Properties

Label 9405.2.a.v.1.1
Level $9405$
Weight $2$
Character 9405.1
Self dual yes
Analytic conductor $75.099$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9405,2,Mod(1,9405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9405, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9405.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9405 = 3^{2} \cdot 5 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9405.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.0993031010\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\Q(\zeta_{22})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1045)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(0.284630\) of defining polynomial
Character \(\chi\) \(=\) 9405.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.22871 q^{2} +2.96714 q^{4} -1.00000 q^{5} -4.42518 q^{7} -2.15546 q^{8} +O(q^{10})\) \(q-2.22871 q^{2} +2.96714 q^{4} -1.00000 q^{5} -4.42518 q^{7} -2.15546 q^{8} +2.22871 q^{10} +1.00000 q^{11} -3.92613 q^{13} +9.86243 q^{14} -1.13037 q^{16} +1.61520 q^{17} +1.00000 q^{19} -2.96714 q^{20} -2.22871 q^{22} -0.113248 q^{23} +1.00000 q^{25} +8.75019 q^{26} -13.1301 q^{28} -1.08612 q^{29} -4.17296 q^{31} +6.83020 q^{32} -3.59980 q^{34} +4.42518 q^{35} -5.75406 q^{37} -2.22871 q^{38} +2.15546 q^{40} -4.26750 q^{41} +3.62271 q^{43} +2.96714 q^{44} +0.252396 q^{46} +6.39567 q^{47} +12.5822 q^{49} -2.22871 q^{50} -11.6494 q^{52} -12.0154 q^{53} -1.00000 q^{55} +9.53832 q^{56} +2.42065 q^{58} -0.883911 q^{59} +3.77712 q^{61} +9.30032 q^{62} -12.9618 q^{64} +3.92613 q^{65} -12.2192 q^{67} +4.79251 q^{68} -9.86243 q^{70} -4.28400 q^{71} -1.92676 q^{73} +12.8241 q^{74} +2.96714 q^{76} -4.42518 q^{77} -7.81004 q^{79} +1.13037 q^{80} +9.51102 q^{82} +3.33410 q^{83} -1.61520 q^{85} -8.07397 q^{86} -2.15546 q^{88} +11.9145 q^{89} +17.3738 q^{91} -0.336021 q^{92} -14.2541 q^{94} -1.00000 q^{95} -13.3478 q^{97} -28.0421 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 3 q^{2} + 5 q^{4} - 5 q^{5} - 11 q^{7} - 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 5 q + 3 q^{2} + 5 q^{4} - 5 q^{5} - 11 q^{7} - 3 q^{8} - 3 q^{10} + 5 q^{11} + q^{13} - 3 q^{16} + 3 q^{17} + 5 q^{19} - 5 q^{20} + 3 q^{22} + 8 q^{23} + 5 q^{25} + 16 q^{26} - 22 q^{28} - 11 q^{29} - 5 q^{31} + 2 q^{32} + 4 q^{34} + 11 q^{35} - 9 q^{37} + 3 q^{38} + 3 q^{40} - 15 q^{41} - 13 q^{43} + 5 q^{44} + 18 q^{46} + 20 q^{47} + 20 q^{49} + 3 q^{50} + q^{52} + 5 q^{53} - 5 q^{55} - 33 q^{58} + 17 q^{59} + 3 q^{61} - 14 q^{62} - 17 q^{64} - q^{65} - 28 q^{67} + 25 q^{68} + 6 q^{71} - 16 q^{73} + 21 q^{74} + 5 q^{76} - 11 q^{77} + 3 q^{79} + 3 q^{80} + 2 q^{82} + 33 q^{83} - 3 q^{85} - 10 q^{86} - 3 q^{88} + 16 q^{89} - 22 q^{91} + 19 q^{92} - 10 q^{94} - 5 q^{95} - 14 q^{97} - 10 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.22871 −1.57593 −0.787967 0.615717i \(-0.788866\pi\)
−0.787967 + 0.615717i \(0.788866\pi\)
\(3\) 0 0
\(4\) 2.96714 1.48357
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −4.42518 −1.67256 −0.836281 0.548302i \(-0.815275\pi\)
−0.836281 + 0.548302i \(0.815275\pi\)
\(8\) −2.15546 −0.762072
\(9\) 0 0
\(10\) 2.22871 0.704779
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −3.92613 −1.08891 −0.544456 0.838789i \(-0.683264\pi\)
−0.544456 + 0.838789i \(0.683264\pi\)
\(14\) 9.86243 2.63585
\(15\) 0 0
\(16\) −1.13037 −0.282593
\(17\) 1.61520 0.391743 0.195872 0.980630i \(-0.437246\pi\)
0.195872 + 0.980630i \(0.437246\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) −2.96714 −0.663472
\(21\) 0 0
\(22\) −2.22871 −0.475162
\(23\) −0.113248 −0.0236138 −0.0118069 0.999930i \(-0.503758\pi\)
−0.0118069 + 0.999930i \(0.503758\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 8.75019 1.71605
\(27\) 0 0
\(28\) −13.1301 −2.48136
\(29\) −1.08612 −0.201688 −0.100844 0.994902i \(-0.532154\pi\)
−0.100844 + 0.994902i \(0.532154\pi\)
\(30\) 0 0
\(31\) −4.17296 −0.749487 −0.374743 0.927129i \(-0.622269\pi\)
−0.374743 + 0.927129i \(0.622269\pi\)
\(32\) 6.83020 1.20742
\(33\) 0 0
\(34\) −3.59980 −0.617361
\(35\) 4.42518 0.747992
\(36\) 0 0
\(37\) −5.75406 −0.945962 −0.472981 0.881073i \(-0.656822\pi\)
−0.472981 + 0.881073i \(0.656822\pi\)
\(38\) −2.22871 −0.361544
\(39\) 0 0
\(40\) 2.15546 0.340809
\(41\) −4.26750 −0.666472 −0.333236 0.942843i \(-0.608141\pi\)
−0.333236 + 0.942843i \(0.608141\pi\)
\(42\) 0 0
\(43\) 3.62271 0.552459 0.276229 0.961092i \(-0.410915\pi\)
0.276229 + 0.961092i \(0.410915\pi\)
\(44\) 2.96714 0.447313
\(45\) 0 0
\(46\) 0.252396 0.0372138
\(47\) 6.39567 0.932904 0.466452 0.884547i \(-0.345532\pi\)
0.466452 + 0.884547i \(0.345532\pi\)
\(48\) 0 0
\(49\) 12.5822 1.79746
\(50\) −2.22871 −0.315187
\(51\) 0 0
\(52\) −11.6494 −1.61548
\(53\) −12.0154 −1.65044 −0.825219 0.564812i \(-0.808949\pi\)
−0.825219 + 0.564812i \(0.808949\pi\)
\(54\) 0 0
\(55\) −1.00000 −0.134840
\(56\) 9.53832 1.27461
\(57\) 0 0
\(58\) 2.42065 0.317847
\(59\) −0.883911 −0.115075 −0.0575377 0.998343i \(-0.518325\pi\)
−0.0575377 + 0.998343i \(0.518325\pi\)
\(60\) 0 0
\(61\) 3.77712 0.483611 0.241805 0.970325i \(-0.422260\pi\)
0.241805 + 0.970325i \(0.422260\pi\)
\(62\) 9.30032 1.18114
\(63\) 0 0
\(64\) −12.9618 −1.62022
\(65\) 3.92613 0.486976
\(66\) 0 0
\(67\) −12.2192 −1.49282 −0.746409 0.665487i \(-0.768224\pi\)
−0.746409 + 0.665487i \(0.768224\pi\)
\(68\) 4.79251 0.581178
\(69\) 0 0
\(70\) −9.86243 −1.17879
\(71\) −4.28400 −0.508417 −0.254209 0.967149i \(-0.581815\pi\)
−0.254209 + 0.967149i \(0.581815\pi\)
\(72\) 0 0
\(73\) −1.92676 −0.225510 −0.112755 0.993623i \(-0.535968\pi\)
−0.112755 + 0.993623i \(0.535968\pi\)
\(74\) 12.8241 1.49077
\(75\) 0 0
\(76\) 2.96714 0.340354
\(77\) −4.42518 −0.504296
\(78\) 0 0
\(79\) −7.81004 −0.878698 −0.439349 0.898316i \(-0.644791\pi\)
−0.439349 + 0.898316i \(0.644791\pi\)
\(80\) 1.13037 0.126380
\(81\) 0 0
\(82\) 9.51102 1.05032
\(83\) 3.33410 0.365964 0.182982 0.983116i \(-0.441425\pi\)
0.182982 + 0.983116i \(0.441425\pi\)
\(84\) 0 0
\(85\) −1.61520 −0.175193
\(86\) −8.07397 −0.870639
\(87\) 0 0
\(88\) −2.15546 −0.229773
\(89\) 11.9145 1.26293 0.631466 0.775403i \(-0.282453\pi\)
0.631466 + 0.775403i \(0.282453\pi\)
\(90\) 0 0
\(91\) 17.3738 1.82127
\(92\) −0.336021 −0.0350327
\(93\) 0 0
\(94\) −14.2541 −1.47019
\(95\) −1.00000 −0.102598
\(96\) 0 0
\(97\) −13.3478 −1.35526 −0.677631 0.735402i \(-0.736993\pi\)
−0.677631 + 0.735402i \(0.736993\pi\)
\(98\) −28.0421 −2.83268
\(99\) 0 0
\(100\) 2.96714 0.296714
\(101\) −3.72067 −0.370221 −0.185110 0.982718i \(-0.559264\pi\)
−0.185110 + 0.982718i \(0.559264\pi\)
\(102\) 0 0
\(103\) −18.7975 −1.85218 −0.926088 0.377308i \(-0.876850\pi\)
−0.926088 + 0.377308i \(0.876850\pi\)
\(104\) 8.46263 0.829829
\(105\) 0 0
\(106\) 26.7788 2.60098
\(107\) 5.33910 0.516150 0.258075 0.966125i \(-0.416912\pi\)
0.258075 + 0.966125i \(0.416912\pi\)
\(108\) 0 0
\(109\) 16.7781 1.60706 0.803528 0.595268i \(-0.202954\pi\)
0.803528 + 0.595268i \(0.202954\pi\)
\(110\) 2.22871 0.212499
\(111\) 0 0
\(112\) 5.00211 0.472655
\(113\) −9.64670 −0.907485 −0.453742 0.891133i \(-0.649911\pi\)
−0.453742 + 0.891133i \(0.649911\pi\)
\(114\) 0 0
\(115\) 0.113248 0.0105604
\(116\) −3.22268 −0.299218
\(117\) 0 0
\(118\) 1.96998 0.181351
\(119\) −7.14754 −0.655214
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −8.41809 −0.762138
\(123\) 0 0
\(124\) −12.3818 −1.11191
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 0.515860 0.0457752 0.0228876 0.999738i \(-0.492714\pi\)
0.0228876 + 0.999738i \(0.492714\pi\)
\(128\) 15.2276 1.34594
\(129\) 0 0
\(130\) −8.75019 −0.767442
\(131\) 2.12758 0.185888 0.0929439 0.995671i \(-0.470372\pi\)
0.0929439 + 0.995671i \(0.470372\pi\)
\(132\) 0 0
\(133\) −4.42518 −0.383712
\(134\) 27.2331 2.35258
\(135\) 0 0
\(136\) −3.48150 −0.298536
\(137\) −3.76917 −0.322022 −0.161011 0.986953i \(-0.551475\pi\)
−0.161011 + 0.986953i \(0.551475\pi\)
\(138\) 0 0
\(139\) −11.2237 −0.951981 −0.475990 0.879451i \(-0.657910\pi\)
−0.475990 + 0.879451i \(0.657910\pi\)
\(140\) 13.1301 1.10970
\(141\) 0 0
\(142\) 9.54778 0.801232
\(143\) −3.92613 −0.328319
\(144\) 0 0
\(145\) 1.08612 0.0901976
\(146\) 4.29418 0.355389
\(147\) 0 0
\(148\) −17.0731 −1.40340
\(149\) −21.0620 −1.72546 −0.862732 0.505662i \(-0.831248\pi\)
−0.862732 + 0.505662i \(0.831248\pi\)
\(150\) 0 0
\(151\) 7.46759 0.607704 0.303852 0.952719i \(-0.401727\pi\)
0.303852 + 0.952719i \(0.401727\pi\)
\(152\) −2.15546 −0.174831
\(153\) 0 0
\(154\) 9.86243 0.794738
\(155\) 4.17296 0.335181
\(156\) 0 0
\(157\) −5.84405 −0.466406 −0.233203 0.972428i \(-0.574921\pi\)
−0.233203 + 0.972428i \(0.574921\pi\)
\(158\) 17.4063 1.38477
\(159\) 0 0
\(160\) −6.83020 −0.539975
\(161\) 0.501142 0.0394955
\(162\) 0 0
\(163\) −20.3077 −1.59062 −0.795311 0.606202i \(-0.792692\pi\)
−0.795311 + 0.606202i \(0.792692\pi\)
\(164\) −12.6623 −0.988757
\(165\) 0 0
\(166\) −7.43072 −0.576736
\(167\) −10.6177 −0.821625 −0.410812 0.911720i \(-0.634755\pi\)
−0.410812 + 0.911720i \(0.634755\pi\)
\(168\) 0 0
\(169\) 2.41448 0.185729
\(170\) 3.59980 0.276092
\(171\) 0 0
\(172\) 10.7491 0.819610
\(173\) −24.7343 −1.88051 −0.940257 0.340466i \(-0.889415\pi\)
−0.940257 + 0.340466i \(0.889415\pi\)
\(174\) 0 0
\(175\) −4.42518 −0.334512
\(176\) −1.13037 −0.0852051
\(177\) 0 0
\(178\) −26.5539 −1.99030
\(179\) 14.9732 1.11915 0.559574 0.828781i \(-0.310965\pi\)
0.559574 + 0.828781i \(0.310965\pi\)
\(180\) 0 0
\(181\) −11.2782 −0.838298 −0.419149 0.907917i \(-0.637672\pi\)
−0.419149 + 0.907917i \(0.637672\pi\)
\(182\) −38.7212 −2.87020
\(183\) 0 0
\(184\) 0.244101 0.0179954
\(185\) 5.75406 0.423047
\(186\) 0 0
\(187\) 1.61520 0.118115
\(188\) 18.9768 1.38403
\(189\) 0 0
\(190\) 2.22871 0.161687
\(191\) −22.3038 −1.61385 −0.806923 0.590656i \(-0.798869\pi\)
−0.806923 + 0.590656i \(0.798869\pi\)
\(192\) 0 0
\(193\) 25.1845 1.81282 0.906412 0.422395i \(-0.138811\pi\)
0.906412 + 0.422395i \(0.138811\pi\)
\(194\) 29.7483 2.13580
\(195\) 0 0
\(196\) 37.3332 2.66666
\(197\) 10.4483 0.744413 0.372207 0.928150i \(-0.378601\pi\)
0.372207 + 0.928150i \(0.378601\pi\)
\(198\) 0 0
\(199\) −6.40716 −0.454191 −0.227096 0.973872i \(-0.572923\pi\)
−0.227096 + 0.973872i \(0.572923\pi\)
\(200\) −2.15546 −0.152414
\(201\) 0 0
\(202\) 8.29229 0.583444
\(203\) 4.80629 0.337336
\(204\) 0 0
\(205\) 4.26750 0.298055
\(206\) 41.8942 2.91891
\(207\) 0 0
\(208\) 4.43799 0.307719
\(209\) 1.00000 0.0691714
\(210\) 0 0
\(211\) 7.96892 0.548603 0.274302 0.961644i \(-0.411553\pi\)
0.274302 + 0.961644i \(0.411553\pi\)
\(212\) −35.6513 −2.44854
\(213\) 0 0
\(214\) −11.8993 −0.813418
\(215\) −3.62271 −0.247067
\(216\) 0 0
\(217\) 18.4661 1.25356
\(218\) −37.3936 −2.53261
\(219\) 0 0
\(220\) −2.96714 −0.200044
\(221\) −6.34147 −0.426574
\(222\) 0 0
\(223\) −23.9096 −1.60111 −0.800553 0.599262i \(-0.795461\pi\)
−0.800553 + 0.599262i \(0.795461\pi\)
\(224\) −30.2249 −2.01948
\(225\) 0 0
\(226\) 21.4997 1.43014
\(227\) 10.0128 0.664575 0.332287 0.943178i \(-0.392180\pi\)
0.332287 + 0.943178i \(0.392180\pi\)
\(228\) 0 0
\(229\) 10.4511 0.690629 0.345314 0.938487i \(-0.387772\pi\)
0.345314 + 0.938487i \(0.387772\pi\)
\(230\) −0.252396 −0.0166425
\(231\) 0 0
\(232\) 2.34110 0.153701
\(233\) 4.56505 0.299066 0.149533 0.988757i \(-0.452223\pi\)
0.149533 + 0.988757i \(0.452223\pi\)
\(234\) 0 0
\(235\) −6.39567 −0.417207
\(236\) −2.62268 −0.170722
\(237\) 0 0
\(238\) 15.9298 1.03257
\(239\) 15.3794 0.994808 0.497404 0.867519i \(-0.334287\pi\)
0.497404 + 0.867519i \(0.334287\pi\)
\(240\) 0 0
\(241\) 17.8737 1.15135 0.575673 0.817680i \(-0.304740\pi\)
0.575673 + 0.817680i \(0.304740\pi\)
\(242\) −2.22871 −0.143267
\(243\) 0 0
\(244\) 11.2072 0.717469
\(245\) −12.5822 −0.803849
\(246\) 0 0
\(247\) −3.92613 −0.249814
\(248\) 8.99468 0.571163
\(249\) 0 0
\(250\) 2.22871 0.140956
\(251\) 10.0425 0.633878 0.316939 0.948446i \(-0.397345\pi\)
0.316939 + 0.948446i \(0.397345\pi\)
\(252\) 0 0
\(253\) −0.113248 −0.00711982
\(254\) −1.14970 −0.0721387
\(255\) 0 0
\(256\) −8.01431 −0.500895
\(257\) 10.7636 0.671416 0.335708 0.941966i \(-0.391025\pi\)
0.335708 + 0.941966i \(0.391025\pi\)
\(258\) 0 0
\(259\) 25.4628 1.58218
\(260\) 11.6494 0.722463
\(261\) 0 0
\(262\) −4.74176 −0.292947
\(263\) −22.9691 −1.41634 −0.708169 0.706043i \(-0.750478\pi\)
−0.708169 + 0.706043i \(0.750478\pi\)
\(264\) 0 0
\(265\) 12.0154 0.738099
\(266\) 9.86243 0.604705
\(267\) 0 0
\(268\) −36.2562 −2.21470
\(269\) 20.5868 1.25520 0.627600 0.778536i \(-0.284037\pi\)
0.627600 + 0.778536i \(0.284037\pi\)
\(270\) 0 0
\(271\) −4.27052 −0.259416 −0.129708 0.991552i \(-0.541404\pi\)
−0.129708 + 0.991552i \(0.541404\pi\)
\(272\) −1.82578 −0.110704
\(273\) 0 0
\(274\) 8.40038 0.507485
\(275\) 1.00000 0.0603023
\(276\) 0 0
\(277\) −14.6746 −0.881712 −0.440856 0.897578i \(-0.645325\pi\)
−0.440856 + 0.897578i \(0.645325\pi\)
\(278\) 25.0143 1.50026
\(279\) 0 0
\(280\) −9.53832 −0.570024
\(281\) 24.1329 1.43965 0.719824 0.694157i \(-0.244222\pi\)
0.719824 + 0.694157i \(0.244222\pi\)
\(282\) 0 0
\(283\) 0.197192 0.0117218 0.00586092 0.999983i \(-0.498134\pi\)
0.00586092 + 0.999983i \(0.498134\pi\)
\(284\) −12.7112 −0.754272
\(285\) 0 0
\(286\) 8.75019 0.517410
\(287\) 18.8845 1.11472
\(288\) 0 0
\(289\) −14.3911 −0.846537
\(290\) −2.42065 −0.142146
\(291\) 0 0
\(292\) −5.71695 −0.334559
\(293\) −2.73471 −0.159763 −0.0798817 0.996804i \(-0.525454\pi\)
−0.0798817 + 0.996804i \(0.525454\pi\)
\(294\) 0 0
\(295\) 0.883911 0.0514633
\(296\) 12.4027 0.720891
\(297\) 0 0
\(298\) 46.9410 2.71922
\(299\) 0.444625 0.0257133
\(300\) 0 0
\(301\) −16.0312 −0.924021
\(302\) −16.6431 −0.957702
\(303\) 0 0
\(304\) −1.13037 −0.0648313
\(305\) −3.77712 −0.216277
\(306\) 0 0
\(307\) −16.7313 −0.954905 −0.477452 0.878658i \(-0.658440\pi\)
−0.477452 + 0.878658i \(0.658440\pi\)
\(308\) −13.1301 −0.748158
\(309\) 0 0
\(310\) −9.30032 −0.528222
\(311\) 14.8941 0.844565 0.422283 0.906464i \(-0.361229\pi\)
0.422283 + 0.906464i \(0.361229\pi\)
\(312\) 0 0
\(313\) 8.89539 0.502797 0.251399 0.967884i \(-0.419109\pi\)
0.251399 + 0.967884i \(0.419109\pi\)
\(314\) 13.0247 0.735026
\(315\) 0 0
\(316\) −23.1735 −1.30361
\(317\) −6.16319 −0.346159 −0.173079 0.984908i \(-0.555372\pi\)
−0.173079 + 0.984908i \(0.555372\pi\)
\(318\) 0 0
\(319\) −1.08612 −0.0608112
\(320\) 12.9618 0.724585
\(321\) 0 0
\(322\) −1.11690 −0.0622423
\(323\) 1.61520 0.0898720
\(324\) 0 0
\(325\) −3.92613 −0.217782
\(326\) 45.2599 2.50671
\(327\) 0 0
\(328\) 9.19846 0.507900
\(329\) −28.3020 −1.56034
\(330\) 0 0
\(331\) 17.5144 0.962681 0.481340 0.876534i \(-0.340150\pi\)
0.481340 + 0.876534i \(0.340150\pi\)
\(332\) 9.89272 0.542933
\(333\) 0 0
\(334\) 23.6638 1.29483
\(335\) 12.2192 0.667609
\(336\) 0 0
\(337\) −34.0733 −1.85609 −0.928045 0.372467i \(-0.878512\pi\)
−0.928045 + 0.372467i \(0.878512\pi\)
\(338\) −5.38117 −0.292697
\(339\) 0 0
\(340\) −4.79251 −0.259911
\(341\) −4.17296 −0.225979
\(342\) 0 0
\(343\) −24.7024 −1.33380
\(344\) −7.80863 −0.421013
\(345\) 0 0
\(346\) 55.1255 2.96357
\(347\) −14.8065 −0.794856 −0.397428 0.917633i \(-0.630097\pi\)
−0.397428 + 0.917633i \(0.630097\pi\)
\(348\) 0 0
\(349\) −20.2032 −1.08145 −0.540727 0.841198i \(-0.681851\pi\)
−0.540727 + 0.841198i \(0.681851\pi\)
\(350\) 9.86243 0.527169
\(351\) 0 0
\(352\) 6.83020 0.364051
\(353\) 34.8488 1.85481 0.927407 0.374053i \(-0.122032\pi\)
0.927407 + 0.374053i \(0.122032\pi\)
\(354\) 0 0
\(355\) 4.28400 0.227371
\(356\) 35.3519 1.87365
\(357\) 0 0
\(358\) −33.3708 −1.76370
\(359\) 25.8010 1.36173 0.680863 0.732410i \(-0.261605\pi\)
0.680863 + 0.732410i \(0.261605\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 25.1357 1.32110
\(363\) 0 0
\(364\) 51.5505 2.70198
\(365\) 1.92676 0.100851
\(366\) 0 0
\(367\) 12.6344 0.659510 0.329755 0.944066i \(-0.393034\pi\)
0.329755 + 0.944066i \(0.393034\pi\)
\(368\) 0.128012 0.00667310
\(369\) 0 0
\(370\) −12.8241 −0.666694
\(371\) 53.1702 2.76046
\(372\) 0 0
\(373\) 31.3623 1.62388 0.811940 0.583741i \(-0.198412\pi\)
0.811940 + 0.583741i \(0.198412\pi\)
\(374\) −3.59980 −0.186141
\(375\) 0 0
\(376\) −13.7856 −0.710940
\(377\) 4.26426 0.219620
\(378\) 0 0
\(379\) −17.2730 −0.887256 −0.443628 0.896211i \(-0.646309\pi\)
−0.443628 + 0.896211i \(0.646309\pi\)
\(380\) −2.96714 −0.152211
\(381\) 0 0
\(382\) 49.7086 2.54332
\(383\) −1.96340 −0.100325 −0.0501625 0.998741i \(-0.515974\pi\)
−0.0501625 + 0.998741i \(0.515974\pi\)
\(384\) 0 0
\(385\) 4.42518 0.225528
\(386\) −56.1290 −2.85689
\(387\) 0 0
\(388\) −39.6047 −2.01062
\(389\) −27.2460 −1.38143 −0.690714 0.723128i \(-0.742704\pi\)
−0.690714 + 0.723128i \(0.742704\pi\)
\(390\) 0 0
\(391\) −0.182917 −0.00925054
\(392\) −27.1206 −1.36979
\(393\) 0 0
\(394\) −23.2863 −1.17315
\(395\) 7.81004 0.392966
\(396\) 0 0
\(397\) 24.1194 1.21052 0.605258 0.796029i \(-0.293070\pi\)
0.605258 + 0.796029i \(0.293070\pi\)
\(398\) 14.2797 0.715776
\(399\) 0 0
\(400\) −1.13037 −0.0565187
\(401\) 18.6773 0.932699 0.466349 0.884601i \(-0.345569\pi\)
0.466349 + 0.884601i \(0.345569\pi\)
\(402\) 0 0
\(403\) 16.3836 0.816125
\(404\) −11.0397 −0.549248
\(405\) 0 0
\(406\) −10.7118 −0.531619
\(407\) −5.75406 −0.285218
\(408\) 0 0
\(409\) −19.9442 −0.986176 −0.493088 0.869979i \(-0.664132\pi\)
−0.493088 + 0.869979i \(0.664132\pi\)
\(410\) −9.51102 −0.469716
\(411\) 0 0
\(412\) −55.7748 −2.74783
\(413\) 3.91146 0.192471
\(414\) 0 0
\(415\) −3.33410 −0.163664
\(416\) −26.8162 −1.31477
\(417\) 0 0
\(418\) −2.22871 −0.109010
\(419\) −22.0961 −1.07946 −0.539731 0.841837i \(-0.681474\pi\)
−0.539731 + 0.841837i \(0.681474\pi\)
\(420\) 0 0
\(421\) −25.4045 −1.23814 −0.619070 0.785336i \(-0.712490\pi\)
−0.619070 + 0.785336i \(0.712490\pi\)
\(422\) −17.7604 −0.864563
\(423\) 0 0
\(424\) 25.8987 1.25775
\(425\) 1.61520 0.0783486
\(426\) 0 0
\(427\) −16.7144 −0.808868
\(428\) 15.8418 0.765744
\(429\) 0 0
\(430\) 8.07397 0.389361
\(431\) 3.51614 0.169367 0.0846833 0.996408i \(-0.473012\pi\)
0.0846833 + 0.996408i \(0.473012\pi\)
\(432\) 0 0
\(433\) −9.71737 −0.466987 −0.233493 0.972358i \(-0.575016\pi\)
−0.233493 + 0.972358i \(0.575016\pi\)
\(434\) −41.1556 −1.97553
\(435\) 0 0
\(436\) 49.7831 2.38418
\(437\) −0.113248 −0.00541737
\(438\) 0 0
\(439\) 0.888955 0.0424275 0.0212138 0.999775i \(-0.493247\pi\)
0.0212138 + 0.999775i \(0.493247\pi\)
\(440\) 2.15546 0.102758
\(441\) 0 0
\(442\) 14.1333 0.672252
\(443\) −5.44113 −0.258516 −0.129258 0.991611i \(-0.541260\pi\)
−0.129258 + 0.991611i \(0.541260\pi\)
\(444\) 0 0
\(445\) −11.9145 −0.564801
\(446\) 53.2875 2.52324
\(447\) 0 0
\(448\) 57.3582 2.70992
\(449\) −21.6076 −1.01972 −0.509862 0.860256i \(-0.670303\pi\)
−0.509862 + 0.860256i \(0.670303\pi\)
\(450\) 0 0
\(451\) −4.26750 −0.200949
\(452\) −28.6231 −1.34632
\(453\) 0 0
\(454\) −22.3157 −1.04733
\(455\) −17.3738 −0.814498
\(456\) 0 0
\(457\) −29.1996 −1.36590 −0.682950 0.730465i \(-0.739303\pi\)
−0.682950 + 0.730465i \(0.739303\pi\)
\(458\) −23.2925 −1.08839
\(459\) 0 0
\(460\) 0.336021 0.0156671
\(461\) 32.2335 1.50126 0.750631 0.660722i \(-0.229750\pi\)
0.750631 + 0.660722i \(0.229750\pi\)
\(462\) 0 0
\(463\) −11.8543 −0.550917 −0.275459 0.961313i \(-0.588830\pi\)
−0.275459 + 0.961313i \(0.588830\pi\)
\(464\) 1.22772 0.0569957
\(465\) 0 0
\(466\) −10.1742 −0.471309
\(467\) 31.4900 1.45718 0.728592 0.684948i \(-0.240175\pi\)
0.728592 + 0.684948i \(0.240175\pi\)
\(468\) 0 0
\(469\) 54.0724 2.49683
\(470\) 14.2541 0.657491
\(471\) 0 0
\(472\) 1.90524 0.0876957
\(473\) 3.62271 0.166573
\(474\) 0 0
\(475\) 1.00000 0.0458831
\(476\) −21.2077 −0.972055
\(477\) 0 0
\(478\) −34.2761 −1.56775
\(479\) −15.1565 −0.692519 −0.346259 0.938139i \(-0.612548\pi\)
−0.346259 + 0.938139i \(0.612548\pi\)
\(480\) 0 0
\(481\) 22.5912 1.03007
\(482\) −39.8353 −1.81445
\(483\) 0 0
\(484\) 2.96714 0.134870
\(485\) 13.3478 0.606092
\(486\) 0 0
\(487\) 28.0154 1.26950 0.634749 0.772718i \(-0.281103\pi\)
0.634749 + 0.772718i \(0.281103\pi\)
\(488\) −8.14145 −0.368546
\(489\) 0 0
\(490\) 28.0421 1.26681
\(491\) 1.56411 0.0705873 0.0352937 0.999377i \(-0.488763\pi\)
0.0352937 + 0.999377i \(0.488763\pi\)
\(492\) 0 0
\(493\) −1.75430 −0.0790099
\(494\) 8.75019 0.393690
\(495\) 0 0
\(496\) 4.71701 0.211800
\(497\) 18.9575 0.850359
\(498\) 0 0
\(499\) 15.4416 0.691263 0.345631 0.938370i \(-0.387665\pi\)
0.345631 + 0.938370i \(0.387665\pi\)
\(500\) −2.96714 −0.132694
\(501\) 0 0
\(502\) −22.3818 −0.998950
\(503\) 23.3185 1.03972 0.519861 0.854251i \(-0.325984\pi\)
0.519861 + 0.854251i \(0.325984\pi\)
\(504\) 0 0
\(505\) 3.72067 0.165568
\(506\) 0.252396 0.0112204
\(507\) 0 0
\(508\) 1.53063 0.0679106
\(509\) −32.7538 −1.45178 −0.725892 0.687808i \(-0.758573\pi\)
−0.725892 + 0.687808i \(0.758573\pi\)
\(510\) 0 0
\(511\) 8.52625 0.377179
\(512\) −12.5936 −0.556565
\(513\) 0 0
\(514\) −23.9889 −1.05811
\(515\) 18.7975 0.828318
\(516\) 0 0
\(517\) 6.39567 0.281281
\(518\) −56.7490 −2.49341
\(519\) 0 0
\(520\) −8.46263 −0.371111
\(521\) −38.5714 −1.68984 −0.844922 0.534889i \(-0.820353\pi\)
−0.844922 + 0.534889i \(0.820353\pi\)
\(522\) 0 0
\(523\) 34.9926 1.53012 0.765060 0.643959i \(-0.222709\pi\)
0.765060 + 0.643959i \(0.222709\pi\)
\(524\) 6.31283 0.275777
\(525\) 0 0
\(526\) 51.1915 2.23205
\(527\) −6.74016 −0.293606
\(528\) 0 0
\(529\) −22.9872 −0.999442
\(530\) −26.7788 −1.16319
\(531\) 0 0
\(532\) −13.1301 −0.569263
\(533\) 16.7548 0.725730
\(534\) 0 0
\(535\) −5.33910 −0.230829
\(536\) 26.3382 1.13764
\(537\) 0 0
\(538\) −45.8820 −1.97811
\(539\) 12.5822 0.541955
\(540\) 0 0
\(541\) 35.1455 1.51102 0.755511 0.655136i \(-0.227389\pi\)
0.755511 + 0.655136i \(0.227389\pi\)
\(542\) 9.51774 0.408822
\(543\) 0 0
\(544\) 11.0321 0.472999
\(545\) −16.7781 −0.718697
\(546\) 0 0
\(547\) 2.79933 0.119691 0.0598454 0.998208i \(-0.480939\pi\)
0.0598454 + 0.998208i \(0.480939\pi\)
\(548\) −11.1836 −0.477741
\(549\) 0 0
\(550\) −2.22871 −0.0950324
\(551\) −1.08612 −0.0462704
\(552\) 0 0
\(553\) 34.5608 1.46968
\(554\) 32.7054 1.38952
\(555\) 0 0
\(556\) −33.3022 −1.41233
\(557\) 27.8118 1.17843 0.589213 0.807978i \(-0.299438\pi\)
0.589213 + 0.807978i \(0.299438\pi\)
\(558\) 0 0
\(559\) −14.2232 −0.601579
\(560\) −5.00211 −0.211378
\(561\) 0 0
\(562\) −53.7852 −2.26879
\(563\) −26.4265 −1.11374 −0.556872 0.830598i \(-0.687999\pi\)
−0.556872 + 0.830598i \(0.687999\pi\)
\(564\) 0 0
\(565\) 9.64670 0.405840
\(566\) −0.439483 −0.0184728
\(567\) 0 0
\(568\) 9.23401 0.387451
\(569\) −15.1625 −0.635643 −0.317822 0.948151i \(-0.602951\pi\)
−0.317822 + 0.948151i \(0.602951\pi\)
\(570\) 0 0
\(571\) −11.4144 −0.477677 −0.238838 0.971059i \(-0.576767\pi\)
−0.238838 + 0.971059i \(0.576767\pi\)
\(572\) −11.6494 −0.487084
\(573\) 0 0
\(574\) −42.0880 −1.75672
\(575\) −0.113248 −0.00472276
\(576\) 0 0
\(577\) −9.33855 −0.388769 −0.194385 0.980925i \(-0.562271\pi\)
−0.194385 + 0.980925i \(0.562271\pi\)
\(578\) 32.0736 1.33409
\(579\) 0 0
\(580\) 3.22268 0.133814
\(581\) −14.7540 −0.612098
\(582\) 0 0
\(583\) −12.0154 −0.497626
\(584\) 4.15306 0.171855
\(585\) 0 0
\(586\) 6.09486 0.251776
\(587\) −9.38542 −0.387378 −0.193689 0.981063i \(-0.562045\pi\)
−0.193689 + 0.981063i \(0.562045\pi\)
\(588\) 0 0
\(589\) −4.17296 −0.171944
\(590\) −1.96998 −0.0811027
\(591\) 0 0
\(592\) 6.50424 0.267322
\(593\) 35.6523 1.46406 0.732032 0.681270i \(-0.238572\pi\)
0.732032 + 0.681270i \(0.238572\pi\)
\(594\) 0 0
\(595\) 7.14754 0.293021
\(596\) −62.4937 −2.55984
\(597\) 0 0
\(598\) −0.990939 −0.0405225
\(599\) −37.1404 −1.51751 −0.758757 0.651373i \(-0.774193\pi\)
−0.758757 + 0.651373i \(0.774193\pi\)
\(600\) 0 0
\(601\) 12.2448 0.499474 0.249737 0.968314i \(-0.419656\pi\)
0.249737 + 0.968314i \(0.419656\pi\)
\(602\) 35.7288 1.45620
\(603\) 0 0
\(604\) 22.1574 0.901571
\(605\) −1.00000 −0.0406558
\(606\) 0 0
\(607\) 31.3652 1.27307 0.636536 0.771247i \(-0.280366\pi\)
0.636536 + 0.771247i \(0.280366\pi\)
\(608\) 6.83020 0.277001
\(609\) 0 0
\(610\) 8.41809 0.340839
\(611\) −25.1102 −1.01585
\(612\) 0 0
\(613\) −5.48484 −0.221531 −0.110765 0.993847i \(-0.535330\pi\)
−0.110765 + 0.993847i \(0.535330\pi\)
\(614\) 37.2891 1.50487
\(615\) 0 0
\(616\) 9.53832 0.384310
\(617\) 32.6913 1.31610 0.658052 0.752973i \(-0.271381\pi\)
0.658052 + 0.752973i \(0.271381\pi\)
\(618\) 0 0
\(619\) 1.71800 0.0690522 0.0345261 0.999404i \(-0.489008\pi\)
0.0345261 + 0.999404i \(0.489008\pi\)
\(620\) 12.3818 0.497263
\(621\) 0 0
\(622\) −33.1945 −1.33098
\(623\) −52.7238 −2.11233
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −19.8252 −0.792375
\(627\) 0 0
\(628\) −17.3401 −0.691946
\(629\) −9.29395 −0.370574
\(630\) 0 0
\(631\) 39.9355 1.58981 0.794903 0.606737i \(-0.207522\pi\)
0.794903 + 0.606737i \(0.207522\pi\)
\(632\) 16.8343 0.669631
\(633\) 0 0
\(634\) 13.7359 0.545524
\(635\) −0.515860 −0.0204713
\(636\) 0 0
\(637\) −49.3994 −1.95728
\(638\) 2.42065 0.0958345
\(639\) 0 0
\(640\) −15.2276 −0.601924
\(641\) 3.50123 0.138290 0.0691452 0.997607i \(-0.477973\pi\)
0.0691452 + 0.997607i \(0.477973\pi\)
\(642\) 0 0
\(643\) 6.59740 0.260176 0.130088 0.991502i \(-0.458474\pi\)
0.130088 + 0.991502i \(0.458474\pi\)
\(644\) 1.48696 0.0585943
\(645\) 0 0
\(646\) −3.59980 −0.141632
\(647\) 24.8389 0.976518 0.488259 0.872699i \(-0.337632\pi\)
0.488259 + 0.872699i \(0.337632\pi\)
\(648\) 0 0
\(649\) −0.883911 −0.0346965
\(650\) 8.75019 0.343211
\(651\) 0 0
\(652\) −60.2557 −2.35980
\(653\) 17.5186 0.685555 0.342778 0.939417i \(-0.388632\pi\)
0.342778 + 0.939417i \(0.388632\pi\)
\(654\) 0 0
\(655\) −2.12758 −0.0831315
\(656\) 4.82387 0.188341
\(657\) 0 0
\(658\) 63.0768 2.45899
\(659\) −3.56748 −0.138969 −0.0694846 0.997583i \(-0.522135\pi\)
−0.0694846 + 0.997583i \(0.522135\pi\)
\(660\) 0 0
\(661\) −48.5242 −1.88737 −0.943687 0.330841i \(-0.892668\pi\)
−0.943687 + 0.330841i \(0.892668\pi\)
\(662\) −39.0346 −1.51712
\(663\) 0 0
\(664\) −7.18652 −0.278891
\(665\) 4.42518 0.171601
\(666\) 0 0
\(667\) 0.123001 0.00476262
\(668\) −31.5043 −1.21894
\(669\) 0 0
\(670\) −27.2331 −1.05211
\(671\) 3.77712 0.145814
\(672\) 0 0
\(673\) −0.476829 −0.0183804 −0.00919020 0.999958i \(-0.502925\pi\)
−0.00919020 + 0.999958i \(0.502925\pi\)
\(674\) 75.9394 2.92508
\(675\) 0 0
\(676\) 7.16409 0.275542
\(677\) −3.68052 −0.141454 −0.0707269 0.997496i \(-0.522532\pi\)
−0.0707269 + 0.997496i \(0.522532\pi\)
\(678\) 0 0
\(679\) 59.0664 2.26676
\(680\) 3.48150 0.133510
\(681\) 0 0
\(682\) 9.30032 0.356128
\(683\) −0.701724 −0.0268507 −0.0134254 0.999910i \(-0.504274\pi\)
−0.0134254 + 0.999910i \(0.504274\pi\)
\(684\) 0 0
\(685\) 3.76917 0.144013
\(686\) 55.0544 2.10199
\(687\) 0 0
\(688\) −4.09502 −0.156121
\(689\) 47.1739 1.79718
\(690\) 0 0
\(691\) 3.65425 0.139014 0.0695071 0.997581i \(-0.477857\pi\)
0.0695071 + 0.997581i \(0.477857\pi\)
\(692\) −73.3900 −2.78987
\(693\) 0 0
\(694\) 32.9994 1.25264
\(695\) 11.2237 0.425739
\(696\) 0 0
\(697\) −6.89287 −0.261086
\(698\) 45.0271 1.70430
\(699\) 0 0
\(700\) −13.1301 −0.496272
\(701\) 45.3852 1.71417 0.857087 0.515171i \(-0.172272\pi\)
0.857087 + 0.515171i \(0.172272\pi\)
\(702\) 0 0
\(703\) −5.75406 −0.217019
\(704\) −12.9618 −0.488515
\(705\) 0 0
\(706\) −77.6678 −2.92307
\(707\) 16.4647 0.619217
\(708\) 0 0
\(709\) 16.6965 0.627051 0.313525 0.949580i \(-0.398490\pi\)
0.313525 + 0.949580i \(0.398490\pi\)
\(710\) −9.54778 −0.358322
\(711\) 0 0
\(712\) −25.6813 −0.962446
\(713\) 0.472579 0.0176982
\(714\) 0 0
\(715\) 3.92613 0.146829
\(716\) 44.4274 1.66033
\(717\) 0 0
\(718\) −57.5030 −2.14599
\(719\) −16.1346 −0.601718 −0.300859 0.953669i \(-0.597273\pi\)
−0.300859 + 0.953669i \(0.597273\pi\)
\(720\) 0 0
\(721\) 83.1825 3.09788
\(722\) −2.22871 −0.0829439
\(723\) 0 0
\(724\) −33.4638 −1.24367
\(725\) −1.08612 −0.0403376
\(726\) 0 0
\(727\) −21.9546 −0.814251 −0.407126 0.913372i \(-0.633469\pi\)
−0.407126 + 0.913372i \(0.633469\pi\)
\(728\) −37.4487 −1.38794
\(729\) 0 0
\(730\) −4.29418 −0.158935
\(731\) 5.85140 0.216422
\(732\) 0 0
\(733\) −47.5004 −1.75447 −0.877234 0.480063i \(-0.840614\pi\)
−0.877234 + 0.480063i \(0.840614\pi\)
\(734\) −28.1584 −1.03935
\(735\) 0 0
\(736\) −0.773505 −0.0285118
\(737\) −12.2192 −0.450102
\(738\) 0 0
\(739\) 29.9890 1.10316 0.551581 0.834122i \(-0.314025\pi\)
0.551581 + 0.834122i \(0.314025\pi\)
\(740\) 17.0731 0.627619
\(741\) 0 0
\(742\) −118.501 −4.35030
\(743\) −2.24383 −0.0823181 −0.0411590 0.999153i \(-0.513105\pi\)
−0.0411590 + 0.999153i \(0.513105\pi\)
\(744\) 0 0
\(745\) 21.0620 0.771651
\(746\) −69.8974 −2.55913
\(747\) 0 0
\(748\) 4.79251 0.175232
\(749\) −23.6265 −0.863293
\(750\) 0 0
\(751\) 29.0275 1.05923 0.529614 0.848239i \(-0.322337\pi\)
0.529614 + 0.848239i \(0.322337\pi\)
\(752\) −7.22949 −0.263632
\(753\) 0 0
\(754\) −9.50378 −0.346107
\(755\) −7.46759 −0.271774
\(756\) 0 0
\(757\) 47.0009 1.70828 0.854138 0.520046i \(-0.174085\pi\)
0.854138 + 0.520046i \(0.174085\pi\)
\(758\) 38.4965 1.39826
\(759\) 0 0
\(760\) 2.15546 0.0781869
\(761\) −46.6332 −1.69045 −0.845226 0.534409i \(-0.820534\pi\)
−0.845226 + 0.534409i \(0.820534\pi\)
\(762\) 0 0
\(763\) −74.2463 −2.68790
\(764\) −66.1784 −2.39425
\(765\) 0 0
\(766\) 4.37584 0.158106
\(767\) 3.47035 0.125307
\(768\) 0 0
\(769\) −22.6169 −0.815585 −0.407793 0.913075i \(-0.633701\pi\)
−0.407793 + 0.913075i \(0.633701\pi\)
\(770\) −9.86243 −0.355417
\(771\) 0 0
\(772\) 74.7260 2.68945
\(773\) −16.1951 −0.582499 −0.291249 0.956647i \(-0.594071\pi\)
−0.291249 + 0.956647i \(0.594071\pi\)
\(774\) 0 0
\(775\) −4.17296 −0.149897
\(776\) 28.7707 1.03281
\(777\) 0 0
\(778\) 60.7234 2.17704
\(779\) −4.26750 −0.152899
\(780\) 0 0
\(781\) −4.28400 −0.153294
\(782\) 0.407670 0.0145782
\(783\) 0 0
\(784\) −14.2226 −0.507950
\(785\) 5.84405 0.208583
\(786\) 0 0
\(787\) −27.6814 −0.986736 −0.493368 0.869821i \(-0.664234\pi\)
−0.493368 + 0.869821i \(0.664234\pi\)
\(788\) 31.0016 1.10439
\(789\) 0 0
\(790\) −17.4063 −0.619288
\(791\) 42.6884 1.51782
\(792\) 0 0
\(793\) −14.8295 −0.526609
\(794\) −53.7550 −1.90769
\(795\) 0 0
\(796\) −19.0109 −0.673824
\(797\) 4.49477 0.159213 0.0796065 0.996826i \(-0.474634\pi\)
0.0796065 + 0.996826i \(0.474634\pi\)
\(798\) 0 0
\(799\) 10.3303 0.365459
\(800\) 6.83020 0.241484
\(801\) 0 0
\(802\) −41.6262 −1.46987
\(803\) −1.92676 −0.0679938
\(804\) 0 0
\(805\) −0.501142 −0.0176629
\(806\) −36.5142 −1.28616
\(807\) 0 0
\(808\) 8.01978 0.282135
\(809\) −48.0468 −1.68924 −0.844618 0.535369i \(-0.820172\pi\)
−0.844618 + 0.535369i \(0.820172\pi\)
\(810\) 0 0
\(811\) 20.9156 0.734448 0.367224 0.930133i \(-0.380308\pi\)
0.367224 + 0.930133i \(0.380308\pi\)
\(812\) 14.2609 0.500460
\(813\) 0 0
\(814\) 12.8241 0.449485
\(815\) 20.3077 0.711347
\(816\) 0 0
\(817\) 3.62271 0.126743
\(818\) 44.4497 1.55415
\(819\) 0 0
\(820\) 12.6623 0.442186
\(821\) −10.7228 −0.374227 −0.187114 0.982338i \(-0.559913\pi\)
−0.187114 + 0.982338i \(0.559913\pi\)
\(822\) 0 0
\(823\) 42.5971 1.48484 0.742420 0.669935i \(-0.233678\pi\)
0.742420 + 0.669935i \(0.233678\pi\)
\(824\) 40.5174 1.41149
\(825\) 0 0
\(826\) −8.71751 −0.303321
\(827\) 15.3377 0.533343 0.266672 0.963787i \(-0.414076\pi\)
0.266672 + 0.963787i \(0.414076\pi\)
\(828\) 0 0
\(829\) −9.78901 −0.339986 −0.169993 0.985445i \(-0.554375\pi\)
−0.169993 + 0.985445i \(0.554375\pi\)
\(830\) 7.43072 0.257924
\(831\) 0 0
\(832\) 50.8896 1.76428
\(833\) 20.3228 0.704143
\(834\) 0 0
\(835\) 10.6177 0.367442
\(836\) 2.96714 0.102621
\(837\) 0 0
\(838\) 49.2456 1.70116
\(839\) 48.1417 1.66204 0.831019 0.556244i \(-0.187758\pi\)
0.831019 + 0.556244i \(0.187758\pi\)
\(840\) 0 0
\(841\) −27.8203 −0.959322
\(842\) 56.6192 1.95123
\(843\) 0 0
\(844\) 23.6449 0.813891
\(845\) −2.41448 −0.0830606
\(846\) 0 0
\(847\) −4.42518 −0.152051
\(848\) 13.5819 0.466403
\(849\) 0 0
\(850\) −3.59980 −0.123472
\(851\) 0.651634 0.0223377
\(852\) 0 0
\(853\) −41.0884 −1.40684 −0.703420 0.710775i \(-0.748345\pi\)
−0.703420 + 0.710775i \(0.748345\pi\)
\(854\) 37.2516 1.27472
\(855\) 0 0
\(856\) −11.5082 −0.393343
\(857\) 30.0628 1.02693 0.513464 0.858111i \(-0.328362\pi\)
0.513464 + 0.858111i \(0.328362\pi\)
\(858\) 0 0
\(859\) 9.99982 0.341190 0.170595 0.985341i \(-0.445431\pi\)
0.170595 + 0.985341i \(0.445431\pi\)
\(860\) −10.7491 −0.366541
\(861\) 0 0
\(862\) −7.83646 −0.266911
\(863\) −18.3253 −0.623800 −0.311900 0.950115i \(-0.600965\pi\)
−0.311900 + 0.950115i \(0.600965\pi\)
\(864\) 0 0
\(865\) 24.7343 0.840991
\(866\) 21.6572 0.735940
\(867\) 0 0
\(868\) 54.7915 1.85975
\(869\) −7.81004 −0.264937
\(870\) 0 0
\(871\) 47.9743 1.62555
\(872\) −36.1647 −1.22469
\(873\) 0 0
\(874\) 0.252396 0.00853742
\(875\) 4.42518 0.149598
\(876\) 0 0
\(877\) 54.2556 1.83208 0.916040 0.401086i \(-0.131367\pi\)
0.916040 + 0.401086i \(0.131367\pi\)
\(878\) −1.98122 −0.0668629
\(879\) 0 0
\(880\) 1.13037 0.0381049
\(881\) 20.9741 0.706636 0.353318 0.935503i \(-0.385053\pi\)
0.353318 + 0.935503i \(0.385053\pi\)
\(882\) 0 0
\(883\) −16.2916 −0.548256 −0.274128 0.961693i \(-0.588389\pi\)
−0.274128 + 0.961693i \(0.588389\pi\)
\(884\) −18.8160 −0.632851
\(885\) 0 0
\(886\) 12.1267 0.407404
\(887\) −41.2926 −1.38647 −0.693234 0.720712i \(-0.743815\pi\)
−0.693234 + 0.720712i \(0.743815\pi\)
\(888\) 0 0
\(889\) −2.28277 −0.0765618
\(890\) 26.5539 0.890089
\(891\) 0 0
\(892\) −70.9431 −2.37535
\(893\) 6.39567 0.214023
\(894\) 0 0
\(895\) −14.9732 −0.500498
\(896\) −67.3849 −2.25117
\(897\) 0 0
\(898\) 48.1569 1.60702
\(899\) 4.53235 0.151162
\(900\) 0 0
\(901\) −19.4072 −0.646548
\(902\) 9.51102 0.316682
\(903\) 0 0
\(904\) 20.7931 0.691569
\(905\) 11.2782 0.374898
\(906\) 0 0
\(907\) 35.5669 1.18098 0.590490 0.807045i \(-0.298935\pi\)
0.590490 + 0.807045i \(0.298935\pi\)
\(908\) 29.7094 0.985942
\(909\) 0 0
\(910\) 38.7212 1.28359
\(911\) −26.1812 −0.867422 −0.433711 0.901052i \(-0.642796\pi\)
−0.433711 + 0.901052i \(0.642796\pi\)
\(912\) 0 0
\(913\) 3.33410 0.110342
\(914\) 65.0774 2.15257
\(915\) 0 0
\(916\) 31.0099 1.02459
\(917\) −9.41494 −0.310909
\(918\) 0 0
\(919\) 0.328420 0.0108336 0.00541678 0.999985i \(-0.498276\pi\)
0.00541678 + 0.999985i \(0.498276\pi\)
\(920\) −0.244101 −0.00804779
\(921\) 0 0
\(922\) −71.8390 −2.36589
\(923\) 16.8195 0.553622
\(924\) 0 0
\(925\) −5.75406 −0.189192
\(926\) 26.4198 0.868210
\(927\) 0 0
\(928\) −7.41844 −0.243522
\(929\) −0.642511 −0.0210801 −0.0105401 0.999944i \(-0.503355\pi\)
−0.0105401 + 0.999944i \(0.503355\pi\)
\(930\) 0 0
\(931\) 12.5822 0.412366
\(932\) 13.5451 0.443685
\(933\) 0 0
\(934\) −70.1820 −2.29643
\(935\) −1.61520 −0.0528226
\(936\) 0 0
\(937\) 19.2863 0.630055 0.315027 0.949083i \(-0.397986\pi\)
0.315027 + 0.949083i \(0.397986\pi\)
\(938\) −120.512 −3.93484
\(939\) 0 0
\(940\) −18.9768 −0.618955
\(941\) −19.4348 −0.633556 −0.316778 0.948500i \(-0.602601\pi\)
−0.316778 + 0.948500i \(0.602601\pi\)
\(942\) 0 0
\(943\) 0.483285 0.0157379
\(944\) 0.999149 0.0325195
\(945\) 0 0
\(946\) −8.07397 −0.262507
\(947\) 61.1924 1.98849 0.994243 0.107147i \(-0.0341716\pi\)
0.994243 + 0.107147i \(0.0341716\pi\)
\(948\) 0 0
\(949\) 7.56470 0.245560
\(950\) −2.22871 −0.0723088
\(951\) 0 0
\(952\) 15.4063 0.499320
\(953\) −3.19828 −0.103602 −0.0518012 0.998657i \(-0.516496\pi\)
−0.0518012 + 0.998657i \(0.516496\pi\)
\(954\) 0 0
\(955\) 22.3038 0.721734
\(956\) 45.6327 1.47587
\(957\) 0 0
\(958\) 33.7794 1.09136
\(959\) 16.6793 0.538601
\(960\) 0 0
\(961\) −13.5864 −0.438270
\(962\) −50.3491 −1.62332
\(963\) 0 0
\(964\) 53.0337 1.70810
\(965\) −25.1845 −0.810719
\(966\) 0 0
\(967\) 45.2536 1.45526 0.727629 0.685970i \(-0.240622\pi\)
0.727629 + 0.685970i \(0.240622\pi\)
\(968\) −2.15546 −0.0692793
\(969\) 0 0
\(970\) −29.7483 −0.955160
\(971\) 49.4103 1.58565 0.792826 0.609448i \(-0.208609\pi\)
0.792826 + 0.609448i \(0.208609\pi\)
\(972\) 0 0
\(973\) 49.6668 1.59225
\(974\) −62.4381 −2.00065
\(975\) 0 0
\(976\) −4.26955 −0.136665
\(977\) −48.8753 −1.56366 −0.781830 0.623492i \(-0.785714\pi\)
−0.781830 + 0.623492i \(0.785714\pi\)
\(978\) 0 0
\(979\) 11.9145 0.380789
\(980\) −37.3332 −1.19257
\(981\) 0 0
\(982\) −3.48594 −0.111241
\(983\) −16.7325 −0.533684 −0.266842 0.963740i \(-0.585980\pi\)
−0.266842 + 0.963740i \(0.585980\pi\)
\(984\) 0 0
\(985\) −10.4483 −0.332912
\(986\) 3.90983 0.124514
\(987\) 0 0
\(988\) −11.6494 −0.370615
\(989\) −0.410264 −0.0130456
\(990\) 0 0
\(991\) −46.6422 −1.48164 −0.740820 0.671704i \(-0.765563\pi\)
−0.740820 + 0.671704i \(0.765563\pi\)
\(992\) −28.5022 −0.904945
\(993\) 0 0
\(994\) −42.2507 −1.34011
\(995\) 6.40716 0.203121
\(996\) 0 0
\(997\) 30.3768 0.962043 0.481021 0.876709i \(-0.340266\pi\)
0.481021 + 0.876709i \(0.340266\pi\)
\(998\) −34.4149 −1.08938
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9405.2.a.v.1.1 5
3.2 odd 2 1045.2.a.d.1.5 5
15.14 odd 2 5225.2.a.j.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1045.2.a.d.1.5 5 3.2 odd 2
5225.2.a.j.1.1 5 15.14 odd 2
9405.2.a.v.1.1 5 1.1 even 1 trivial