.04818
\(63\) 0 0
\(64\) 8.84754 1.10594
\(65\) −0.439786 −0.0545487
\(66\) 0 0
\(67\) 6.14764 0.751054 0.375527 0.926811i \(-0.377462\pi\)
0.375527 + 0.926811i \(0.377462\pi\)
\(68\) −1.63696 −0.198511
\(69\) 0 0
\(70\) 4.08605 0.488377
\(71\) 7.15175 0.848756 0.424378 0.905485i \(-0.360493\pi\)
0.424378 + 0.905485i \(0.360493\pi\)
\(72\) 0 0
\(73\) 4.15351 0.486132 0.243066 0.970010i \(-0.421847\pi\)
0.243066 + 0.970010i \(0.421847\pi\)
\(74\) 3.31484 0.385343
\(75\) 0 0
\(76\) 0.529980 0.0607929
\(77\) −3.37010 −0.384058
\(78\) 0 0
\(79\) 15.4881 1.74254 0.871272 0.490800i \(-0.163295\pi\)
0.871272 + 0.490800i \(0.163295\pi\)
\(80\) −2.65916 −0.297303
\(81\) 0 0
\(82\) −4.46155 −0.492695
\(83\) −3.35537 −0.368299 −0.184150 0.982898i \(-0.558953\pi\)
−0.184150 + 0.982898i \(0.558953\pi\)
\(84\) 0 0
\(85\) 3.08872 0.335019
\(86\) −5.56911 −0.600533
\(87\) 0 0
\(88\) 3.06746 0.326992
\(89\) 6.26557 0.664149 0.332075 0.943253i \(-0.392251\pi\)
0.332075 + 0.943253i \(0.392251\pi\)
\(90\) 0 0
\(91\) 1.48212 0.155368
\(92\) 0.771498 0.0804342
\(93\) 0 0
\(94\) 0.255791 0.0263828
\(95\) −1.00000 −0.102598
\(96\) 0 0
\(97\) −6.70633 −0.680924 −0.340462 0.940258i \(-0.610584\pi\)
−0.340462 + 0.940258i \(0.610584\pi\)
\(98\) −5.28329 −0.533692
\(99\) 0 0
\(100\) −0.529980 −0.0529980
\(101\) −19.2123 −1.91169 −0.955846 0.293868i \(-0.905057\pi\)
−0.955846 + 0.293868i \(0.905057\pi\)
\(102\) 0 0
\(103\) −15.0086 −1.47884 −0.739418 0.673246i \(-0.764899\pi\)
−0.739418 + 0.673246i \(0.764899\pi\)
\(104\) −1.34902 −0.132283
\(105\) 0 0
\(106\) 6.28043 0.610010
\(107\) 7.63909 0.738499 0.369250 0.929330i \(-0.379615\pi\)
0.369250 + 0.929330i \(0.379615\pi\)
\(108\) 0 0
\(109\) 0.0458556 0.00439217 0.00219609 0.999998i \(-0.499301\pi\)
0.00219609 + 0.999998i \(0.499301\pi\)
\(110\) −1.21244 −0.115602
\(111\) 0 0
\(112\) 8.96163 0.846795
\(113\) −8.43432 −0.793434 −0.396717 0.917941i \(-0.629851\pi\)
−0.396717 + 0.917941i \(0.629851\pi\)
\(114\) 0 0
\(115\) −1.45571 −0.135746
\(116\) 3.10111 0.287931
\(117\) 0 0
\(118\) −13.1831 −1.21361
\(119\) −10.4093 −0.954218
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 6.86590 0.621609
\(123\) 0 0
\(124\) 3.60769 0.323980
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 1.50239 0.133316 0.0666579 0.997776i \(-0.478766\pi\)
0.0666579 + 0.997776i \(0.478766\pi\)
\(128\) −4.90548 −0.433588
\(129\) 0 0
\(130\) 0.533216 0.0467661
\(131\) 0.608483 0.0531634 0.0265817 0.999647i \(-0.491538\pi\)
0.0265817 + 0.999647i \(0.491538\pi\)
\(132\) 0 0
\(133\) 3.37010 0.292224
\(134\) −7.45367 −0.643899
\(135\) 0 0
\(136\) 9.47453 0.812434
\(137\) 21.4534 1.83289 0.916443 0.400166i \(-0.131047\pi\)
0.916443 + 0.400166i \(0.131047\pi\)
\(138\) 0 0
\(139\) −8.85639 −0.751189 −0.375595 0.926784i \(-0.622561\pi\)
−0.375595 + 0.926784i \(0.622561\pi\)
\(140\) 1.78608 0.150952
\(141\) 0 0
\(142\) −8.67109 −0.727662
\(143\) −0.439786 −0.0367767
\(144\) 0 0
\(145\) −5.85137 −0.485930
\(146\) −5.03590 −0.416774
\(147\) 0 0
\(148\) 1.44898 0.119105
\(149\) 2.25215 0.184503 0.0922515 0.995736i \(-0.470594\pi\)
0.0922515 + 0.995736i \(0.470594\pi\)
\(150\) 0 0
\(151\) −17.3616 −1.41286 −0.706432 0.707781i \(-0.749696\pi\)
−0.706432 + 0.707781i \(0.749696\pi\)
\(152\) −3.06746 −0.248804
\(153\) 0 0
\(154\) 4.08605 0.329264
\(155\) −6.80721 −0.546769
\(156\) 0 0
\(157\) −3.75886 −0.299990 −0.149995 0.988687i \(-0.547926\pi\)
−0.149995 + 0.988687i \(0.547926\pi\)
\(158\) −18.7784 −1.49393
\(159\) 0 0
\(160\) −2.91083 −0.230122
\(161\) 4.90589 0.386638
\(162\) 0 0
\(163\) −11.8435 −0.927655 −0.463828 0.885925i \(-0.653524\pi\)
−0.463828 + 0.885925i \(0.653524\pi\)
\(164\) −1.95022 −0.152286
\(165\) 0 0
\(166\) 4.06819 0.315753
\(167\) −6.33806 −0.490454 −0.245227 0.969466i \(-0.578863\pi\)
−0.245227 + 0.969466i \(0.578863\pi\)
\(168\) 0 0
\(169\) −12.8066 −0.985122
\(170\) −3.74490 −0.287221
\(171\) 0 0
\(172\) −2.43436 −0.185618
\(173\) 8.21796 0.624800 0.312400 0.949951i \(-0.398867\pi\)
0.312400 + 0.949951i \(0.398867\pi\)
\(174\) 0 0
\(175\) −3.37010 −0.254755
\(176\) −2.65916 −0.200442
\(177\) 0 0
\(178\) −7.59665 −0.569393
\(179\) −11.2448 −0.840476 −0.420238 0.907414i \(-0.638053\pi\)
−0.420238 + 0.907414i \(0.638053\pi\)
\(180\) 0 0
\(181\) 8.27670 0.615202 0.307601 0.951515i \(-0.400474\pi\)
0.307601 + 0.951515i \(0.400474\pi\)
\(182\) −1.79699 −0.133202
\(183\) 0 0
\(184\) −4.46533 −0.329189
\(185\) −2.73402 −0.201009
\(186\) 0 0
\(187\) 3.08872 0.225870
\(188\) 0.111811 0.00815462
\(189\) 0 0
\(190\) 1.21244 0.0879599
\(191\) −3.21777 −0.232830 −0.116415 0.993201i \(-0.537140\pi\)
−0.116415 + 0.993201i \(0.537140\pi\)
\(192\) 0 0
\(193\) 19.0447 1.37087 0.685433 0.728136i \(-0.259613\pi\)
0.685433 + 0.728136i \(0.259613\pi\)
\(194\) 8.13104 0.583775
\(195\) 0 0
\(196\) −2.30941 −0.164958
\(197\) −2.04266 −0.145534 −0.0727668 0.997349i \(-0.523183\pi\)
−0.0727668 + 0.997349i \(0.523183\pi\)
\(198\) 0 0
\(199\) 4.61202 0.326937 0.163469 0.986549i \(-0.447732\pi\)
0.163469 + 0.986549i \(0.447732\pi\)
\(200\) 3.06746 0.216902
\(201\) 0 0
\(202\) 23.2938 1.63895
\(203\) 19.7197 1.38405
\(204\) 0 0
\(205\) 3.67980 0.257008
\(206\) 18.1970 1.26785
\(207\) 0 0
\(208\) 1.16946 0.0810876
\(209\) −1.00000 −0.0691714
\(210\) 0 0
\(211\) −16.5102 −1.13661 −0.568303 0.822819i \(-0.692400\pi\)
−0.568303 + 0.822819i \(0.692400\pi\)
\(212\) 2.74528 0.188547
\(213\) 0 0
\(214\) −9.26197 −0.633135
\(215\) 4.59330 0.313260
\(216\) 0 0
\(217\) 22.9410 1.55733
\(218\) −0.0555973 −0.00376553
\(219\) 0 0
\(220\) −0.529980 −0.0357312
\(221\) −1.35838 −0.0913742
\(222\) 0 0
\(223\) 3.43650 0.230125 0.115062 0.993358i \(-0.463293\pi\)
0.115062 + 0.993358i \(0.463293\pi\)
\(224\) 9.80979 0.655444
\(225\) 0 0
\(226\) 10.2261 0.680233
\(227\) 9.66762 0.641663 0.320831 0.947136i \(-0.396038\pi\)
0.320831 + 0.947136i \(0.396038\pi\)
\(228\) 0 0
\(229\) 11.7897 0.779084 0.389542 0.921009i \(-0.372633\pi\)
0.389542 + 0.921009i \(0.372633\pi\)
\(230\) 1.76497 0.116379
\(231\) 0 0
\(232\) −17.9488 −1.17840
\(233\) −2.00908 −0.131619 −0.0658097 0.997832i \(-0.520963\pi\)
−0.0658097 + 0.997832i \(0.520963\pi\)
\(234\) 0 0
\(235\) −0.210971 −0.0137622
\(236\) −5.76258 −0.375112
\(237\) 0 0
\(238\) 12.6207 0.818077
\(239\) 6.36104 0.411461 0.205731 0.978609i \(-0.434043\pi\)
0.205731 + 0.978609i \(0.434043\pi\)
\(240\) 0 0
\(241\) −28.3775 −1.82796 −0.913978 0.405763i \(-0.867006\pi\)
−0.913978 + 0.405763i \(0.867006\pi\)
\(242\) −1.21244 −0.0779388
\(243\) 0 0
\(244\) 3.00120 0.192132
\(245\) 4.35755 0.278394
\(246\) 0 0
\(247\) 0.439786 0.0279829
\(248\) −20.8808 −1.32594
\(249\) 0 0
\(250\) −1.21244 −0.0766817
\(251\) 17.7932 1.12310 0.561550 0.827443i \(-0.310205\pi\)
0.561550 + 0.827443i \(0.310205\pi\)
\(252\) 0 0
\(253\) −1.45571 −0.0915198
\(254\) −1.82157 −0.114295
\(255\) 0 0
\(256\) −11.7475 −0.734217
\(257\) 22.5168 1.40456 0.702279 0.711902i \(-0.252166\pi\)
0.702279 + 0.711902i \(0.252166\pi\)
\(258\) 0 0
\(259\) 9.21391 0.572524
\(260\) 0.233078 0.0144549
\(261\) 0 0
\(262\) −0.737751 −0.0455784
\(263\) 5.74826 0.354453 0.177226 0.984170i \(-0.443288\pi\)
0.177226 + 0.984170i \(0.443288\pi\)
\(264\) 0 0
\(265\) −5.17998 −0.318204
\(266\) −4.08605 −0.250532
\(267\) 0 0
\(268\) −3.25813 −0.199022
\(269\) 5.69265 0.347087 0.173544 0.984826i \(-0.444478\pi\)
0.173544 + 0.984826i \(0.444478\pi\)
\(270\) 0 0
\(271\) −16.0881 −0.977282 −0.488641 0.872485i \(-0.662507\pi\)
−0.488641 + 0.872485i \(0.662507\pi\)
\(272\) −8.21341 −0.498011
\(273\) 0 0
\(274\) −26.0110 −1.57138
\(275\) 1.00000 0.0603023
\(276\) 0 0
\(277\) −3.44717 −0.207120 −0.103560 0.994623i \(-0.533023\pi\)
−0.103560 + 0.994623i \(0.533023\pi\)
\(278\) 10.7379 0.644015
\(279\) 0 0
\(280\) −10.3376 −0.617792
\(281\) 8.74423 0.521637 0.260819 0.965388i \(-0.416008\pi\)
0.260819 + 0.965388i \(0.416008\pi\)
\(282\) 0 0
\(283\) 30.1987 1.79513 0.897564 0.440885i \(-0.145335\pi\)
0.897564 + 0.440885i \(0.145335\pi\)
\(284\) −3.79028 −0.224912
\(285\) 0 0
\(286\) 0.533216 0.0315297
\(287\) −12.4013 −0.732024
\(288\) 0 0
\(289\) −7.45980 −0.438812
\(290\) 7.09446 0.416601
\(291\) 0 0
\(292\) −2.20128 −0.128820
\(293\) 11.1213 0.649714 0.324857 0.945763i \(-0.394684\pi\)
0.324857 + 0.945763i \(0.394684\pi\)
\(294\) 0 0
\(295\) 10.8732 0.633062
\(296\) −8.38649 −0.487455
\(297\) 0 0
\(298\) −2.73060 −0.158179
\(299\) 0.640201 0.0370238
\(300\) 0 0
\(301\) −15.4799 −0.892244
\(302\) 21.0499 1.21129
\(303\) 0 0
\(304\) 2.65916 0.152513
\(305\) −5.66286 −0.324254
\(306\) 0 0
\(307\) 24.8969 1.42094 0.710469 0.703728i \(-0.248483\pi\)
0.710469 + 0.703728i \(0.248483\pi\)
\(308\) 1.78608 0.101772
\(309\) 0 0
\(310\) 8.25336 0.468760
\(311\) −9.24020 −0.523963 −0.261982 0.965073i \(-0.584376\pi\)
−0.261982 + 0.965073i \(0.584376\pi\)
\(312\) 0 0
\(313\) −14.8438 −0.839021 −0.419511 0.907750i \(-0.637798\pi\)
−0.419511 + 0.907750i \(0.637798\pi\)
\(314\) 4.55740 0.257189
\(315\) 0 0
\(316\) −8.20837 −0.461757
\(317\) −33.8110 −1.89902 −0.949509 0.313740i \(-0.898418\pi\)
−0.949509 + 0.313740i \(0.898418\pi\)
\(318\) 0 0
\(319\) −5.85137 −0.327614
\(320\) 8.84754 0.494593
\(321\) 0 0
\(322\) −5.94811 −0.331475
\(323\) −3.08872 −0.171861
\(324\) 0 0
\(325\) −0.439786 −0.0243949
\(326\) 14.3596 0.795304
\(327\) 0 0
\(328\) 11.2876 0.623255
\(329\) 0.710993 0.0391983
\(330\) 0 0
\(331\) 11.5116 0.632737 0.316369 0.948636i \(-0.397536\pi\)
0.316369 + 0.948636i \(0.397536\pi\)
\(332\) 1.77828 0.0975956
\(333\) 0 0
\(334\) 7.68455 0.420480
\(335\) 6.14764 0.335882
\(336\) 0 0
\(337\) 25.3591 1.38140 0.690698 0.723143i \(-0.257303\pi\)
0.690698 + 0.723143i \(0.257303\pi\)
\(338\) 15.5273 0.844572
\(339\) 0 0
\(340\) −1.63696 −0.0887766
\(341\) −6.80721 −0.368631
\(342\) 0 0
\(343\) 8.90531 0.480841
\(344\) 14.0897 0.759668
\(345\) 0 0
\(346\) −9.96382 −0.535658
\(347\) 9.66755 0.518982 0.259491 0.965746i \(-0.416445\pi\)
0.259491 + 0.965746i \(0.416445\pi\)
\(348\) 0 0
\(349\) 30.9349 1.65591 0.827953 0.560797i \(-0.189505\pi\)
0.827953 + 0.560797i \(0.189505\pi\)
\(350\) 4.08605 0.218409
\(351\) 0 0
\(352\) −2.91083 −0.155148
\(353\) −10.9128 −0.580830 −0.290415 0.956901i \(-0.593793\pi\)
−0.290415 + 0.956901i \(0.593793\pi\)
\(354\) 0 0
\(355\) 7.15175 0.379575
\(356\) −3.32063 −0.175993
\(357\) 0 0
\(358\) 13.6337 0.720563
\(359\) 29.0146 1.53133 0.765667 0.643237i \(-0.222409\pi\)
0.765667 + 0.643237i \(0.222409\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −10.0350 −0.527429
\(363\) 0 0
\(364\) −0.785494 −0.0411711
\(365\) 4.15351 0.217405
\(366\) 0 0
\(367\) 21.1172 1.10231 0.551154 0.834404i \(-0.314188\pi\)
0.551154 + 0.834404i \(0.314188\pi\)
\(368\) 3.87097 0.201788
\(369\) 0 0
\(370\) 3.31484 0.172331
\(371\) 17.4570 0.906324
\(372\) 0 0
\(373\) 24.3430 1.26043 0.630215 0.776421i \(-0.282967\pi\)
0.630215 + 0.776421i \(0.282967\pi\)
\(374\) −3.74490 −0.193644
\(375\) 0 0
\(376\) −0.647146 −0.0333740
\(377\) 2.57335 0.132534
\(378\) 0 0
\(379\) 12.5458 0.644433 0.322216 0.946666i \(-0.395572\pi\)
0.322216 + 0.946666i \(0.395572\pi\)
\(380\) 0.529980 0.0271874
\(381\) 0 0
\(382\) 3.90137 0.199611
\(383\) −8.27908 −0.423041 −0.211521 0.977374i \(-0.567842\pi\)
−0.211521 + 0.977374i \(0.567842\pi\)
\(384\) 0 0
\(385\) −3.37010 −0.171756
\(386\) −23.0906 −1.17528
\(387\) 0 0
\(388\) 3.55422 0.180438
\(389\) 7.91740 0.401428 0.200714 0.979650i \(-0.435674\pi\)
0.200714 + 0.979650i \(0.435674\pi\)
\(390\) 0 0
\(391\) −4.49629 −0.227387
\(392\) 13.3666 0.675116
\(393\) 0 0
\(394\) 2.47661 0.124770
\(395\) 15.4881 0.779290
\(396\) 0 0
\(397\) −24.3775 −1.22347 −0.611737 0.791062i \(-0.709529\pi\)
−0.611737 + 0.791062i \(0.709529\pi\)
\(398\) −5.59181 −0.280292
\(399\) 0 0
\(400\) −2.65916 −0.132958
\(401\) −32.6120 −1.62857 −0.814283 0.580469i \(-0.802869\pi\)
−0.814283 + 0.580469i \(0.802869\pi\)
\(402\) 0 0
\(403\) 2.99372 0.149128
\(404\) 10.1821 0.506579
\(405\) 0 0
\(406\) −23.9090 −1.18658
\(407\) −2.73402 −0.135520
\(408\) 0 0
\(409\) −36.7429 −1.81682 −0.908409 0.418083i \(-0.862702\pi\)
−0.908409 + 0.418083i \(0.862702\pi\)
\(410\) −4.46155 −0.220340
\(411\) 0 0
\(412\) 7.95423 0.391877
\(413\) −36.6437 −1.80312
\(414\) 0 0
\(415\) −3.35537 −0.164708
\(416\) 1.28014 0.0627642
\(417\) 0 0
\(418\) 1.21244 0.0593026
\(419\) 20.7229 1.01238 0.506191 0.862422i \(-0.331053\pi\)
0.506191 + 0.862422i \(0.331053\pi\)
\(420\) 0 0
\(421\) −23.3391 −1.13748 −0.568738 0.822518i \(-0.692568\pi\)
−0.568738 + 0.822518i \(0.692568\pi\)
\(422\) 20.0176 0.974443
\(423\) 0 0
\(424\) −15.8894 −0.771656
\(425\) 3.08872 0.149825
\(426\) 0 0
\(427\) 19.0844 0.923558
\(428\) −4.04857 −0.195695
\(429\) 0 0
\(430\) −5.56911 −0.268567
\(431\) −2.35724 −0.113544 −0.0567721 0.998387i \(-0.518081\pi\)
−0.0567721 + 0.998387i \(0.518081\pi\)
\(432\) 0 0
\(433\) 37.3199 1.79348 0.896741 0.442555i \(-0.145928\pi\)
0.896741 + 0.442555i \(0.145928\pi\)
\(434\) −27.8146 −1.33515
\(435\) 0 0
\(436\) −0.0243026 −0.00116388
\(437\) 1.45571 0.0696361
\(438\) 0 0
\(439\) 26.3625 1.25821 0.629106 0.777320i \(-0.283421\pi\)
0.629106 + 0.777320i \(0.283421\pi\)
\(440\) 3.06746 0.146235
\(441\) 0 0
\(442\) 1.64695 0.0783376
\(443\) 7.31633 0.347609 0.173805 0.984780i \(-0.444394\pi\)
0.173805 + 0.984780i \(0.444394\pi\)
\(444\) 0 0
\(445\) 6.26557 0.297017
\(446\) −4.16656 −0.197292
\(447\) 0 0
\(448\) −29.8171 −1.40872
\(449\) 0.872582 0.0411797 0.0205898 0.999788i \(-0.493446\pi\)
0.0205898 + 0.999788i \(0.493446\pi\)
\(450\) 0 0
\(451\) 3.67980 0.173275
\(452\) 4.47002 0.210252
\(453\) 0 0
\(454\) −11.7215 −0.550115
\(455\) 1.48212 0.0694829
\(456\) 0 0
\(457\) −2.04749 −0.0957774 −0.0478887 0.998853i \(-0.515249\pi\)
−0.0478887 + 0.998853i \(0.515249\pi\)
\(458\) −14.2943 −0.667930
\(459\) 0 0
\(460\) 0.771498 0.0359713
\(461\) −26.6538 −1.24139 −0.620695 0.784052i \(-0.713149\pi\)
−0.620695 + 0.784052i \(0.713149\pi\)
\(462\) 0 0
\(463\) −19.5335 −0.907798 −0.453899 0.891053i \(-0.649967\pi\)
−0.453899 + 0.891053i \(0.649967\pi\)
\(464\) 15.5597 0.722343
\(465\) 0 0
\(466\) 2.43590 0.112841
\(467\) 29.3029 1.35598 0.677988 0.735073i \(-0.262852\pi\)
0.677988 + 0.735073i \(0.262852\pi\)
\(468\) 0 0
\(469\) −20.7182 −0.956675
\(470\) 0.255791 0.0117987
\(471\) 0 0
\(472\) 33.3531 1.53520
\(473\) 4.59330 0.211200
\(474\) 0 0
\(475\) −1.00000 −0.0458831
\(476\) 5.51671 0.252858
\(477\) 0 0
\(478\) −7.71240 −0.352757
\(479\) 0.965639 0.0441212 0.0220606 0.999757i \(-0.492977\pi\)
0.0220606 + 0.999757i \(0.492977\pi\)
\(480\) 0 0
\(481\) 1.20238 0.0548239
\(482\) 34.4061 1.56716
\(483\) 0 0
\(484\) −0.529980 −0.0240900
\(485\) −6.70633 −0.304519
\(486\) 0 0
\(487\) −3.36125 −0.152313 −0.0761564 0.997096i \(-0.524265\pi\)
−0.0761564 + 0.997096i \(0.524265\pi\)
\(488\) −17.3706 −0.786329
\(489\) 0 0
\(490\) −5.28329 −0.238675
\(491\) 32.5832 1.47046 0.735230 0.677818i \(-0.237074\pi\)
0.735230 + 0.677818i \(0.237074\pi\)
\(492\) 0 0
\(493\) −18.0733 −0.813978
\(494\) −0.533216 −0.0239905
\(495\) 0 0
\(496\) 18.1015 0.812780
\(497\) −24.1021 −1.08113
\(498\) 0 0
\(499\) 7.53868 0.337477 0.168739 0.985661i \(-0.446031\pi\)
0.168739 + 0.985661i \(0.446031\pi\)
\(500\) −0.529980 −0.0237014
\(501\) 0 0
\(502\) −21.5733 −0.962864
\(503\) 9.02729 0.402507 0.201254 0.979539i \(-0.435498\pi\)
0.201254 + 0.979539i \(0.435498\pi\)
\(504\) 0 0
\(505\) −19.2123 −0.854935
\(506\) 1.76497 0.0784624
\(507\) 0 0
\(508\) −0.796238 −0.0353273
\(509\) 20.8922 0.926031 0.463015 0.886350i \(-0.346767\pi\)
0.463015 + 0.886350i \(0.346767\pi\)
\(510\) 0 0
\(511\) −13.9977 −0.619223
\(512\) 24.0541 1.06305
\(513\) 0 0
\(514\) −27.3003 −1.20417
\(515\) −15.0086 −0.661356
\(516\) 0 0
\(517\) −0.210971 −0.00927850
\(518\) −11.1713 −0.490841
\(519\) 0 0
\(520\) −1.34902 −0.0591586
\(521\) 43.6640 1.91296 0.956478 0.291803i \(-0.0942553\pi\)
0.956478 + 0.291803i \(0.0942553\pi\)
\(522\) 0 0
\(523\) 26.4677 1.15735 0.578675 0.815558i \(-0.303570\pi\)
0.578675 + 0.815558i \(0.303570\pi\)
\(524\) −0.322484 −0.0140878
\(525\) 0 0
\(526\) −6.96944 −0.303882
\(527\) −21.0256 −0.915889
\(528\) 0 0
\(529\) −20.8809 −0.907865
\(530\) 6.28043 0.272805
\(531\) 0 0
\(532\) −1.78608 −0.0774365
\(533\) −1.61832 −0.0700973
\(534\) 0 0
\(535\) 7.63909 0.330267
\(536\) 18.8576 0.814526
\(537\) 0 0
\(538\) −6.90202 −0.297567
\(539\) 4.35755 0.187693
\(540\) 0 0
\(541\) −1.04162 −0.0447829 −0.0223915 0.999749i \(-0.507128\pi\)
−0.0223915 + 0.999749i \(0.507128\pi\)
\(542\) 19.5059 0.837851
\(543\) 0 0
\(544\) −8.99075 −0.385475
\(545\) 0.0458556 0.00196424
\(546\) 0 0
\(547\) −5.27609 −0.225589 −0.112795 0.993618i \(-0.535980\pi\)
−0.112795 + 0.993618i \(0.535980\pi\)
\(548\) −11.3699 −0.485696
\(549\) 0 0
\(550\) −1.21244 −0.0516988
\(551\) 5.85137 0.249277
\(552\) 0 0
\(553\) −52.1963 −2.21961
\(554\) 4.17949 0.177570
\(555\) 0 0
\(556\) 4.69371 0.199058
\(557\) 12.9219 0.547517 0.273759 0.961798i \(-0.411733\pi\)
0.273759 + 0.961798i \(0.411733\pi\)
\(558\) 0 0
\(559\) −2.02007 −0.0854397
\(560\) 8.96163 0.378698
\(561\) 0 0
\(562\) −10.6019 −0.447214
\(563\) 8.76657 0.369467 0.184733 0.982789i \(-0.440858\pi\)
0.184733 + 0.982789i \(0.440858\pi\)
\(564\) 0 0
\(565\) −8.43432 −0.354834
\(566\) −36.6142 −1.53901
\(567\) 0 0
\(568\) 21.9377 0.920485
\(569\) 14.7828 0.619726 0.309863 0.950781i \(-0.399717\pi\)
0.309863 + 0.950781i \(0.399717\pi\)
\(570\) 0 0
\(571\) 22.6278 0.946943 0.473472 0.880809i \(-0.343001\pi\)
0.473472 + 0.880809i \(0.343001\pi\)
\(572\) 0.233078 0.00974547
\(573\) 0 0
\(574\) 15.0358 0.627584
\(575\) −1.45571 −0.0607074
\(576\) 0 0
\(577\) 3.73371 0.155436 0.0777182 0.996975i \(-0.475237\pi\)
0.0777182 + 0.996975i \(0.475237\pi\)
\(578\) 9.04459 0.376205
\(579\) 0 0
\(580\) 3.10111 0.128767
\(581\) 11.3079 0.469131
\(582\) 0 0
\(583\) −5.17998 −0.214533
\(584\) 12.7407 0.527215
\(585\) 0 0
\(586\) −13.4840 −0.557018
\(587\) 19.6389 0.810584 0.405292 0.914187i \(-0.367170\pi\)
0.405292 + 0.914187i \(0.367170\pi\)
\(588\) 0 0
\(589\) 6.80721 0.280486
\(590\) −13.1831 −0.542741
\(591\) 0 0
\(592\) 7.27020 0.298803
\(593\) 32.8110 1.34739 0.673693 0.739011i \(-0.264707\pi\)
0.673693 + 0.739011i \(0.264707\pi\)
\(594\) 0 0
\(595\) −10.4093 −0.426739
\(596\) −1.19359 −0.0488914
\(597\) 0 0
\(598\) −0.776208 −0.0317415
\(599\) 41.5943 1.69950 0.849750 0.527187i \(-0.176753\pi\)
0.849750 + 0.527187i \(0.176753\pi\)
\(600\) 0 0
\(601\) −16.1727 −0.659698 −0.329849 0.944034i \(-0.606998\pi\)
−0.329849 + 0.944034i \(0.606998\pi\)
\(602\) 18.7685 0.764945
\(603\) 0 0
\(604\) 9.20127 0.374395
\(605\) 1.00000 0.0406558
\(606\) 0 0
\(607\) −14.9877 −0.608330 −0.304165 0.952619i \(-0.598377\pi\)
−0.304165 + 0.952619i \(0.598377\pi\)
\(608\) 2.91083 0.118050
\(609\) 0 0
\(610\) 6.86590 0.277992
\(611\) 0.0927821 0.00375356
\(612\) 0 0
\(613\) 19.1145 0.772027 0.386014 0.922493i \(-0.373852\pi\)
0.386014 + 0.922493i \(0.373852\pi\)
\(614\) −30.1860 −1.21821
\(615\) 0 0
\(616\) −10.3376 −0.416515
\(617\) 1.20030 0.0483223 0.0241612 0.999708i \(-0.492309\pi\)
0.0241612 + 0.999708i \(0.492309\pi\)
\(618\) 0 0
\(619\) −44.2783 −1.77969 −0.889847 0.456258i \(-0.849189\pi\)
−0.889847 + 0.456258i \(0.849189\pi\)
\(620\) 3.60769 0.144888
\(621\) 0 0
\(622\) 11.2032 0.449208
\(623\) −21.1156 −0.845978
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 17.9973 0.719316
\(627\) 0 0
\(628\) 1.99212 0.0794942
\(629\) −8.44462 −0.336709
\(630\) 0 0
\(631\) 7.76811 0.309244 0.154622 0.987974i \(-0.450584\pi\)
0.154622 + 0.987974i \(0.450584\pi\)
\(632\) 47.5090 1.88981
\(633\) 0 0
\(634\) 40.9940 1.62808
\(635\) 1.50239 0.0596206
\(636\) 0 0
\(637\) −1.91639 −0.0759301
\(638\) 7.09446 0.280872
\(639\) 0 0
\(640\) −4.90548 −0.193906
\(641\) −27.0513 −1.06846 −0.534231 0.845339i \(-0.679399\pi\)
−0.534231 + 0.845339i \(0.679399\pi\)
\(642\) 0 0
\(643\) −15.1507 −0.597485 −0.298742 0.954334i \(-0.596567\pi\)
−0.298742 + 0.954334i \(0.596567\pi\)
\(644\) −2.60002 −0.102455
\(645\) 0 0
\(646\) 3.74490 0.147341
\(647\) 22.7874 0.895866 0.447933 0.894067i \(-0.352160\pi\)
0.447933 + 0.894067i \(0.352160\pi\)
\(648\) 0 0
\(649\) 10.8732 0.426810
\(650\) 0.533216 0.0209144
\(651\) 0 0
\(652\) 6.27682 0.245819
\(653\) −36.1144 −1.41327 −0.706633 0.707580i \(-0.749787\pi\)
−0.706633 + 0.707580i \(0.749787\pi\)
\(654\) 0 0
\(655\) 0.608483 0.0237754
\(656\) −9.78517 −0.382047
\(657\) 0 0
\(658\) −0.862040 −0.0336058
\(659\) 5.96009 0.232172 0.116086 0.993239i \(-0.462965\pi\)
0.116086 + 0.993239i \(0.462965\pi\)
\(660\) 0 0
\(661\) 47.5667 1.85013 0.925065 0.379808i \(-0.124010\pi\)
0.925065 + 0.379808i \(0.124010\pi\)
\(662\) −13.9572 −0.542463
\(663\) 0 0
\(664\) −10.2924 −0.399425
\(665\) 3.37010 0.130687
\(666\) 0 0
\(667\) 8.51791 0.329815
\(668\) 3.35905 0.129965
\(669\) 0 0
\(670\) −7.45367 −0.287960
\(671\) −5.66286 −0.218612
\(672\) 0 0
\(673\) 23.3646 0.900639 0.450319 0.892868i \(-0.351310\pi\)
0.450319 + 0.892868i \(0.351310\pi\)
\(674\) −30.7465 −1.18431
\(675\) 0 0
\(676\) 6.78723 0.261047
\(677\) 22.7258 0.873423 0.436712 0.899602i \(-0.356143\pi\)
0.436712 + 0.899602i \(0.356143\pi\)
\(678\) 0 0
\(679\) 22.6010 0.867346
\(680\) 9.47453 0.363331
\(681\) 0 0
\(682\) 8.25336 0.316038
\(683\) 6.08405 0.232800 0.116400 0.993202i \(-0.462865\pi\)
0.116400 + 0.993202i \(0.462865\pi\)
\(684\) 0 0
\(685\) 21.4534 0.819691
\(686\) −10.7972 −0.412239
\(687\) 0 0
\(688\) −12.2143 −0.465667
\(689\) 2.27808 0.0867880
\(690\) 0 0
\(691\) 10.2313 0.389215 0.194608 0.980881i \(-0.437657\pi\)
0.194608 + 0.980881i \(0.437657\pi\)
\(692\) −4.35535 −0.165566
\(693\) 0 0
\(694\) −11.7214 −0.444937
\(695\) −8.85639 −0.335942
\(696\) 0 0
\(697\) 11.3659 0.430513
\(698\) −37.5068 −1.41965
\(699\) 0 0
\(700\) 1.78608 0.0675076
\(701\) −20.1154 −0.759749 −0.379875 0.925038i \(-0.624033\pi\)
−0.379875 + 0.925038i \(0.624033\pi\)
\(702\) 0 0
\(703\) 2.73402 0.103115
\(704\) 8.84754 0.333454
\(705\) 0 0
\(706\) 13.2312 0.497962
\(707\) 64.7472 2.43507
\(708\) 0 0
\(709\) −18.6469 −0.700301 −0.350150 0.936694i \(-0.613870\pi\)
−0.350150 + 0.936694i \(0.613870\pi\)
\(710\) −8.67109 −0.325420
\(711\) 0 0
\(712\) 19.2194 0.720277
\(713\) 9.90934 0.371108
\(714\) 0 0
\(715\) −0.439786 −0.0164471
\(716\) 5.95952 0.222718
\(717\) 0 0
\(718\) −35.1786 −1.31285
\(719\) 25.8776 0.965073 0.482537 0.875876i \(-0.339716\pi\)
0.482537 + 0.875876i \(0.339716\pi\)
\(720\) 0 0
\(721\) 50.5803 1.88371
\(722\) −1.21244 −0.0451225
\(723\) 0 0
\(724\) −4.38648 −0.163022
\(725\) −5.85137 −0.217314
\(726\) 0 0
\(727\) 48.1800 1.78690 0.893450 0.449164i \(-0.148278\pi\)
0.893450 + 0.449164i \(0.148278\pi\)
\(728\) 4.54634 0.168499
\(729\) 0 0
\(730\) −5.03590 −0.186387
\(731\) 14.1874 0.524741
\(732\) 0 0
\(733\) 5.47157 0.202097 0.101049 0.994881i \(-0.467780\pi\)
0.101049 + 0.994881i \(0.467780\pi\)
\(734\) −25.6034 −0.945038
\(735\) 0 0
\(736\) 4.23733 0.156190
\(737\) 6.14764 0.226451
\(738\) 0 0
\(739\) 11.0454 0.406311 0.203156 0.979146i \(-0.434880\pi\)
0.203156 + 0.979146i \(0.434880\pi\)
\(740\) 1.44898 0.0532654
\(741\) 0 0
\(742\) −21.1657 −0.777016
\(743\) 16.8303 0.617443 0.308721 0.951153i \(-0.400099\pi\)
0.308721 + 0.951153i \(0.400099\pi\)
\(744\) 0 0
\(745\) 2.25215 0.0825122
\(746\) −29.5145 −1.08060
\(747\) 0 0
\(748\) −1.63696 −0.0598532
\(749\) −25.7445 −0.940683
\(750\) 0 0
\(751\) −8.34710 −0.304590 −0.152295 0.988335i \(-0.548666\pi\)
−0.152295 + 0.988335i \(0.548666\pi\)
\(752\) 0.561007 0.0204578
\(753\) 0 0
\(754\) −3.12004 −0.113625
\(755\) −17.3616 −0.631852
\(756\) 0 0
\(757\) 2.18852 0.0795431 0.0397716 0.999209i \(-0.487337\pi\)
0.0397716 + 0.999209i \(0.487337\pi\)
\(758\) −15.2110 −0.552490
\(759\) 0 0
\(760\) −3.06746 −0.111268
\(761\) −33.4322 −1.21192 −0.605958 0.795496i \(-0.707210\pi\)
−0.605958 + 0.795496i \(0.707210\pi\)
\(762\) 0 0
\(763\) −0.154538 −0.00559464
\(764\) 1.70535 0.0616975
\(765\) 0 0
\(766\) 10.0379 0.362685
\(767\) −4.78188 −0.172664
\(768\) 0 0
\(769\) 35.7102 1.28774 0.643871 0.765134i \(-0.277327\pi\)
0.643871 + 0.765134i \(0.277327\pi\)
\(770\) 4.08605 0.147251
\(771\) 0 0
\(772\) −10.0933 −0.363266
\(773\) −12.1707 −0.437749 −0.218875 0.975753i \(-0.570239\pi\)
−0.218875 + 0.975753i \(0.570239\pi\)
\(774\) 0 0
\(775\) −6.80721 −0.244522
\(776\) −20.5714 −0.738469
\(777\) 0 0
\(778\) −9.59940 −0.344155
\(779\) −3.67980 −0.131842
\(780\) 0 0
\(781\) 7.15175 0.255910
\(782\) 5.45150 0.194945
\(783\) 0 0
\(784\) −11.5874 −0.413837
\(785\) −3.75886 −0.134159
\(786\) 0 0
\(787\) 47.9347 1.70869 0.854344 0.519707i \(-0.173959\pi\)
0.854344 + 0.519707i \(0.173959\pi\)
\(788\) 1.08257 0.0385649
\(789\) 0 0
\(790\) −18.7784 −0.668106
\(791\) 28.4245 1.01066
\(792\) 0 0
\(793\) 2.49044 0.0884383
\(794\) 29.5564 1.04892
\(795\) 0 0
\(796\) −2.44428 −0.0866351
\(797\) −50.1321 −1.77577 −0.887885 0.460066i \(-0.847826\pi\)
−0.887885 + 0.460066i \(0.847826\pi\)
\(798\) 0 0
\(799\) −0.651631 −0.0230531
\(800\) −2.91083 −0.102913
\(801\) 0 0
\(802\) 39.5402 1.39621
\(803\) 4.15351 0.146574
\(804\) 0 0
\(805\) 4.90589 0.172910
\(806\) −3.62971 −0.127851
\(807\) 0 0
\(808\) −58.9328 −2.07325
\(809\) 39.8704 1.40177 0.700884 0.713275i \(-0.252789\pi\)
0.700884 + 0.713275i \(0.252789\pi\)
\(810\) 0 0
\(811\) −54.0597 −1.89829 −0.949147 0.314835i \(-0.898051\pi\)
−0.949147 + 0.314835i \(0.898051\pi\)
\(812\) −10.4510 −0.366759
\(813\) 0 0
\(814\) 3.31484 0.116185
\(815\) −11.8435 −0.414860
\(816\) 0 0
\(817\) −4.59330 −0.160699
\(818\) 44.5487 1.55761
\(819\) 0 0
\(820\) −1.95022 −0.0681046
\(821\) −28.2714 −0.986677 −0.493339 0.869837i \(-0.664224\pi\)
−0.493339 + 0.869837i \(0.664224\pi\)
\(822\) 0 0
\(823\) −28.9439 −1.00892 −0.504461 0.863434i \(-0.668309\pi\)
−0.504461 + 0.863434i \(0.668309\pi\)
\(824\) −46.0381 −1.60381
\(825\) 0 0
\(826\) 44.4285 1.54586
\(827\) 6.79361 0.236237 0.118118 0.993000i \(-0.462314\pi\)
0.118118 + 0.993000i \(0.462314\pi\)
\(828\) 0 0
\(829\) 4.79089 0.166394 0.0831972 0.996533i \(-0.473487\pi\)
0.0831972 + 0.996533i \(0.473487\pi\)
\(830\) 4.06819 0.141209
\(831\) 0 0
\(832\) −3.89102 −0.134897
\(833\) 13.4593 0.466336
\(834\) 0 0
\(835\) −6.33806 −0.219338
\(836\) 0.529980 0.0183297
\(837\) 0 0
\(838\) −25.1254 −0.867942
\(839\) 46.8222 1.61648 0.808241 0.588852i \(-0.200420\pi\)
0.808241 + 0.588852i \(0.200420\pi\)
\(840\) 0 0
\(841\) 5.23853 0.180639
\(842\) 28.2973 0.975190
\(843\) 0 0
\(844\) 8.75005 0.301189
\(845\) −12.8066 −0.440560
\(846\) 0 0
\(847\) −3.37010 −0.115798
\(848\) 13.7744 0.473015
\(849\) 0 0
\(850\) −3.74490 −0.128449
\(851\) 3.97994 0.136431
\(852\) 0 0
\(853\) 4.99555 0.171044 0.0855222 0.996336i \(-0.472744\pi\)
0.0855222 + 0.996336i \(0.472744\pi\)
\(854\) −23.1387 −0.791791
\(855\) 0 0
\(856\) 23.4326 0.800910
\(857\) −3.32386 −0.113541 −0.0567705 0.998387i \(-0.518080\pi\)
−0.0567705 + 0.998387i \(0.518080\pi\)
\(858\) 0 0
\(859\) −32.5496 −1.11058 −0.555288 0.831658i \(-0.687392\pi\)
−0.555288 + 0.831658i \(0.687392\pi\)
\(860\) −2.43436 −0.0830108
\(861\) 0 0
\(862\) 2.85802 0.0973446
\(863\) −7.39803 −0.251832 −0.125916 0.992041i \(-0.540187\pi\)
−0.125916 + 0.992041i \(0.540187\pi\)
\(864\) 0 0
\(865\) 8.21796 0.279419
\(866\) −45.2483 −1.53760
\(867\) 0 0
\(868\) −12.1583 −0.412678
\(869\) 15.4881 0.525397
\(870\) 0 0
\(871\) −2.70365 −0.0916096
\(872\) 0.140660 0.00476335
\(873\) 0 0
\(874\) −1.76497 −0.0597009
\(875\) −3.37010 −0.113930
\(876\) 0 0
\(877\) 40.5912 1.37067 0.685333 0.728230i \(-0.259657\pi\)
0.685333 + 0.728230i \(0.259657\pi\)
\(878\) −31.9630 −1.07870
\(879\) 0 0
\(880\) −2.65916 −0.0896403
\(881\) −16.4133 −0.552978 −0.276489 0.961017i \(-0.589171\pi\)
−0.276489 + 0.961017i \(0.589171\pi\)
\(882\) 0 0
\(883\) 41.3719 1.39227 0.696137 0.717909i \(-0.254900\pi\)
0.696137 + 0.717909i \(0.254900\pi\)
\(884\) 0.719912 0.0242133
\(885\) 0 0
\(886\) −8.87064 −0.298015
\(887\) −11.9068 −0.399791 −0.199896 0.979817i \(-0.564060\pi\)
−0.199896 + 0.979817i \(0.564060\pi\)
\(888\) 0 0
\(889\) −5.06321 −0.169814
\(890\) −7.59665 −0.254640
\(891\) 0 0
\(892\) −1.82128 −0.0609808
\(893\) 0.210971 0.00705988
\(894\) 0 0
\(895\) −11.2448 −0.375872
\(896\) 16.5320 0.552294
\(897\) 0 0
\(898\) −1.05796 −0.0353045
\(899\) 39.8315 1.32846
\(900\) 0 0
\(901\) −15.9995 −0.533021
\(902\) −4.46155 −0.148553
\(903\) 0 0
\(904\) −25.8719 −0.860487
\(905\) 8.27670 0.275127
\(906\) 0 0
\(907\) −18.1787 −0.603614 −0.301807 0.953369i \(-0.597590\pi\)
−0.301807 + 0.953369i \(0.597590\pi\)
\(908\) −5.12365 −0.170034
\(909\) 0 0
\(910\) −1.79699 −0.0595696
\(911\) −32.5463 −1.07831 −0.539154 0.842207i \(-0.681256\pi\)
−0.539154 + 0.842207i \(0.681256\pi\)
\(912\) 0 0
\(913\) −3.35537 −0.111046
\(914\) 2.48246 0.0821125
\(915\) 0 0
\(916\) −6.24830 −0.206450
\(917\) −2.05065 −0.0677183
\(918\) 0 0
\(919\) −22.8963 −0.755280 −0.377640 0.925952i \(-0.623264\pi\)
−0.377640 + 0.925952i \(0.623264\pi\)
\(920\) −4.46533 −0.147218
\(921\) 0 0
\(922\) 32.3162 1.06428
\(923\) −3.14524 −0.103527
\(924\) 0 0
\(925\) −2.73402 −0.0898940
\(926\) 23.6832 0.778280
\(927\) 0 0
\(928\) 17.0324 0.559115
\(929\) 39.9363 1.31027 0.655135 0.755512i \(-0.272612\pi\)
0.655135 + 0.755512i \(0.272612\pi\)
\(930\) 0 0
\(931\) −4.35755 −0.142813
\(932\) 1.06477 0.0348778
\(933\) 0 0
\(934\) −35.5281 −1.16252
\(935\) 3.08872 0.101012
\(936\) 0 0
\(937\) 51.4680 1.68139 0.840693 0.541511i \(-0.182148\pi\)
0.840693 + 0.541511i \(0.182148\pi\)
\(938\) 25.1196 0.820184
\(939\) 0 0
\(940\) 0.111811 0.00364686
\(941\) −56.3979 −1.83852 −0.919259 0.393652i \(-0.871211\pi\)
−0.919259 + 0.393652i \(0.871211\pi\)
\(942\) 0 0
\(943\) −5.35672 −0.174439
\(944\) −28.9136 −0.941057
\(945\) 0 0
\(946\) −5.56911 −0.181068
\(947\) −26.6837 −0.867103 −0.433552 0.901129i \(-0.642740\pi\)
−0.433552 + 0.901129i \(0.642740\pi\)
\(948\) 0 0
\(949\) −1.82666 −0.0592957
\(950\) 1.21244 0.0393369
\(951\) 0 0
\(952\) −31.9301 −1.03486
\(953\) 14.9629 0.484695 0.242348 0.970190i \(-0.422083\pi\)
0.242348 + 0.970190i \(0.422083\pi\)
\(954\) 0 0
\(955\) −3.21777 −0.104125
\(956\) −3.37122 −0.109033
\(957\) 0 0
\(958\) −1.17078 −0.0378263
\(959\) −72.2999 −2.33469
\(960\) 0 0
\(961\) 15.3382 0.494779
\(962\) −1.45782 −0.0470021
\(963\) 0 0
\(964\) 15.0395 0.484390
\(965\) 19.0447 0.613070
\(966\) 0 0
\(967\) 19.7493 0.635094 0.317547 0.948242i \(-0.397141\pi\)
0.317547 + 0.948242i \(0.397141\pi\)
\(968\) 3.06746 0.0985919
\(969\) 0 0
\(970\) 8.13104 0.261072
\(971\) 53.2159 1.70778 0.853889 0.520455i \(-0.174238\pi\)
0.853889 + 0.520455i \(0.174238\pi\)
\(972\) 0 0
\(973\) 29.8469 0.956847
\(974\) 4.07533 0.130582
\(975\) 0 0
\(976\) 15.0585 0.482009
\(977\) 49.9728 1.59877 0.799385 0.600819i \(-0.205159\pi\)
0.799385 + 0.600819i \(0.205159\pi\)
\(978\) 0 0
\(979\) 6.26557 0.200249
\(980\) −2.30941 −0.0737715
\(981\) 0 0
\(982\) −39.5053 −1.26067
\(983\) −29.2283 −0.932239 −0.466119 0.884722i \(-0.654348\pi\)
−0.466119 + 0.884722i \(0.654348\pi\)
\(984\) 0 0
\(985\) −2.04266 −0.0650846
\(986\) 21.9128 0.697846
\(987\) 0 0
\(988\) −0.233078 −0.00741519
\(989\) −6.68651 −0.212619
\(990\) 0 0
\(991\) −7.92503 −0.251747 −0.125873 0.992046i \(-0.540173\pi\)
−0.125873 + 0.992046i \(0.540173\pi\)
\(992\) 19.8147 0.629116
\(993\) 0 0
\(994\) 29.2224 0.926879
\(995\) 4.61202 0.146211
\(996\) 0 0
\(997\) 11.9229 0.377601 0.188800 0.982015i \(-0.439540\pi\)
0.188800 + 0.982015i \(0.439540\pi\)
\(998\) −9.14022 −0.289329
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9405.2.a.z.1.2 6
3.2 odd 2 1045.2.a.f.1.5 6
15.14 odd 2 5225.2.a.l.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1045.2.a.f.1.5 6 3.2 odd 2
5225.2.a.l.1.2 6 15.14 odd 2
9405.2.a.z.1.2 6 1.1 even 1 trivial