Properties

Label 9405.2.a.z.1.1
Level $9405$
Weight $2$
Character 9405.1
Self dual yes
Analytic conductor $75.099$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9405,2,Mod(1,9405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9405, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9405.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9405 = 3^{2} \cdot 5 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9405.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.0993031010\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.7281497.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 5x^{4} + 7x^{3} + 6x^{2} - 2x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1045)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.326248\) of defining polynomial
Character \(\chi\) \(=\) 9405.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73890 q^{2} +1.02379 q^{4} +1.00000 q^{5} +2.22757 q^{7} +1.69754 q^{8} +O(q^{10})\) \(q-1.73890 q^{2} +1.02379 q^{4} +1.00000 q^{5} +2.22757 q^{7} +1.69754 q^{8} -1.73890 q^{10} +1.00000 q^{11} -3.64023 q^{13} -3.87353 q^{14} -4.99943 q^{16} -0.644551 q^{17} -1.00000 q^{19} +1.02379 q^{20} -1.73890 q^{22} +6.15983 q^{23} +1.00000 q^{25} +6.33001 q^{26} +2.28056 q^{28} +1.88204 q^{29} -0.183675 q^{31} +5.29846 q^{32} +1.12081 q^{34} +2.22757 q^{35} -4.11428 q^{37} +1.73890 q^{38} +1.69754 q^{40} +1.53371 q^{41} -1.53577 q^{43} +1.02379 q^{44} -10.7113 q^{46} -1.75837 q^{47} -2.03793 q^{49} -1.73890 q^{50} -3.72682 q^{52} +2.81491 q^{53} +1.00000 q^{55} +3.78139 q^{56} -3.27269 q^{58} +3.90068 q^{59} +0.734057 q^{61} +0.319392 q^{62} +0.785358 q^{64} -3.64023 q^{65} -1.30264 q^{67} -0.659883 q^{68} -3.87353 q^{70} -10.5493 q^{71} -5.17599 q^{73} +7.15433 q^{74} -1.02379 q^{76} +2.22757 q^{77} +2.89974 q^{79} -4.99943 q^{80} -2.66698 q^{82} -13.8209 q^{83} -0.644551 q^{85} +2.67055 q^{86} +1.69754 q^{88} +6.39884 q^{89} -8.10886 q^{91} +6.30635 q^{92} +3.05763 q^{94} -1.00000 q^{95} +6.23352 q^{97} +3.54376 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} + 4 q^{4} + 6 q^{5} + 5 q^{7} + 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 2 q^{2} + 4 q^{4} + 6 q^{5} + 5 q^{7} + 12 q^{8} + 2 q^{10} + 6 q^{11} - 5 q^{13} + 8 q^{14} + 4 q^{16} - q^{17} - 6 q^{19} + 4 q^{20} + 2 q^{22} - 4 q^{23} + 6 q^{25} + 14 q^{26} + 10 q^{28} + 9 q^{29} - 21 q^{31} + q^{32} + 5 q^{35} - 3 q^{37} - 2 q^{38} + 12 q^{40} + 23 q^{41} + 7 q^{43} + 4 q^{44} - 12 q^{46} + 18 q^{47} - 3 q^{49} + 2 q^{50} + 13 q^{52} + 17 q^{53} + 6 q^{55} + 2 q^{56} + 23 q^{58} + 29 q^{59} + 17 q^{61} - 2 q^{62} - 18 q^{64} - 5 q^{65} + 8 q^{67} + q^{68} + 8 q^{70} + 12 q^{71} + 2 q^{73} + 37 q^{74} - 4 q^{76} + 5 q^{77} + 3 q^{79} + 4 q^{80} + 24 q^{82} + 11 q^{83} - q^{85} + 12 q^{86} + 12 q^{88} + 22 q^{89} - 18 q^{91} + 15 q^{92} + 22 q^{94} - 6 q^{95} - 2 q^{97} + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.73890 −1.22959 −0.614795 0.788687i \(-0.710761\pi\)
−0.614795 + 0.788687i \(0.710761\pi\)
\(3\) 0 0
\(4\) 1.02379 0.511894
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 2.22757 0.841943 0.420971 0.907074i \(-0.361689\pi\)
0.420971 + 0.907074i \(0.361689\pi\)
\(8\) 1.69754 0.600171
\(9\) 0 0
\(10\) −1.73890 −0.549890
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −3.64023 −1.00962 −0.504809 0.863231i \(-0.668437\pi\)
−0.504809 + 0.863231i \(0.668437\pi\)
\(14\) −3.87353 −1.03525
\(15\) 0 0
\(16\) −4.99943 −1.24986
\(17\) −0.644551 −0.156327 −0.0781633 0.996941i \(-0.524906\pi\)
−0.0781633 + 0.996941i \(0.524906\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 1.02379 0.228926
\(21\) 0 0
\(22\) −1.73890 −0.370736
\(23\) 6.15983 1.28441 0.642206 0.766532i \(-0.278019\pi\)
0.642206 + 0.766532i \(0.278019\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 6.33001 1.24142
\(27\) 0 0
\(28\) 2.28056 0.430985
\(29\) 1.88204 0.349487 0.174743 0.984614i \(-0.444090\pi\)
0.174743 + 0.984614i \(0.444090\pi\)
\(30\) 0 0
\(31\) −0.183675 −0.0329889 −0.0164945 0.999864i \(-0.505251\pi\)
−0.0164945 + 0.999864i \(0.505251\pi\)
\(32\) 5.29846 0.936644
\(33\) 0 0
\(34\) 1.12081 0.192218
\(35\) 2.22757 0.376528
\(36\) 0 0
\(37\) −4.11428 −0.676383 −0.338192 0.941077i \(-0.609815\pi\)
−0.338192 + 0.941077i \(0.609815\pi\)
\(38\) 1.73890 0.282088
\(39\) 0 0
\(40\) 1.69754 0.268405
\(41\) 1.53371 0.239525 0.119763 0.992803i \(-0.461787\pi\)
0.119763 + 0.992803i \(0.461787\pi\)
\(42\) 0 0
\(43\) −1.53577 −0.234202 −0.117101 0.993120i \(-0.537360\pi\)
−0.117101 + 0.993120i \(0.537360\pi\)
\(44\) 1.02379 0.154342
\(45\) 0 0
\(46\) −10.7113 −1.57930
\(47\) −1.75837 −0.256484 −0.128242 0.991743i \(-0.540933\pi\)
−0.128242 + 0.991743i \(0.540933\pi\)
\(48\) 0 0
\(49\) −2.03793 −0.291133
\(50\) −1.73890 −0.245918
\(51\) 0 0
\(52\) −3.72682 −0.516817
\(53\) 2.81491 0.386658 0.193329 0.981134i \(-0.438071\pi\)
0.193329 + 0.981134i \(0.438071\pi\)
\(54\) 0 0
\(55\) 1.00000 0.134840
\(56\) 3.78139 0.505309
\(57\) 0 0
\(58\) −3.27269 −0.429726
\(59\) 3.90068 0.507825 0.253913 0.967227i \(-0.418282\pi\)
0.253913 + 0.967227i \(0.418282\pi\)
\(60\) 0 0
\(61\) 0.734057 0.0939863 0.0469932 0.998895i \(-0.485036\pi\)
0.0469932 + 0.998895i \(0.485036\pi\)
\(62\) 0.319392 0.0405629
\(63\) 0 0
\(64\) 0.785358 0.0981698
\(65\) −3.64023 −0.451515
\(66\) 0 0
\(67\) −1.30264 −0.159143 −0.0795717 0.996829i \(-0.525355\pi\)
−0.0795717 + 0.996829i \(0.525355\pi\)
\(68\) −0.659883 −0.0800226
\(69\) 0 0
\(70\) −3.87353 −0.462976
\(71\) −10.5493 −1.25197 −0.625983 0.779837i \(-0.715302\pi\)
−0.625983 + 0.779837i \(0.715302\pi\)
\(72\) 0 0
\(73\) −5.17599 −0.605804 −0.302902 0.953022i \(-0.597956\pi\)
−0.302902 + 0.953022i \(0.597956\pi\)
\(74\) 7.15433 0.831674
\(75\) 0 0
\(76\) −1.02379 −0.117437
\(77\) 2.22757 0.253855
\(78\) 0 0
\(79\) 2.89974 0.326246 0.163123 0.986606i \(-0.447843\pi\)
0.163123 + 0.986606i \(0.447843\pi\)
\(80\) −4.99943 −0.558954
\(81\) 0 0
\(82\) −2.66698 −0.294518
\(83\) −13.8209 −1.51704 −0.758522 0.651647i \(-0.774078\pi\)
−0.758522 + 0.651647i \(0.774078\pi\)
\(84\) 0 0
\(85\) −0.644551 −0.0699114
\(86\) 2.67055 0.287973
\(87\) 0 0
\(88\) 1.69754 0.180958
\(89\) 6.39884 0.678275 0.339138 0.940737i \(-0.389865\pi\)
0.339138 + 0.940737i \(0.389865\pi\)
\(90\) 0 0
\(91\) −8.10886 −0.850040
\(92\) 6.30635 0.657483
\(93\) 0 0
\(94\) 3.05763 0.315371
\(95\) −1.00000 −0.102598
\(96\) 0 0
\(97\) 6.23352 0.632918 0.316459 0.948606i \(-0.397506\pi\)
0.316459 + 0.948606i \(0.397506\pi\)
\(98\) 3.54376 0.357974
\(99\) 0 0
\(100\) 1.02379 0.102379
\(101\) 16.3563 1.62751 0.813756 0.581206i \(-0.197419\pi\)
0.813756 + 0.581206i \(0.197419\pi\)
\(102\) 0 0
\(103\) 0.645519 0.0636049 0.0318025 0.999494i \(-0.489875\pi\)
0.0318025 + 0.999494i \(0.489875\pi\)
\(104\) −6.17943 −0.605943
\(105\) 0 0
\(106\) −4.89487 −0.475432
\(107\) 17.5900 1.70049 0.850243 0.526390i \(-0.176455\pi\)
0.850243 + 0.526390i \(0.176455\pi\)
\(108\) 0 0
\(109\) 19.4359 1.86162 0.930808 0.365507i \(-0.119104\pi\)
0.930808 + 0.365507i \(0.119104\pi\)
\(110\) −1.73890 −0.165798
\(111\) 0 0
\(112\) −11.1366 −1.05231
\(113\) 5.88383 0.553504 0.276752 0.960941i \(-0.410742\pi\)
0.276752 + 0.960941i \(0.410742\pi\)
\(114\) 0 0
\(115\) 6.15983 0.574407
\(116\) 1.92681 0.178900
\(117\) 0 0
\(118\) −6.78291 −0.624417
\(119\) −1.43578 −0.131618
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −1.27645 −0.115565
\(123\) 0 0
\(124\) −0.188044 −0.0168868
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 15.9676 1.41690 0.708450 0.705762i \(-0.249395\pi\)
0.708450 + 0.705762i \(0.249395\pi\)
\(128\) −11.9626 −1.05735
\(129\) 0 0
\(130\) 6.33001 0.555178
\(131\) 3.93173 0.343517 0.171759 0.985139i \(-0.445055\pi\)
0.171759 + 0.985139i \(0.445055\pi\)
\(132\) 0 0
\(133\) −2.22757 −0.193155
\(134\) 2.26517 0.195681
\(135\) 0 0
\(136\) −1.09415 −0.0938226
\(137\) −15.5422 −1.32786 −0.663929 0.747796i \(-0.731112\pi\)
−0.663929 + 0.747796i \(0.731112\pi\)
\(138\) 0 0
\(139\) −6.69900 −0.568202 −0.284101 0.958794i \(-0.591695\pi\)
−0.284101 + 0.958794i \(0.591695\pi\)
\(140\) 2.28056 0.192742
\(141\) 0 0
\(142\) 18.3441 1.53941
\(143\) −3.64023 −0.304411
\(144\) 0 0
\(145\) 1.88204 0.156295
\(146\) 9.00056 0.744891
\(147\) 0 0
\(148\) −4.21215 −0.346236
\(149\) −0.783045 −0.0641496 −0.0320748 0.999485i \(-0.510211\pi\)
−0.0320748 + 0.999485i \(0.510211\pi\)
\(150\) 0 0
\(151\) 8.46749 0.689075 0.344537 0.938773i \(-0.388036\pi\)
0.344537 + 0.938773i \(0.388036\pi\)
\(152\) −1.69754 −0.137689
\(153\) 0 0
\(154\) −3.87353 −0.312138
\(155\) −0.183675 −0.0147531
\(156\) 0 0
\(157\) 8.27024 0.660037 0.330019 0.943974i \(-0.392945\pi\)
0.330019 + 0.943974i \(0.392945\pi\)
\(158\) −5.04237 −0.401150
\(159\) 0 0
\(160\) 5.29846 0.418880
\(161\) 13.7215 1.08140
\(162\) 0 0
\(163\) 23.9030 1.87223 0.936113 0.351699i \(-0.114396\pi\)
0.936113 + 0.351699i \(0.114396\pi\)
\(164\) 1.57019 0.122612
\(165\) 0 0
\(166\) 24.0333 1.86534
\(167\) 19.4405 1.50435 0.752176 0.658962i \(-0.229004\pi\)
0.752176 + 0.658962i \(0.229004\pi\)
\(168\) 0 0
\(169\) 0.251253 0.0193272
\(170\) 1.12081 0.0859624
\(171\) 0 0
\(172\) −1.57230 −0.119887
\(173\) 11.6888 0.888682 0.444341 0.895858i \(-0.353438\pi\)
0.444341 + 0.895858i \(0.353438\pi\)
\(174\) 0 0
\(175\) 2.22757 0.168389
\(176\) −4.99943 −0.376847
\(177\) 0 0
\(178\) −11.1270 −0.834001
\(179\) 6.77452 0.506351 0.253176 0.967420i \(-0.418525\pi\)
0.253176 + 0.967420i \(0.418525\pi\)
\(180\) 0 0
\(181\) −4.34551 −0.322999 −0.161500 0.986873i \(-0.551633\pi\)
−0.161500 + 0.986873i \(0.551633\pi\)
\(182\) 14.1005 1.04520
\(183\) 0 0
\(184\) 10.4565 0.770867
\(185\) −4.11428 −0.302488
\(186\) 0 0
\(187\) −0.644551 −0.0471342
\(188\) −1.80020 −0.131293
\(189\) 0 0
\(190\) 1.73890 0.126153
\(191\) 1.37612 0.0995728 0.0497864 0.998760i \(-0.484146\pi\)
0.0497864 + 0.998760i \(0.484146\pi\)
\(192\) 0 0
\(193\) 5.15711 0.371217 0.185609 0.982624i \(-0.440574\pi\)
0.185609 + 0.982624i \(0.440574\pi\)
\(194\) −10.8395 −0.778231
\(195\) 0 0
\(196\) −2.08641 −0.149029
\(197\) −12.0998 −0.862072 −0.431036 0.902335i \(-0.641852\pi\)
−0.431036 + 0.902335i \(0.641852\pi\)
\(198\) 0 0
\(199\) −13.2948 −0.942445 −0.471223 0.882014i \(-0.656187\pi\)
−0.471223 + 0.882014i \(0.656187\pi\)
\(200\) 1.69754 0.120034
\(201\) 0 0
\(202\) −28.4420 −2.00117
\(203\) 4.19239 0.294248
\(204\) 0 0
\(205\) 1.53371 0.107119
\(206\) −1.12250 −0.0782080
\(207\) 0 0
\(208\) 18.1991 1.26188
\(209\) −1.00000 −0.0691714
\(210\) 0 0
\(211\) −26.0866 −1.79588 −0.897939 0.440120i \(-0.854936\pi\)
−0.897939 + 0.440120i \(0.854936\pi\)
\(212\) 2.88188 0.197928
\(213\) 0 0
\(214\) −30.5873 −2.09090
\(215\) −1.53577 −0.104738
\(216\) 0 0
\(217\) −0.409148 −0.0277748
\(218\) −33.7971 −2.28903
\(219\) 0 0
\(220\) 1.02379 0.0690238
\(221\) 2.34631 0.157830
\(222\) 0 0
\(223\) 13.8606 0.928175 0.464087 0.885789i \(-0.346382\pi\)
0.464087 + 0.885789i \(0.346382\pi\)
\(224\) 11.8027 0.788600
\(225\) 0 0
\(226\) −10.2314 −0.680583
\(227\) 12.9104 0.856893 0.428446 0.903567i \(-0.359061\pi\)
0.428446 + 0.903567i \(0.359061\pi\)
\(228\) 0 0
\(229\) 7.93710 0.524499 0.262249 0.965000i \(-0.415536\pi\)
0.262249 + 0.965000i \(0.415536\pi\)
\(230\) −10.7113 −0.706285
\(231\) 0 0
\(232\) 3.19484 0.209752
\(233\) −17.6265 −1.15475 −0.577374 0.816480i \(-0.695922\pi\)
−0.577374 + 0.816480i \(0.695922\pi\)
\(234\) 0 0
\(235\) −1.75837 −0.114703
\(236\) 3.99347 0.259953
\(237\) 0 0
\(238\) 2.49669 0.161836
\(239\) 18.6909 1.20901 0.604507 0.796600i \(-0.293370\pi\)
0.604507 + 0.796600i \(0.293370\pi\)
\(240\) 0 0
\(241\) −0.877285 −0.0565109 −0.0282555 0.999601i \(-0.508995\pi\)
−0.0282555 + 0.999601i \(0.508995\pi\)
\(242\) −1.73890 −0.111781
\(243\) 0 0
\(244\) 0.751518 0.0481110
\(245\) −2.03793 −0.130198
\(246\) 0 0
\(247\) 3.64023 0.231622
\(248\) −0.311795 −0.0197990
\(249\) 0 0
\(250\) −1.73890 −0.109978
\(251\) 0.448818 0.0283291 0.0141646 0.999900i \(-0.495491\pi\)
0.0141646 + 0.999900i \(0.495491\pi\)
\(252\) 0 0
\(253\) 6.15983 0.387265
\(254\) −27.7662 −1.74221
\(255\) 0 0
\(256\) 19.2311 1.20194
\(257\) 7.85809 0.490174 0.245087 0.969501i \(-0.421183\pi\)
0.245087 + 0.969501i \(0.421183\pi\)
\(258\) 0 0
\(259\) −9.16484 −0.569476
\(260\) −3.72682 −0.231128
\(261\) 0 0
\(262\) −6.83691 −0.422386
\(263\) −0.585215 −0.0360859 −0.0180429 0.999837i \(-0.505744\pi\)
−0.0180429 + 0.999837i \(0.505744\pi\)
\(264\) 0 0
\(265\) 2.81491 0.172919
\(266\) 3.87353 0.237502
\(267\) 0 0
\(268\) −1.33363 −0.0814645
\(269\) 3.59078 0.218934 0.109467 0.993990i \(-0.465086\pi\)
0.109467 + 0.993990i \(0.465086\pi\)
\(270\) 0 0
\(271\) −23.4466 −1.42428 −0.712139 0.702038i \(-0.752274\pi\)
−0.712139 + 0.702038i \(0.752274\pi\)
\(272\) 3.22239 0.195386
\(273\) 0 0
\(274\) 27.0264 1.63272
\(275\) 1.00000 0.0603023
\(276\) 0 0
\(277\) −19.2912 −1.15909 −0.579547 0.814939i \(-0.696771\pi\)
−0.579547 + 0.814939i \(0.696771\pi\)
\(278\) 11.6489 0.698656
\(279\) 0 0
\(280\) 3.78139 0.225981
\(281\) 5.82550 0.347520 0.173760 0.984788i \(-0.444408\pi\)
0.173760 + 0.984788i \(0.444408\pi\)
\(282\) 0 0
\(283\) −15.5166 −0.922368 −0.461184 0.887305i \(-0.652575\pi\)
−0.461184 + 0.887305i \(0.652575\pi\)
\(284\) −10.8002 −0.640874
\(285\) 0 0
\(286\) 6.33001 0.374301
\(287\) 3.41645 0.201667
\(288\) 0 0
\(289\) −16.5846 −0.975562
\(290\) −3.27269 −0.192179
\(291\) 0 0
\(292\) −5.29912 −0.310107
\(293\) 12.8089 0.748305 0.374152 0.927367i \(-0.377934\pi\)
0.374152 + 0.927367i \(0.377934\pi\)
\(294\) 0 0
\(295\) 3.90068 0.227106
\(296\) −6.98415 −0.405945
\(297\) 0 0
\(298\) 1.36164 0.0788777
\(299\) −22.4232 −1.29677
\(300\) 0 0
\(301\) −3.42103 −0.197185
\(302\) −14.7242 −0.847280
\(303\) 0 0
\(304\) 4.99943 0.286737
\(305\) 0.734057 0.0420320
\(306\) 0 0
\(307\) −14.0052 −0.799321 −0.399661 0.916663i \(-0.630872\pi\)
−0.399661 + 0.916663i \(0.630872\pi\)
\(308\) 2.28056 0.129947
\(309\) 0 0
\(310\) 0.319392 0.0181403
\(311\) −4.10325 −0.232674 −0.116337 0.993210i \(-0.537115\pi\)
−0.116337 + 0.993210i \(0.537115\pi\)
\(312\) 0 0
\(313\) 21.5394 1.21748 0.608740 0.793370i \(-0.291675\pi\)
0.608740 + 0.793370i \(0.291675\pi\)
\(314\) −14.3812 −0.811576
\(315\) 0 0
\(316\) 2.96872 0.167004
\(317\) 8.36917 0.470059 0.235030 0.971988i \(-0.424481\pi\)
0.235030 + 0.971988i \(0.424481\pi\)
\(318\) 0 0
\(319\) 1.88204 0.105374
\(320\) 0.785358 0.0439029
\(321\) 0 0
\(322\) −23.8603 −1.32968
\(323\) 0.644551 0.0358638
\(324\) 0 0
\(325\) −3.64023 −0.201923
\(326\) −41.5650 −2.30207
\(327\) 0 0
\(328\) 2.60353 0.143756
\(329\) −3.91689 −0.215945
\(330\) 0 0
\(331\) −29.1194 −1.60055 −0.800274 0.599635i \(-0.795312\pi\)
−0.800274 + 0.599635i \(0.795312\pi\)
\(332\) −14.1497 −0.776565
\(333\) 0 0
\(334\) −33.8052 −1.84974
\(335\) −1.30264 −0.0711711
\(336\) 0 0
\(337\) 3.36844 0.183491 0.0917453 0.995783i \(-0.470755\pi\)
0.0917453 + 0.995783i \(0.470755\pi\)
\(338\) −0.436905 −0.0237645
\(339\) 0 0
\(340\) −0.659883 −0.0357872
\(341\) −0.183675 −0.00994653
\(342\) 0 0
\(343\) −20.1326 −1.08706
\(344\) −2.60702 −0.140561
\(345\) 0 0
\(346\) −20.3257 −1.09272
\(347\) −3.97272 −0.213267 −0.106633 0.994298i \(-0.534007\pi\)
−0.106633 + 0.994298i \(0.534007\pi\)
\(348\) 0 0
\(349\) 1.51616 0.0811581 0.0405790 0.999176i \(-0.487080\pi\)
0.0405790 + 0.999176i \(0.487080\pi\)
\(350\) −3.87353 −0.207049
\(351\) 0 0
\(352\) 5.29846 0.282409
\(353\) −4.76876 −0.253816 −0.126908 0.991915i \(-0.540505\pi\)
−0.126908 + 0.991915i \(0.540505\pi\)
\(354\) 0 0
\(355\) −10.5493 −0.559896
\(356\) 6.55105 0.347205
\(357\) 0 0
\(358\) −11.7802 −0.622605
\(359\) −0.542750 −0.0286453 −0.0143226 0.999897i \(-0.504559\pi\)
−0.0143226 + 0.999897i \(0.504559\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 7.55643 0.397157
\(363\) 0 0
\(364\) −8.30176 −0.435130
\(365\) −5.17599 −0.270924
\(366\) 0 0
\(367\) −26.1792 −1.36654 −0.683271 0.730165i \(-0.739443\pi\)
−0.683271 + 0.730165i \(0.739443\pi\)
\(368\) −30.7956 −1.60533
\(369\) 0 0
\(370\) 7.15433 0.371936
\(371\) 6.27042 0.325544
\(372\) 0 0
\(373\) −12.7807 −0.661760 −0.330880 0.943673i \(-0.607345\pi\)
−0.330880 + 0.943673i \(0.607345\pi\)
\(374\) 1.12081 0.0579558
\(375\) 0 0
\(376\) −2.98490 −0.153934
\(377\) −6.85107 −0.352848
\(378\) 0 0
\(379\) −26.0931 −1.34031 −0.670157 0.742219i \(-0.733773\pi\)
−0.670157 + 0.742219i \(0.733773\pi\)
\(380\) −1.02379 −0.0525192
\(381\) 0 0
\(382\) −2.39295 −0.122434
\(383\) 12.7812 0.653091 0.326545 0.945182i \(-0.394115\pi\)
0.326545 + 0.945182i \(0.394115\pi\)
\(384\) 0 0
\(385\) 2.22757 0.113528
\(386\) −8.96773 −0.456445
\(387\) 0 0
\(388\) 6.38180 0.323987
\(389\) 8.97979 0.455293 0.227647 0.973744i \(-0.426897\pi\)
0.227647 + 0.973744i \(0.426897\pi\)
\(390\) 0 0
\(391\) −3.97032 −0.200788
\(392\) −3.45946 −0.174729
\(393\) 0 0
\(394\) 21.0403 1.06000
\(395\) 2.89974 0.145902
\(396\) 0 0
\(397\) 26.8417 1.34715 0.673573 0.739120i \(-0.264758\pi\)
0.673573 + 0.739120i \(0.264758\pi\)
\(398\) 23.1184 1.15882
\(399\) 0 0
\(400\) −4.99943 −0.249972
\(401\) 9.25518 0.462182 0.231091 0.972932i \(-0.425771\pi\)
0.231091 + 0.972932i \(0.425771\pi\)
\(402\) 0 0
\(403\) 0.668617 0.0333062
\(404\) 16.7454 0.833114
\(405\) 0 0
\(406\) −7.29016 −0.361804
\(407\) −4.11428 −0.203937
\(408\) 0 0
\(409\) 26.0835 1.28975 0.644874 0.764289i \(-0.276910\pi\)
0.644874 + 0.764289i \(0.276910\pi\)
\(410\) −2.66698 −0.131713
\(411\) 0 0
\(412\) 0.660875 0.0325590
\(413\) 8.68904 0.427560
\(414\) 0 0
\(415\) −13.8209 −0.678443
\(416\) −19.2876 −0.945652
\(417\) 0 0
\(418\) 1.73890 0.0850526
\(419\) 32.5181 1.58861 0.794307 0.607517i \(-0.207834\pi\)
0.794307 + 0.607517i \(0.207834\pi\)
\(420\) 0 0
\(421\) 3.16934 0.154464 0.0772320 0.997013i \(-0.475392\pi\)
0.0772320 + 0.997013i \(0.475392\pi\)
\(422\) 45.3621 2.20819
\(423\) 0 0
\(424\) 4.77843 0.232061
\(425\) −0.644551 −0.0312653
\(426\) 0 0
\(427\) 1.63516 0.0791311
\(428\) 18.0084 0.870469
\(429\) 0 0
\(430\) 2.67055 0.128785
\(431\) 1.19700 0.0576575 0.0288288 0.999584i \(-0.490822\pi\)
0.0288288 + 0.999584i \(0.490822\pi\)
\(432\) 0 0
\(433\) 23.4218 1.12558 0.562789 0.826601i \(-0.309728\pi\)
0.562789 + 0.826601i \(0.309728\pi\)
\(434\) 0.711469 0.0341516
\(435\) 0 0
\(436\) 19.8982 0.952950
\(437\) −6.15983 −0.294664
\(438\) 0 0
\(439\) −21.4961 −1.02595 −0.512975 0.858403i \(-0.671457\pi\)
−0.512975 + 0.858403i \(0.671457\pi\)
\(440\) 1.69754 0.0809270
\(441\) 0 0
\(442\) −4.08001 −0.194066
\(443\) −23.6133 −1.12190 −0.560950 0.827850i \(-0.689564\pi\)
−0.560950 + 0.827850i \(0.689564\pi\)
\(444\) 0 0
\(445\) 6.39884 0.303334
\(446\) −24.1023 −1.14128
\(447\) 0 0
\(448\) 1.74944 0.0826533
\(449\) 5.35004 0.252484 0.126242 0.991999i \(-0.459708\pi\)
0.126242 + 0.991999i \(0.459708\pi\)
\(450\) 0 0
\(451\) 1.53371 0.0722196
\(452\) 6.02379 0.283335
\(453\) 0 0
\(454\) −22.4499 −1.05363
\(455\) −8.10886 −0.380149
\(456\) 0 0
\(457\) 39.7929 1.86143 0.930716 0.365742i \(-0.119185\pi\)
0.930716 + 0.365742i \(0.119185\pi\)
\(458\) −13.8019 −0.644919
\(459\) 0 0
\(460\) 6.30635 0.294035
\(461\) 3.21566 0.149768 0.0748840 0.997192i \(-0.476141\pi\)
0.0748840 + 0.997192i \(0.476141\pi\)
\(462\) 0 0
\(463\) 16.7065 0.776416 0.388208 0.921572i \(-0.373094\pi\)
0.388208 + 0.921572i \(0.373094\pi\)
\(464\) −9.40915 −0.436809
\(465\) 0 0
\(466\) 30.6507 1.41987
\(467\) 37.8565 1.75179 0.875894 0.482503i \(-0.160272\pi\)
0.875894 + 0.482503i \(0.160272\pi\)
\(468\) 0 0
\(469\) −2.90173 −0.133990
\(470\) 3.05763 0.141038
\(471\) 0 0
\(472\) 6.62156 0.304782
\(473\) −1.53577 −0.0706146
\(474\) 0 0
\(475\) −1.00000 −0.0458831
\(476\) −1.46994 −0.0673744
\(477\) 0 0
\(478\) −32.5017 −1.48659
\(479\) 16.6101 0.758936 0.379468 0.925205i \(-0.376107\pi\)
0.379468 + 0.925205i \(0.376107\pi\)
\(480\) 0 0
\(481\) 14.9769 0.682888
\(482\) 1.52552 0.0694853
\(483\) 0 0
\(484\) 1.02379 0.0465358
\(485\) 6.23352 0.283050
\(486\) 0 0
\(487\) 29.2975 1.32760 0.663798 0.747912i \(-0.268944\pi\)
0.663798 + 0.747912i \(0.268944\pi\)
\(488\) 1.24609 0.0564079
\(489\) 0 0
\(490\) 3.54376 0.160091
\(491\) 0.806717 0.0364066 0.0182033 0.999834i \(-0.494205\pi\)
0.0182033 + 0.999834i \(0.494205\pi\)
\(492\) 0 0
\(493\) −1.21307 −0.0546340
\(494\) −6.33001 −0.284800
\(495\) 0 0
\(496\) 0.918269 0.0412315
\(497\) −23.4992 −1.05408
\(498\) 0 0
\(499\) −30.7212 −1.37527 −0.687634 0.726058i \(-0.741351\pi\)
−0.687634 + 0.726058i \(0.741351\pi\)
\(500\) 1.02379 0.0457852
\(501\) 0 0
\(502\) −0.780451 −0.0348332
\(503\) 13.0527 0.581991 0.290995 0.956724i \(-0.406014\pi\)
0.290995 + 0.956724i \(0.406014\pi\)
\(504\) 0 0
\(505\) 16.3563 0.727846
\(506\) −10.7113 −0.476178
\(507\) 0 0
\(508\) 16.3475 0.725302
\(509\) 22.6615 1.00445 0.502226 0.864736i \(-0.332515\pi\)
0.502226 + 0.864736i \(0.332515\pi\)
\(510\) 0 0
\(511\) −11.5299 −0.510052
\(512\) −9.51581 −0.420544
\(513\) 0 0
\(514\) −13.6645 −0.602713
\(515\) 0.645519 0.0284450
\(516\) 0 0
\(517\) −1.75837 −0.0773329
\(518\) 15.9368 0.700222
\(519\) 0 0
\(520\) −6.17943 −0.270986
\(521\) −19.0608 −0.835070 −0.417535 0.908661i \(-0.637106\pi\)
−0.417535 + 0.908661i \(0.637106\pi\)
\(522\) 0 0
\(523\) 15.1864 0.664054 0.332027 0.943270i \(-0.392268\pi\)
0.332027 + 0.943270i \(0.392268\pi\)
\(524\) 4.02526 0.175844
\(525\) 0 0
\(526\) 1.01763 0.0443709
\(527\) 0.118388 0.00515704
\(528\) 0 0
\(529\) 14.9435 0.649716
\(530\) −4.89487 −0.212619
\(531\) 0 0
\(532\) −2.28056 −0.0988748
\(533\) −5.58305 −0.241829
\(534\) 0 0
\(535\) 17.5900 0.760481
\(536\) −2.21129 −0.0955132
\(537\) 0 0
\(538\) −6.24402 −0.269199
\(539\) −2.03793 −0.0877798
\(540\) 0 0
\(541\) 41.1432 1.76888 0.884442 0.466650i \(-0.154539\pi\)
0.884442 + 0.466650i \(0.154539\pi\)
\(542\) 40.7714 1.75128
\(543\) 0 0
\(544\) −3.41513 −0.146422
\(545\) 19.4359 0.832540
\(546\) 0 0
\(547\) 40.7714 1.74326 0.871630 0.490164i \(-0.163063\pi\)
0.871630 + 0.490164i \(0.163063\pi\)
\(548\) −15.9119 −0.679722
\(549\) 0 0
\(550\) −1.73890 −0.0741471
\(551\) −1.88204 −0.0801778
\(552\) 0 0
\(553\) 6.45938 0.274681
\(554\) 33.5455 1.42521
\(555\) 0 0
\(556\) −6.85835 −0.290859
\(557\) 14.2315 0.603009 0.301504 0.953465i \(-0.402511\pi\)
0.301504 + 0.953465i \(0.402511\pi\)
\(558\) 0 0
\(559\) 5.59054 0.236454
\(560\) −11.1366 −0.470607
\(561\) 0 0
\(562\) −10.1300 −0.427308
\(563\) 11.1511 0.469963 0.234982 0.972000i \(-0.424497\pi\)
0.234982 + 0.972000i \(0.424497\pi\)
\(564\) 0 0
\(565\) 5.88383 0.247534
\(566\) 26.9819 1.13414
\(567\) 0 0
\(568\) −17.9078 −0.751393
\(569\) −11.4022 −0.478005 −0.239003 0.971019i \(-0.576820\pi\)
−0.239003 + 0.971019i \(0.576820\pi\)
\(570\) 0 0
\(571\) 12.5111 0.523573 0.261787 0.965126i \(-0.415688\pi\)
0.261787 + 0.965126i \(0.415688\pi\)
\(572\) −3.72682 −0.155826
\(573\) 0 0
\(574\) −5.94088 −0.247967
\(575\) 6.15983 0.256883
\(576\) 0 0
\(577\) 7.95520 0.331179 0.165590 0.986195i \(-0.447047\pi\)
0.165590 + 0.986195i \(0.447047\pi\)
\(578\) 28.8390 1.19954
\(579\) 0 0
\(580\) 1.92681 0.0800066
\(581\) −30.7871 −1.27726
\(582\) 0 0
\(583\) 2.81491 0.116582
\(584\) −8.78645 −0.363586
\(585\) 0 0
\(586\) −22.2735 −0.920109
\(587\) −45.7680 −1.88905 −0.944524 0.328443i \(-0.893476\pi\)
−0.944524 + 0.328443i \(0.893476\pi\)
\(588\) 0 0
\(589\) 0.183675 0.00756818
\(590\) −6.78291 −0.279248
\(591\) 0 0
\(592\) 20.5691 0.845383
\(593\) 26.3613 1.08253 0.541264 0.840853i \(-0.317946\pi\)
0.541264 + 0.840853i \(0.317946\pi\)
\(594\) 0 0
\(595\) −1.43578 −0.0588614
\(596\) −0.801672 −0.0328378
\(597\) 0 0
\(598\) 38.9917 1.59449
\(599\) −17.3368 −0.708361 −0.354180 0.935177i \(-0.615240\pi\)
−0.354180 + 0.935177i \(0.615240\pi\)
\(600\) 0 0
\(601\) −15.7946 −0.644274 −0.322137 0.946693i \(-0.604401\pi\)
−0.322137 + 0.946693i \(0.604401\pi\)
\(602\) 5.94884 0.242457
\(603\) 0 0
\(604\) 8.66891 0.352733
\(605\) 1.00000 0.0406558
\(606\) 0 0
\(607\) −1.80754 −0.0733659 −0.0366829 0.999327i \(-0.511679\pi\)
−0.0366829 + 0.999327i \(0.511679\pi\)
\(608\) −5.29846 −0.214881
\(609\) 0 0
\(610\) −1.27645 −0.0516821
\(611\) 6.40086 0.258951
\(612\) 0 0
\(613\) 10.9246 0.441239 0.220619 0.975360i \(-0.429192\pi\)
0.220619 + 0.975360i \(0.429192\pi\)
\(614\) 24.3538 0.982838
\(615\) 0 0
\(616\) 3.78139 0.152357
\(617\) 2.68742 0.108191 0.0540957 0.998536i \(-0.482772\pi\)
0.0540957 + 0.998536i \(0.482772\pi\)
\(618\) 0 0
\(619\) 18.2439 0.733284 0.366642 0.930362i \(-0.380507\pi\)
0.366642 + 0.930362i \(0.380507\pi\)
\(620\) −0.188044 −0.00755202
\(621\) 0 0
\(622\) 7.13515 0.286094
\(623\) 14.2539 0.571069
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −37.4550 −1.49700
\(627\) 0 0
\(628\) 8.46697 0.337869
\(629\) 2.65186 0.105737
\(630\) 0 0
\(631\) 9.12012 0.363066 0.181533 0.983385i \(-0.441894\pi\)
0.181533 + 0.983385i \(0.441894\pi\)
\(632\) 4.92243 0.195804
\(633\) 0 0
\(634\) −14.5532 −0.577981
\(635\) 15.9676 0.633657
\(636\) 0 0
\(637\) 7.41852 0.293932
\(638\) −3.27269 −0.129567
\(639\) 0 0
\(640\) −11.9626 −0.472862
\(641\) 2.90773 0.114848 0.0574241 0.998350i \(-0.481711\pi\)
0.0574241 + 0.998350i \(0.481711\pi\)
\(642\) 0 0
\(643\) −3.35603 −0.132349 −0.0661745 0.997808i \(-0.521079\pi\)
−0.0661745 + 0.997808i \(0.521079\pi\)
\(644\) 14.0479 0.553563
\(645\) 0 0
\(646\) −1.12081 −0.0440978
\(647\) −26.5428 −1.04351 −0.521753 0.853096i \(-0.674722\pi\)
−0.521753 + 0.853096i \(0.674722\pi\)
\(648\) 0 0
\(649\) 3.90068 0.153115
\(650\) 6.33001 0.248283
\(651\) 0 0
\(652\) 24.4716 0.958381
\(653\) −28.6844 −1.12251 −0.561253 0.827644i \(-0.689681\pi\)
−0.561253 + 0.827644i \(0.689681\pi\)
\(654\) 0 0
\(655\) 3.93173 0.153626
\(656\) −7.66768 −0.299373
\(657\) 0 0
\(658\) 6.81110 0.265524
\(659\) 39.0719 1.52203 0.761013 0.648737i \(-0.224703\pi\)
0.761013 + 0.648737i \(0.224703\pi\)
\(660\) 0 0
\(661\) −21.1901 −0.824199 −0.412099 0.911139i \(-0.635204\pi\)
−0.412099 + 0.911139i \(0.635204\pi\)
\(662\) 50.6358 1.96802
\(663\) 0 0
\(664\) −23.4616 −0.910486
\(665\) −2.22757 −0.0863815
\(666\) 0 0
\(667\) 11.5931 0.448885
\(668\) 19.9030 0.770069
\(669\) 0 0
\(670\) 2.26517 0.0875113
\(671\) 0.734057 0.0283379
\(672\) 0 0
\(673\) −24.6931 −0.951849 −0.475924 0.879486i \(-0.657886\pi\)
−0.475924 + 0.879486i \(0.657886\pi\)
\(674\) −5.85739 −0.225618
\(675\) 0 0
\(676\) 0.257230 0.00989345
\(677\) −5.41516 −0.208122 −0.104061 0.994571i \(-0.533184\pi\)
−0.104061 + 0.994571i \(0.533184\pi\)
\(678\) 0 0
\(679\) 13.8856 0.532881
\(680\) −1.09415 −0.0419588
\(681\) 0 0
\(682\) 0.319392 0.0122302
\(683\) 13.7885 0.527604 0.263802 0.964577i \(-0.415023\pi\)
0.263802 + 0.964577i \(0.415023\pi\)
\(684\) 0 0
\(685\) −15.5422 −0.593836
\(686\) 35.0087 1.33664
\(687\) 0 0
\(688\) 7.67796 0.292719
\(689\) −10.2469 −0.390377
\(690\) 0 0
\(691\) −31.5750 −1.20117 −0.600586 0.799560i \(-0.705066\pi\)
−0.600586 + 0.799560i \(0.705066\pi\)
\(692\) 11.9668 0.454911
\(693\) 0 0
\(694\) 6.90818 0.262231
\(695\) −6.69900 −0.254108
\(696\) 0 0
\(697\) −0.988554 −0.0374442
\(698\) −2.63645 −0.0997912
\(699\) 0 0
\(700\) 2.28056 0.0861971
\(701\) 17.4459 0.658924 0.329462 0.944169i \(-0.393133\pi\)
0.329462 + 0.944169i \(0.393133\pi\)
\(702\) 0 0
\(703\) 4.11428 0.155173
\(704\) 0.785358 0.0295993
\(705\) 0 0
\(706\) 8.29242 0.312089
\(707\) 36.4348 1.37027
\(708\) 0 0
\(709\) −38.7266 −1.45441 −0.727205 0.686421i \(-0.759181\pi\)
−0.727205 + 0.686421i \(0.759181\pi\)
\(710\) 18.3441 0.688443
\(711\) 0 0
\(712\) 10.8623 0.407081
\(713\) −1.13140 −0.0423714
\(714\) 0 0
\(715\) −3.64023 −0.136137
\(716\) 6.93567 0.259198
\(717\) 0 0
\(718\) 0.943791 0.0352220
\(719\) 28.9402 1.07929 0.539644 0.841894i \(-0.318559\pi\)
0.539644 + 0.841894i \(0.318559\pi\)
\(720\) 0 0
\(721\) 1.43794 0.0535517
\(722\) −1.73890 −0.0647153
\(723\) 0 0
\(724\) −4.44888 −0.165341
\(725\) 1.88204 0.0698973
\(726\) 0 0
\(727\) −0.331738 −0.0123035 −0.00615174 0.999981i \(-0.501958\pi\)
−0.00615174 + 0.999981i \(0.501958\pi\)
\(728\) −13.7651 −0.510169
\(729\) 0 0
\(730\) 9.00056 0.333126
\(731\) 0.989879 0.0366120
\(732\) 0 0
\(733\) −30.5241 −1.12743 −0.563716 0.825969i \(-0.690629\pi\)
−0.563716 + 0.825969i \(0.690629\pi\)
\(734\) 45.5231 1.68029
\(735\) 0 0
\(736\) 32.6376 1.20304
\(737\) −1.30264 −0.0479835
\(738\) 0 0
\(739\) −8.65314 −0.318311 −0.159155 0.987254i \(-0.550877\pi\)
−0.159155 + 0.987254i \(0.550877\pi\)
\(740\) −4.21215 −0.154842
\(741\) 0 0
\(742\) −10.9037 −0.400286
\(743\) −33.9919 −1.24704 −0.623521 0.781807i \(-0.714298\pi\)
−0.623521 + 0.781807i \(0.714298\pi\)
\(744\) 0 0
\(745\) −0.783045 −0.0286886
\(746\) 22.2244 0.813694
\(747\) 0 0
\(748\) −0.659883 −0.0241277
\(749\) 39.1829 1.43171
\(750\) 0 0
\(751\) −50.2581 −1.83394 −0.916972 0.398951i \(-0.869374\pi\)
−0.916972 + 0.398951i \(0.869374\pi\)
\(752\) 8.79085 0.320569
\(753\) 0 0
\(754\) 11.9133 0.433859
\(755\) 8.46749 0.308164
\(756\) 0 0
\(757\) 10.7948 0.392344 0.196172 0.980570i \(-0.437149\pi\)
0.196172 + 0.980570i \(0.437149\pi\)
\(758\) 45.3734 1.64804
\(759\) 0 0
\(760\) −1.69754 −0.0615762
\(761\) −15.5661 −0.564272 −0.282136 0.959374i \(-0.591043\pi\)
−0.282136 + 0.959374i \(0.591043\pi\)
\(762\) 0 0
\(763\) 43.2947 1.56737
\(764\) 1.40886 0.0509707
\(765\) 0 0
\(766\) −22.2254 −0.803035
\(767\) −14.1994 −0.512709
\(768\) 0 0
\(769\) 19.6520 0.708671 0.354335 0.935118i \(-0.384707\pi\)
0.354335 + 0.935118i \(0.384707\pi\)
\(770\) −3.87353 −0.139592
\(771\) 0 0
\(772\) 5.27979 0.190024
\(773\) 41.0208 1.47541 0.737707 0.675121i \(-0.235908\pi\)
0.737707 + 0.675121i \(0.235908\pi\)
\(774\) 0 0
\(775\) −0.183675 −0.00659778
\(776\) 10.5817 0.379859
\(777\) 0 0
\(778\) −15.6150 −0.559825
\(779\) −1.53371 −0.0549509
\(780\) 0 0
\(781\) −10.5493 −0.377482
\(782\) 6.90401 0.246887
\(783\) 0 0
\(784\) 10.1885 0.363874
\(785\) 8.27024 0.295178
\(786\) 0 0
\(787\) 25.2114 0.898688 0.449344 0.893359i \(-0.351658\pi\)
0.449344 + 0.893359i \(0.351658\pi\)
\(788\) −12.3876 −0.441289
\(789\) 0 0
\(790\) −5.04237 −0.179400
\(791\) 13.1066 0.466018
\(792\) 0 0
\(793\) −2.67213 −0.0948902
\(794\) −46.6752 −1.65644
\(795\) 0 0
\(796\) −13.6111 −0.482432
\(797\) 23.4053 0.829057 0.414528 0.910036i \(-0.363947\pi\)
0.414528 + 0.910036i \(0.363947\pi\)
\(798\) 0 0
\(799\) 1.13336 0.0400953
\(800\) 5.29846 0.187329
\(801\) 0 0
\(802\) −16.0939 −0.568294
\(803\) −5.17599 −0.182657
\(804\) 0 0
\(805\) 13.7215 0.483618
\(806\) −1.16266 −0.0409530
\(807\) 0 0
\(808\) 27.7655 0.976786
\(809\) 25.3235 0.890325 0.445163 0.895450i \(-0.353146\pi\)
0.445163 + 0.895450i \(0.353146\pi\)
\(810\) 0 0
\(811\) −1.24610 −0.0437566 −0.0218783 0.999761i \(-0.506965\pi\)
−0.0218783 + 0.999761i \(0.506965\pi\)
\(812\) 4.29211 0.150624
\(813\) 0 0
\(814\) 7.15433 0.250759
\(815\) 23.9030 0.837285
\(816\) 0 0
\(817\) 1.53577 0.0537296
\(818\) −45.3567 −1.58586
\(819\) 0 0
\(820\) 1.57019 0.0548335
\(821\) −20.4113 −0.712359 −0.356180 0.934418i \(-0.615921\pi\)
−0.356180 + 0.934418i \(0.615921\pi\)
\(822\) 0 0
\(823\) −15.4655 −0.539093 −0.269546 0.962987i \(-0.586874\pi\)
−0.269546 + 0.962987i \(0.586874\pi\)
\(824\) 1.09579 0.0381738
\(825\) 0 0
\(826\) −15.1094 −0.525723
\(827\) 46.2008 1.60656 0.803280 0.595602i \(-0.203087\pi\)
0.803280 + 0.595602i \(0.203087\pi\)
\(828\) 0 0
\(829\) 2.91356 0.101192 0.0505961 0.998719i \(-0.483888\pi\)
0.0505961 + 0.998719i \(0.483888\pi\)
\(830\) 24.0333 0.834207
\(831\) 0 0
\(832\) −2.85888 −0.0991139
\(833\) 1.31355 0.0455117
\(834\) 0 0
\(835\) 19.4405 0.672767
\(836\) −1.02379 −0.0354084
\(837\) 0 0
\(838\) −56.5459 −1.95334
\(839\) −28.2887 −0.976633 −0.488317 0.872667i \(-0.662389\pi\)
−0.488317 + 0.872667i \(0.662389\pi\)
\(840\) 0 0
\(841\) −25.4579 −0.877859
\(842\) −5.51117 −0.189928
\(843\) 0 0
\(844\) −26.7072 −0.919299
\(845\) 0.251253 0.00864337
\(846\) 0 0
\(847\) 2.22757 0.0765402
\(848\) −14.0730 −0.483268
\(849\) 0 0
\(850\) 1.12081 0.0384435
\(851\) −25.3432 −0.868755
\(852\) 0 0
\(853\) 41.9234 1.43543 0.717715 0.696337i \(-0.245188\pi\)
0.717715 + 0.696337i \(0.245188\pi\)
\(854\) −2.84339 −0.0972989
\(855\) 0 0
\(856\) 29.8597 1.02058
\(857\) −52.4352 −1.79115 −0.895576 0.444909i \(-0.853236\pi\)
−0.895576 + 0.444909i \(0.853236\pi\)
\(858\) 0 0
\(859\) −21.2305 −0.724374 −0.362187 0.932105i \(-0.617970\pi\)
−0.362187 + 0.932105i \(0.617970\pi\)
\(860\) −1.57230 −0.0536149
\(861\) 0 0
\(862\) −2.08147 −0.0708952
\(863\) −1.75582 −0.0597690 −0.0298845 0.999553i \(-0.509514\pi\)
−0.0298845 + 0.999553i \(0.509514\pi\)
\(864\) 0 0
\(865\) 11.6888 0.397431
\(866\) −40.7282 −1.38400
\(867\) 0 0
\(868\) −0.418881 −0.0142177
\(869\) 2.89974 0.0983670
\(870\) 0 0
\(871\) 4.74192 0.160674
\(872\) 32.9931 1.11729
\(873\) 0 0
\(874\) 10.7113 0.362317
\(875\) 2.22757 0.0753056
\(876\) 0 0
\(877\) 27.7873 0.938309 0.469155 0.883116i \(-0.344559\pi\)
0.469155 + 0.883116i \(0.344559\pi\)
\(878\) 37.3796 1.26150
\(879\) 0 0
\(880\) −4.99943 −0.168531
\(881\) −38.8712 −1.30960 −0.654802 0.755800i \(-0.727248\pi\)
−0.654802 + 0.755800i \(0.727248\pi\)
\(882\) 0 0
\(883\) −1.20467 −0.0405404 −0.0202702 0.999795i \(-0.506453\pi\)
−0.0202702 + 0.999795i \(0.506453\pi\)
\(884\) 2.40212 0.0807922
\(885\) 0 0
\(886\) 41.0612 1.37948
\(887\) 44.0947 1.48056 0.740278 0.672301i \(-0.234694\pi\)
0.740278 + 0.672301i \(0.234694\pi\)
\(888\) 0 0
\(889\) 35.5691 1.19295
\(890\) −11.1270 −0.372977
\(891\) 0 0
\(892\) 14.1903 0.475127
\(893\) 1.75837 0.0588415
\(894\) 0 0
\(895\) 6.77452 0.226447
\(896\) −26.6475 −0.890230
\(897\) 0 0
\(898\) −9.30320 −0.310452
\(899\) −0.345683 −0.0115292
\(900\) 0 0
\(901\) −1.81436 −0.0604450
\(902\) −2.66698 −0.0888006
\(903\) 0 0
\(904\) 9.98803 0.332197
\(905\) −4.34551 −0.144450
\(906\) 0 0
\(907\) 36.2297 1.20299 0.601493 0.798878i \(-0.294573\pi\)
0.601493 + 0.798878i \(0.294573\pi\)
\(908\) 13.2175 0.438638
\(909\) 0 0
\(910\) 14.1005 0.467428
\(911\) 5.41417 0.179380 0.0896898 0.995970i \(-0.471412\pi\)
0.0896898 + 0.995970i \(0.471412\pi\)
\(912\) 0 0
\(913\) −13.8209 −0.457406
\(914\) −69.1960 −2.28880
\(915\) 0 0
\(916\) 8.12591 0.268488
\(917\) 8.75822 0.289222
\(918\) 0 0
\(919\) 54.0931 1.78437 0.892183 0.451675i \(-0.149173\pi\)
0.892183 + 0.451675i \(0.149173\pi\)
\(920\) 10.4565 0.344742
\(921\) 0 0
\(922\) −5.59172 −0.184153
\(923\) 38.4017 1.26401
\(924\) 0 0
\(925\) −4.11428 −0.135277
\(926\) −29.0510 −0.954674
\(927\) 0 0
\(928\) 9.97193 0.327345
\(929\) −52.0785 −1.70864 −0.854320 0.519747i \(-0.826026\pi\)
−0.854320 + 0.519747i \(0.826026\pi\)
\(930\) 0 0
\(931\) 2.03793 0.0667904
\(932\) −18.0457 −0.591108
\(933\) 0 0
\(934\) −65.8288 −2.15398
\(935\) −0.644551 −0.0210791
\(936\) 0 0
\(937\) 35.9861 1.17561 0.587807 0.809002i \(-0.299992\pi\)
0.587807 + 0.809002i \(0.299992\pi\)
\(938\) 5.04584 0.164752
\(939\) 0 0
\(940\) −1.80020 −0.0587159
\(941\) −11.9972 −0.391098 −0.195549 0.980694i \(-0.562649\pi\)
−0.195549 + 0.980694i \(0.562649\pi\)
\(942\) 0 0
\(943\) 9.44739 0.307649
\(944\) −19.5012 −0.634709
\(945\) 0 0
\(946\) 2.67055 0.0868271
\(947\) −37.1663 −1.20774 −0.603871 0.797082i \(-0.706376\pi\)
−0.603871 + 0.797082i \(0.706376\pi\)
\(948\) 0 0
\(949\) 18.8418 0.611630
\(950\) 1.73890 0.0564175
\(951\) 0 0
\(952\) −2.43730 −0.0789933
\(953\) −16.5500 −0.536106 −0.268053 0.963404i \(-0.586380\pi\)
−0.268053 + 0.963404i \(0.586380\pi\)
\(954\) 0 0
\(955\) 1.37612 0.0445303
\(956\) 19.1355 0.618886
\(957\) 0 0
\(958\) −28.8834 −0.933180
\(959\) −34.6213 −1.11798
\(960\) 0 0
\(961\) −30.9663 −0.998912
\(962\) −26.0434 −0.839673
\(963\) 0 0
\(964\) −0.898154 −0.0289276
\(965\) 5.15711 0.166013
\(966\) 0 0
\(967\) 37.7443 1.21377 0.606887 0.794788i \(-0.292418\pi\)
0.606887 + 0.794788i \(0.292418\pi\)
\(968\) 1.69754 0.0545610
\(969\) 0 0
\(970\) −10.8395 −0.348035
\(971\) 40.2912 1.29301 0.646504 0.762911i \(-0.276231\pi\)
0.646504 + 0.762911i \(0.276231\pi\)
\(972\) 0 0
\(973\) −14.9225 −0.478393
\(974\) −50.9455 −1.63240
\(975\) 0 0
\(976\) −3.66987 −0.117470
\(977\) −1.24031 −0.0396812 −0.0198406 0.999803i \(-0.506316\pi\)
−0.0198406 + 0.999803i \(0.506316\pi\)
\(978\) 0 0
\(979\) 6.39884 0.204508
\(980\) −2.08641 −0.0666478
\(981\) 0 0
\(982\) −1.40280 −0.0447653
\(983\) −8.75471 −0.279232 −0.139616 0.990206i \(-0.544587\pi\)
−0.139616 + 0.990206i \(0.544587\pi\)
\(984\) 0 0
\(985\) −12.0998 −0.385530
\(986\) 2.10942 0.0671775
\(987\) 0 0
\(988\) 3.72682 0.118566
\(989\) −9.46005 −0.300812
\(990\) 0 0
\(991\) 49.7066 1.57898 0.789491 0.613763i \(-0.210345\pi\)
0.789491 + 0.613763i \(0.210345\pi\)
\(992\) −0.973192 −0.0308989
\(993\) 0 0
\(994\) 40.8629 1.29609
\(995\) −13.2948 −0.421474
\(996\) 0 0
\(997\) 46.3005 1.46635 0.733176 0.680039i \(-0.238037\pi\)
0.733176 + 0.680039i \(0.238037\pi\)
\(998\) 53.4211 1.69102
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9405.2.a.z.1.1 6
3.2 odd 2 1045.2.a.f.1.6 6
15.14 odd 2 5225.2.a.l.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1045.2.a.f.1.6 6 3.2 odd 2
5225.2.a.l.1.1 6 15.14 odd 2
9405.2.a.z.1.1 6 1.1 even 1 trivial