Properties

Label 9360.2.a.w.1.1
Level $9360$
Weight $2$
Character 9360.1
Self dual yes
Analytic conductor $74.740$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9360,2,Mod(1,9360)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9360, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9360.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9360 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9360.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(74.7399762919\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 195)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 9360.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{5} +3.00000 q^{7} +O(q^{10})\) \(q-1.00000 q^{5} +3.00000 q^{7} -5.00000 q^{11} +1.00000 q^{13} -5.00000 q^{17} -2.00000 q^{19} -1.00000 q^{23} +1.00000 q^{25} -10.0000 q^{29} +2.00000 q^{31} -3.00000 q^{35} -3.00000 q^{37} +9.00000 q^{41} +4.00000 q^{43} +10.0000 q^{47} +2.00000 q^{49} -9.00000 q^{53} +5.00000 q^{55} -11.0000 q^{61} -1.00000 q^{65} +4.00000 q^{67} +15.0000 q^{71} +6.00000 q^{73} -15.0000 q^{77} +11.0000 q^{79} +8.00000 q^{83} +5.00000 q^{85} +11.0000 q^{89} +3.00000 q^{91} +2.00000 q^{95} -9.00000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 3.00000 1.13389 0.566947 0.823754i \(-0.308125\pi\)
0.566947 + 0.823754i \(0.308125\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −5.00000 −1.50756 −0.753778 0.657129i \(-0.771771\pi\)
−0.753778 + 0.657129i \(0.771771\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −5.00000 −1.21268 −0.606339 0.795206i \(-0.707363\pi\)
−0.606339 + 0.795206i \(0.707363\pi\)
\(18\) 0 0
\(19\) −2.00000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.00000 −0.208514 −0.104257 0.994550i \(-0.533247\pi\)
−0.104257 + 0.994550i \(0.533247\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −10.0000 −1.85695 −0.928477 0.371391i \(-0.878881\pi\)
−0.928477 + 0.371391i \(0.878881\pi\)
\(30\) 0 0
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.00000 −0.507093
\(36\) 0 0
\(37\) −3.00000 −0.493197 −0.246598 0.969118i \(-0.579313\pi\)
−0.246598 + 0.969118i \(0.579313\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 9.00000 1.40556 0.702782 0.711405i \(-0.251941\pi\)
0.702782 + 0.711405i \(0.251941\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 10.0000 1.45865 0.729325 0.684167i \(-0.239834\pi\)
0.729325 + 0.684167i \(0.239834\pi\)
\(48\) 0 0
\(49\) 2.00000 0.285714
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −9.00000 −1.23625 −0.618123 0.786082i \(-0.712106\pi\)
−0.618123 + 0.786082i \(0.712106\pi\)
\(54\) 0 0
\(55\) 5.00000 0.674200
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −11.0000 −1.40841 −0.704203 0.709999i \(-0.748695\pi\)
−0.704203 + 0.709999i \(0.748695\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.00000 −0.124035
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 15.0000 1.78017 0.890086 0.455792i \(-0.150644\pi\)
0.890086 + 0.455792i \(0.150644\pi\)
\(72\) 0 0
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −15.0000 −1.70941
\(78\) 0 0
\(79\) 11.0000 1.23760 0.618798 0.785550i \(-0.287620\pi\)
0.618798 + 0.785550i \(0.287620\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 8.00000 0.878114 0.439057 0.898459i \(-0.355313\pi\)
0.439057 + 0.898459i \(0.355313\pi\)
\(84\) 0 0
\(85\) 5.00000 0.542326
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 11.0000 1.16600 0.582999 0.812473i \(-0.301879\pi\)
0.582999 + 0.812473i \(0.301879\pi\)
\(90\) 0 0
\(91\) 3.00000 0.314485
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.00000 0.205196
\(96\) 0 0
\(97\) −9.00000 −0.913812 −0.456906 0.889515i \(-0.651042\pi\)
−0.456906 + 0.889515i \(0.651042\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 12.0000 1.19404 0.597022 0.802225i \(-0.296350\pi\)
0.597022 + 0.802225i \(0.296350\pi\)
\(102\) 0 0
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.00000 0.290021 0.145010 0.989430i \(-0.453678\pi\)
0.145010 + 0.989430i \(0.453678\pi\)
\(108\) 0 0
\(109\) 16.0000 1.53252 0.766261 0.642529i \(-0.222115\pi\)
0.766261 + 0.642529i \(0.222115\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2.00000 −0.188144 −0.0940721 0.995565i \(-0.529988\pi\)
−0.0940721 + 0.995565i \(0.529988\pi\)
\(114\) 0 0
\(115\) 1.00000 0.0932505
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −15.0000 −1.37505
\(120\) 0 0
\(121\) 14.0000 1.27273
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −14.0000 −1.24230 −0.621150 0.783692i \(-0.713334\pi\)
−0.621150 + 0.783692i \(0.713334\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 6.00000 0.524222 0.262111 0.965038i \(-0.415581\pi\)
0.262111 + 0.965038i \(0.415581\pi\)
\(132\) 0 0
\(133\) −6.00000 −0.520266
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) 0 0
\(139\) 17.0000 1.44192 0.720961 0.692976i \(-0.243701\pi\)
0.720961 + 0.692976i \(0.243701\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −5.00000 −0.418121
\(144\) 0 0
\(145\) 10.0000 0.830455
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 7.00000 0.573462 0.286731 0.958011i \(-0.407431\pi\)
0.286731 + 0.958011i \(0.407431\pi\)
\(150\) 0 0
\(151\) 12.0000 0.976546 0.488273 0.872691i \(-0.337627\pi\)
0.488273 + 0.872691i \(0.337627\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.00000 −0.160644
\(156\) 0 0
\(157\) 22.0000 1.75579 0.877896 0.478852i \(-0.158947\pi\)
0.877896 + 0.478852i \(0.158947\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −3.00000 −0.236433
\(162\) 0 0
\(163\) 11.0000 0.861586 0.430793 0.902451i \(-0.358234\pi\)
0.430793 + 0.902451i \(0.358234\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −8.00000 −0.619059 −0.309529 0.950890i \(-0.600171\pi\)
−0.309529 + 0.950890i \(0.600171\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.00000 0.152057 0.0760286 0.997106i \(-0.475776\pi\)
0.0760286 + 0.997106i \(0.475776\pi\)
\(174\) 0 0
\(175\) 3.00000 0.226779
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −6.00000 −0.448461 −0.224231 0.974536i \(-0.571987\pi\)
−0.224231 + 0.974536i \(0.571987\pi\)
\(180\) 0 0
\(181\) −23.0000 −1.70958 −0.854788 0.518977i \(-0.826313\pi\)
−0.854788 + 0.518977i \(0.826313\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.00000 0.220564
\(186\) 0 0
\(187\) 25.0000 1.82818
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −20.0000 −1.44715 −0.723575 0.690246i \(-0.757502\pi\)
−0.723575 + 0.690246i \(0.757502\pi\)
\(192\) 0 0
\(193\) 13.0000 0.935760 0.467880 0.883792i \(-0.345018\pi\)
0.467880 + 0.883792i \(0.345018\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 12.0000 0.854965 0.427482 0.904024i \(-0.359401\pi\)
0.427482 + 0.904024i \(0.359401\pi\)
\(198\) 0 0
\(199\) −4.00000 −0.283552 −0.141776 0.989899i \(-0.545281\pi\)
−0.141776 + 0.989899i \(0.545281\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −30.0000 −2.10559
\(204\) 0 0
\(205\) −9.00000 −0.628587
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 10.0000 0.691714
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −4.00000 −0.272798
\(216\) 0 0
\(217\) 6.00000 0.407307
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −5.00000 −0.336336
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −18.0000 −1.19470 −0.597351 0.801980i \(-0.703780\pi\)
−0.597351 + 0.801980i \(0.703780\pi\)
\(228\) 0 0
\(229\) −14.0000 −0.925146 −0.462573 0.886581i \(-0.653074\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 25.0000 1.63780 0.818902 0.573933i \(-0.194583\pi\)
0.818902 + 0.573933i \(0.194583\pi\)
\(234\) 0 0
\(235\) −10.0000 −0.652328
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 15.0000 0.970269 0.485135 0.874439i \(-0.338771\pi\)
0.485135 + 0.874439i \(0.338771\pi\)
\(240\) 0 0
\(241\) −14.0000 −0.901819 −0.450910 0.892570i \(-0.648900\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2.00000 −0.127775
\(246\) 0 0
\(247\) −2.00000 −0.127257
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 20.0000 1.26239 0.631194 0.775625i \(-0.282565\pi\)
0.631194 + 0.775625i \(0.282565\pi\)
\(252\) 0 0
\(253\) 5.00000 0.314347
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −18.0000 −1.12281 −0.561405 0.827541i \(-0.689739\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(258\) 0 0
\(259\) −9.00000 −0.559233
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 9.00000 0.552866
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −32.0000 −1.95107 −0.975537 0.219834i \(-0.929448\pi\)
−0.975537 + 0.219834i \(0.929448\pi\)
\(270\) 0 0
\(271\) 2.00000 0.121491 0.0607457 0.998153i \(-0.480652\pi\)
0.0607457 + 0.998153i \(0.480652\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −5.00000 −0.301511
\(276\) 0 0
\(277\) 26.0000 1.56219 0.781094 0.624413i \(-0.214662\pi\)
0.781094 + 0.624413i \(0.214662\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 10.0000 0.596550 0.298275 0.954480i \(-0.403589\pi\)
0.298275 + 0.954480i \(0.403589\pi\)
\(282\) 0 0
\(283\) 8.00000 0.475551 0.237775 0.971320i \(-0.423582\pi\)
0.237775 + 0.971320i \(0.423582\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 27.0000 1.59376
\(288\) 0 0
\(289\) 8.00000 0.470588
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −24.0000 −1.40209 −0.701047 0.713115i \(-0.747284\pi\)
−0.701047 + 0.713115i \(0.747284\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.00000 −0.0578315
\(300\) 0 0
\(301\) 12.0000 0.691669
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 11.0000 0.629858
\(306\) 0 0
\(307\) 19.0000 1.08439 0.542194 0.840254i \(-0.317594\pi\)
0.542194 + 0.840254i \(0.317594\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 24.0000 1.36092 0.680458 0.732787i \(-0.261781\pi\)
0.680458 + 0.732787i \(0.261781\pi\)
\(312\) 0 0
\(313\) −10.0000 −0.565233 −0.282617 0.959233i \(-0.591202\pi\)
−0.282617 + 0.959233i \(0.591202\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −12.0000 −0.673987 −0.336994 0.941507i \(-0.609410\pi\)
−0.336994 + 0.941507i \(0.609410\pi\)
\(318\) 0 0
\(319\) 50.0000 2.79946
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 10.0000 0.556415
\(324\) 0 0
\(325\) 1.00000 0.0554700
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 30.0000 1.65395
\(330\) 0 0
\(331\) −32.0000 −1.75888 −0.879440 0.476011i \(-0.842082\pi\)
−0.879440 + 0.476011i \(0.842082\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −4.00000 −0.218543
\(336\) 0 0
\(337\) 4.00000 0.217894 0.108947 0.994048i \(-0.465252\pi\)
0.108947 + 0.994048i \(0.465252\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −10.0000 −0.541530
\(342\) 0 0
\(343\) −15.0000 −0.809924
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.00000 −0.0536828 −0.0268414 0.999640i \(-0.508545\pi\)
−0.0268414 + 0.999640i \(0.508545\pi\)
\(348\) 0 0
\(349\) 20.0000 1.07058 0.535288 0.844670i \(-0.320203\pi\)
0.535288 + 0.844670i \(0.320203\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 14.0000 0.745145 0.372572 0.928003i \(-0.378476\pi\)
0.372572 + 0.928003i \(0.378476\pi\)
\(354\) 0 0
\(355\) −15.0000 −0.796117
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 16.0000 0.844448 0.422224 0.906492i \(-0.361250\pi\)
0.422224 + 0.906492i \(0.361250\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −6.00000 −0.314054
\(366\) 0 0
\(367\) −8.00000 −0.417597 −0.208798 0.977959i \(-0.566955\pi\)
−0.208798 + 0.977959i \(0.566955\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −27.0000 −1.40177
\(372\) 0 0
\(373\) 16.0000 0.828449 0.414224 0.910175i \(-0.364053\pi\)
0.414224 + 0.910175i \(0.364053\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −10.0000 −0.515026
\(378\) 0 0
\(379\) −6.00000 −0.308199 −0.154100 0.988055i \(-0.549248\pi\)
−0.154100 + 0.988055i \(0.549248\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −18.0000 −0.919757 −0.459879 0.887982i \(-0.652107\pi\)
−0.459879 + 0.887982i \(0.652107\pi\)
\(384\) 0 0
\(385\) 15.0000 0.764471
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 24.0000 1.21685 0.608424 0.793612i \(-0.291802\pi\)
0.608424 + 0.793612i \(0.291802\pi\)
\(390\) 0 0
\(391\) 5.00000 0.252861
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −11.0000 −0.553470
\(396\) 0 0
\(397\) −19.0000 −0.953583 −0.476791 0.879017i \(-0.658200\pi\)
−0.476791 + 0.879017i \(0.658200\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 18.0000 0.898877 0.449439 0.893311i \(-0.351624\pi\)
0.449439 + 0.893311i \(0.351624\pi\)
\(402\) 0 0
\(403\) 2.00000 0.0996271
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 15.0000 0.743522
\(408\) 0 0
\(409\) −26.0000 −1.28562 −0.642809 0.766027i \(-0.722231\pi\)
−0.642809 + 0.766027i \(0.722231\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −8.00000 −0.392705
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 26.0000 1.27018 0.635092 0.772437i \(-0.280962\pi\)
0.635092 + 0.772437i \(0.280962\pi\)
\(420\) 0 0
\(421\) 32.0000 1.55958 0.779792 0.626038i \(-0.215325\pi\)
0.779792 + 0.626038i \(0.215325\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −5.00000 −0.242536
\(426\) 0 0
\(427\) −33.0000 −1.59698
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −16.0000 −0.770693 −0.385346 0.922772i \(-0.625918\pi\)
−0.385346 + 0.922772i \(0.625918\pi\)
\(432\) 0 0
\(433\) 24.0000 1.15337 0.576683 0.816968i \(-0.304347\pi\)
0.576683 + 0.816968i \(0.304347\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.00000 0.0956730
\(438\) 0 0
\(439\) 33.0000 1.57500 0.787502 0.616312i \(-0.211374\pi\)
0.787502 + 0.616312i \(0.211374\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 35.0000 1.66290 0.831450 0.555599i \(-0.187511\pi\)
0.831450 + 0.555599i \(0.187511\pi\)
\(444\) 0 0
\(445\) −11.0000 −0.521450
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −15.0000 −0.707894 −0.353947 0.935266i \(-0.615161\pi\)
−0.353947 + 0.935266i \(0.615161\pi\)
\(450\) 0 0
\(451\) −45.0000 −2.11897
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −3.00000 −0.140642
\(456\) 0 0
\(457\) −13.0000 −0.608114 −0.304057 0.952654i \(-0.598341\pi\)
−0.304057 + 0.952654i \(0.598341\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −3.00000 −0.139724 −0.0698620 0.997557i \(-0.522256\pi\)
−0.0698620 + 0.997557i \(0.522256\pi\)
\(462\) 0 0
\(463\) −5.00000 −0.232370 −0.116185 0.993228i \(-0.537067\pi\)
−0.116185 + 0.993228i \(0.537067\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −29.0000 −1.34196 −0.670980 0.741475i \(-0.734126\pi\)
−0.670980 + 0.741475i \(0.734126\pi\)
\(468\) 0 0
\(469\) 12.0000 0.554109
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −20.0000 −0.919601
\(474\) 0 0
\(475\) −2.00000 −0.0917663
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 5.00000 0.228456 0.114228 0.993455i \(-0.463561\pi\)
0.114228 + 0.993455i \(0.463561\pi\)
\(480\) 0 0
\(481\) −3.00000 −0.136788
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 9.00000 0.408669
\(486\) 0 0
\(487\) −7.00000 −0.317200 −0.158600 0.987343i \(-0.550698\pi\)
−0.158600 + 0.987343i \(0.550698\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 16.0000 0.722070 0.361035 0.932552i \(-0.382424\pi\)
0.361035 + 0.932552i \(0.382424\pi\)
\(492\) 0 0
\(493\) 50.0000 2.25189
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 45.0000 2.01853
\(498\) 0 0
\(499\) −34.0000 −1.52205 −0.761025 0.648723i \(-0.775303\pi\)
−0.761025 + 0.648723i \(0.775303\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 12.0000 0.535054 0.267527 0.963550i \(-0.413794\pi\)
0.267527 + 0.963550i \(0.413794\pi\)
\(504\) 0 0
\(505\) −12.0000 −0.533993
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −21.0000 −0.930809 −0.465404 0.885098i \(-0.654091\pi\)
−0.465404 + 0.885098i \(0.654091\pi\)
\(510\) 0 0
\(511\) 18.0000 0.796273
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 4.00000 0.176261
\(516\) 0 0
\(517\) −50.0000 −2.19900
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 22.0000 0.963837 0.481919 0.876216i \(-0.339940\pi\)
0.481919 + 0.876216i \(0.339940\pi\)
\(522\) 0 0
\(523\) 20.0000 0.874539 0.437269 0.899331i \(-0.355946\pi\)
0.437269 + 0.899331i \(0.355946\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −10.0000 −0.435607
\(528\) 0 0
\(529\) −22.0000 −0.956522
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 9.00000 0.389833
\(534\) 0 0
\(535\) −3.00000 −0.129701
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −10.0000 −0.430730
\(540\) 0 0
\(541\) 38.0000 1.63375 0.816874 0.576816i \(-0.195705\pi\)
0.816874 + 0.576816i \(0.195705\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −16.0000 −0.685365
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 20.0000 0.852029
\(552\) 0 0
\(553\) 33.0000 1.40330
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 30.0000 1.27114 0.635570 0.772043i \(-0.280765\pi\)
0.635570 + 0.772043i \(0.280765\pi\)
\(558\) 0 0
\(559\) 4.00000 0.169182
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −41.0000 −1.72794 −0.863972 0.503540i \(-0.832031\pi\)
−0.863972 + 0.503540i \(0.832031\pi\)
\(564\) 0 0
\(565\) 2.00000 0.0841406
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −16.0000 −0.670755 −0.335377 0.942084i \(-0.608864\pi\)
−0.335377 + 0.942084i \(0.608864\pi\)
\(570\) 0 0
\(571\) −17.0000 −0.711428 −0.355714 0.934595i \(-0.615762\pi\)
−0.355714 + 0.934595i \(0.615762\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.00000 −0.0417029
\(576\) 0 0
\(577\) −21.0000 −0.874241 −0.437121 0.899403i \(-0.644002\pi\)
−0.437121 + 0.899403i \(0.644002\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 24.0000 0.995688
\(582\) 0 0
\(583\) 45.0000 1.86371
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 42.0000 1.73353 0.866763 0.498721i \(-0.166197\pi\)
0.866763 + 0.498721i \(0.166197\pi\)
\(588\) 0 0
\(589\) −4.00000 −0.164817
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 36.0000 1.47834 0.739171 0.673517i \(-0.235217\pi\)
0.739171 + 0.673517i \(0.235217\pi\)
\(594\) 0 0
\(595\) 15.0000 0.614940
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 4.00000 0.163436 0.0817178 0.996656i \(-0.473959\pi\)
0.0817178 + 0.996656i \(0.473959\pi\)
\(600\) 0 0
\(601\) −5.00000 −0.203954 −0.101977 0.994787i \(-0.532517\pi\)
−0.101977 + 0.994787i \(0.532517\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −14.0000 −0.569181
\(606\) 0 0
\(607\) 40.0000 1.62355 0.811775 0.583970i \(-0.198502\pi\)
0.811775 + 0.583970i \(0.198502\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 10.0000 0.404557
\(612\) 0 0
\(613\) 3.00000 0.121169 0.0605844 0.998163i \(-0.480704\pi\)
0.0605844 + 0.998163i \(0.480704\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −22.0000 −0.885687 −0.442843 0.896599i \(-0.646030\pi\)
−0.442843 + 0.896599i \(0.646030\pi\)
\(618\) 0 0
\(619\) 2.00000 0.0803868 0.0401934 0.999192i \(-0.487203\pi\)
0.0401934 + 0.999192i \(0.487203\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 33.0000 1.32212
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 15.0000 0.598089
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 14.0000 0.555573
\(636\) 0 0
\(637\) 2.00000 0.0792429
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 36.0000 1.42191 0.710957 0.703235i \(-0.248262\pi\)
0.710957 + 0.703235i \(0.248262\pi\)
\(642\) 0 0
\(643\) −1.00000 −0.0394362 −0.0197181 0.999806i \(-0.506277\pi\)
−0.0197181 + 0.999806i \(0.506277\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 21.0000 0.825595 0.412798 0.910823i \(-0.364552\pi\)
0.412798 + 0.910823i \(0.364552\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 30.0000 1.17399 0.586995 0.809590i \(-0.300311\pi\)
0.586995 + 0.809590i \(0.300311\pi\)
\(654\) 0 0
\(655\) −6.00000 −0.234439
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 12.0000 0.467454 0.233727 0.972302i \(-0.424908\pi\)
0.233727 + 0.972302i \(0.424908\pi\)
\(660\) 0 0
\(661\) −16.0000 −0.622328 −0.311164 0.950356i \(-0.600719\pi\)
−0.311164 + 0.950356i \(0.600719\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 6.00000 0.232670
\(666\) 0 0
\(667\) 10.0000 0.387202
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 55.0000 2.12325
\(672\) 0 0
\(673\) 22.0000 0.848038 0.424019 0.905653i \(-0.360619\pi\)
0.424019 + 0.905653i \(0.360619\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7.00000 0.269032 0.134516 0.990911i \(-0.457052\pi\)
0.134516 + 0.990911i \(0.457052\pi\)
\(678\) 0 0
\(679\) −27.0000 −1.03616
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 4.00000 0.153056 0.0765279 0.997067i \(-0.475617\pi\)
0.0765279 + 0.997067i \(0.475617\pi\)
\(684\) 0 0
\(685\) 6.00000 0.229248
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −9.00000 −0.342873
\(690\) 0 0
\(691\) −6.00000 −0.228251 −0.114125 0.993466i \(-0.536407\pi\)
−0.114125 + 0.993466i \(0.536407\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −17.0000 −0.644847
\(696\) 0 0
\(697\) −45.0000 −1.70450
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 4.00000 0.151078 0.0755390 0.997143i \(-0.475932\pi\)
0.0755390 + 0.997143i \(0.475932\pi\)
\(702\) 0 0
\(703\) 6.00000 0.226294
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 36.0000 1.35392
\(708\) 0 0
\(709\) 20.0000 0.751116 0.375558 0.926799i \(-0.377451\pi\)
0.375558 + 0.926799i \(0.377451\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −2.00000 −0.0749006
\(714\) 0 0
\(715\) 5.00000 0.186989
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 12.0000 0.447524 0.223762 0.974644i \(-0.428166\pi\)
0.223762 + 0.974644i \(0.428166\pi\)
\(720\) 0 0
\(721\) −12.0000 −0.446903
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −10.0000 −0.371391
\(726\) 0 0
\(727\) −6.00000 −0.222528 −0.111264 0.993791i \(-0.535490\pi\)
−0.111264 + 0.993791i \(0.535490\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −20.0000 −0.739727
\(732\) 0 0
\(733\) −15.0000 −0.554038 −0.277019 0.960864i \(-0.589346\pi\)
−0.277019 + 0.960864i \(0.589346\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −20.0000 −0.736709
\(738\) 0 0
\(739\) −38.0000 −1.39785 −0.698926 0.715194i \(-0.746338\pi\)
−0.698926 + 0.715194i \(0.746338\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 6.00000 0.220119 0.110059 0.993925i \(-0.464896\pi\)
0.110059 + 0.993925i \(0.464896\pi\)
\(744\) 0 0
\(745\) −7.00000 −0.256460
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 9.00000 0.328853
\(750\) 0 0
\(751\) 45.0000 1.64207 0.821037 0.570875i \(-0.193396\pi\)
0.821037 + 0.570875i \(0.193396\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −12.0000 −0.436725
\(756\) 0 0
\(757\) 36.0000 1.30844 0.654221 0.756303i \(-0.272997\pi\)
0.654221 + 0.756303i \(0.272997\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 14.0000 0.507500 0.253750 0.967270i \(-0.418336\pi\)
0.253750 + 0.967270i \(0.418336\pi\)
\(762\) 0 0
\(763\) 48.0000 1.73772
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −12.0000 −0.432731 −0.216366 0.976312i \(-0.569420\pi\)
−0.216366 + 0.976312i \(0.569420\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −24.0000 −0.863220 −0.431610 0.902060i \(-0.642054\pi\)
−0.431610 + 0.902060i \(0.642054\pi\)
\(774\) 0 0
\(775\) 2.00000 0.0718421
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −18.0000 −0.644917
\(780\) 0 0
\(781\) −75.0000 −2.68371
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −22.0000 −0.785214
\(786\) 0 0
\(787\) −44.0000 −1.56843 −0.784215 0.620489i \(-0.786934\pi\)
−0.784215 + 0.620489i \(0.786934\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −6.00000 −0.213335
\(792\) 0 0
\(793\) −11.0000 −0.390621
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 5.00000 0.177109 0.0885545 0.996071i \(-0.471775\pi\)
0.0885545 + 0.996071i \(0.471775\pi\)
\(798\) 0 0
\(799\) −50.0000 −1.76887
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −30.0000 −1.05868
\(804\) 0 0
\(805\) 3.00000 0.105736
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 6.00000 0.210949 0.105474 0.994422i \(-0.466364\pi\)
0.105474 + 0.994422i \(0.466364\pi\)
\(810\) 0 0
\(811\) 4.00000 0.140459 0.0702295 0.997531i \(-0.477627\pi\)
0.0702295 + 0.997531i \(0.477627\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −11.0000 −0.385313
\(816\) 0 0
\(817\) −8.00000 −0.279885
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 41.0000 1.43091 0.715455 0.698659i \(-0.246219\pi\)
0.715455 + 0.698659i \(0.246219\pi\)
\(822\) 0 0
\(823\) 48.0000 1.67317 0.836587 0.547833i \(-0.184547\pi\)
0.836587 + 0.547833i \(0.184547\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −42.0000 −1.46048 −0.730242 0.683189i \(-0.760592\pi\)
−0.730242 + 0.683189i \(0.760592\pi\)
\(828\) 0 0
\(829\) 14.0000 0.486240 0.243120 0.969996i \(-0.421829\pi\)
0.243120 + 0.969996i \(0.421829\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −10.0000 −0.346479
\(834\) 0 0
\(835\) 8.00000 0.276851
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 7.00000 0.241667 0.120833 0.992673i \(-0.461443\pi\)
0.120833 + 0.992673i \(0.461443\pi\)
\(840\) 0 0
\(841\) 71.0000 2.44828
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1.00000 −0.0344010
\(846\) 0 0
\(847\) 42.0000 1.44314
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 3.00000 0.102839
\(852\) 0 0
\(853\) 51.0000 1.74621 0.873103 0.487535i \(-0.162104\pi\)
0.873103 + 0.487535i \(0.162104\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 17.0000 0.580709 0.290354 0.956919i \(-0.406227\pi\)
0.290354 + 0.956919i \(0.406227\pi\)
\(858\) 0 0
\(859\) −35.0000 −1.19418 −0.597092 0.802173i \(-0.703677\pi\)
−0.597092 + 0.802173i \(0.703677\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −22.0000 −0.748889 −0.374444 0.927249i \(-0.622167\pi\)
−0.374444 + 0.927249i \(0.622167\pi\)
\(864\) 0 0
\(865\) −2.00000 −0.0680020
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −55.0000 −1.86575
\(870\) 0 0
\(871\) 4.00000 0.135535
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −3.00000 −0.101419
\(876\) 0 0
\(877\) 22.0000 0.742887 0.371444 0.928456i \(-0.378863\pi\)
0.371444 + 0.928456i \(0.378863\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 14.0000 0.471672 0.235836 0.971793i \(-0.424217\pi\)
0.235836 + 0.971793i \(0.424217\pi\)
\(882\) 0 0
\(883\) −12.0000 −0.403832 −0.201916 0.979403i \(-0.564717\pi\)
−0.201916 + 0.979403i \(0.564717\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −15.0000 −0.503651 −0.251825 0.967773i \(-0.581031\pi\)
−0.251825 + 0.967773i \(0.581031\pi\)
\(888\) 0 0
\(889\) −42.0000 −1.40863
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −20.0000 −0.669274
\(894\) 0 0
\(895\) 6.00000 0.200558
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −20.0000 −0.667037
\(900\) 0 0
\(901\) 45.0000 1.49917
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 23.0000 0.764546
\(906\) 0 0
\(907\) −2.00000 −0.0664089 −0.0332045 0.999449i \(-0.510571\pi\)
−0.0332045 + 0.999449i \(0.510571\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 8.00000 0.265052 0.132526 0.991180i \(-0.457691\pi\)
0.132526 + 0.991180i \(0.457691\pi\)
\(912\) 0 0
\(913\) −40.0000 −1.32381
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 18.0000 0.594412
\(918\) 0 0
\(919\) −29.0000 −0.956622 −0.478311 0.878191i \(-0.658751\pi\)
−0.478311 + 0.878191i \(0.658751\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 15.0000 0.493731
\(924\) 0 0
\(925\) −3.00000 −0.0986394
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −21.0000 −0.688988 −0.344494 0.938789i \(-0.611949\pi\)
−0.344494 + 0.938789i \(0.611949\pi\)
\(930\) 0 0
\(931\) −4.00000 −0.131095
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −25.0000 −0.817587
\(936\) 0 0
\(937\) 2.00000 0.0653372 0.0326686 0.999466i \(-0.489599\pi\)
0.0326686 + 0.999466i \(0.489599\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 23.0000 0.749779 0.374889 0.927070i \(-0.377681\pi\)
0.374889 + 0.927070i \(0.377681\pi\)
\(942\) 0 0
\(943\) −9.00000 −0.293080
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 36.0000 1.16984 0.584921 0.811090i \(-0.301125\pi\)
0.584921 + 0.811090i \(0.301125\pi\)
\(948\) 0 0
\(949\) 6.00000 0.194768
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 11.0000 0.356325 0.178162 0.984001i \(-0.442985\pi\)
0.178162 + 0.984001i \(0.442985\pi\)
\(954\) 0 0
\(955\) 20.0000 0.647185
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −18.0000 −0.581250
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −13.0000 −0.418485
\(966\) 0 0
\(967\) 40.0000 1.28631 0.643157 0.765735i \(-0.277624\pi\)
0.643157 + 0.765735i \(0.277624\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 51.0000 1.63498
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −12.0000 −0.383914 −0.191957 0.981403i \(-0.561483\pi\)
−0.191957 + 0.981403i \(0.561483\pi\)
\(978\) 0 0
\(979\) −55.0000 −1.75781
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 36.0000 1.14822 0.574111 0.818778i \(-0.305348\pi\)
0.574111 + 0.818778i \(0.305348\pi\)
\(984\) 0 0
\(985\) −12.0000 −0.382352
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −4.00000 −0.127193
\(990\) 0 0
\(991\) −39.0000 −1.23888 −0.619438 0.785046i \(-0.712639\pi\)
−0.619438 + 0.785046i \(0.712639\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 4.00000 0.126809
\(996\) 0 0
\(997\) −16.0000 −0.506725 −0.253363 0.967371i \(-0.581537\pi\)
−0.253363 + 0.967371i \(0.581537\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9360.2.a.w.1.1 1
3.2 odd 2 3120.2.a.n.1.1 1
4.3 odd 2 585.2.a.a.1.1 1
12.11 even 2 195.2.a.d.1.1 1
20.3 even 4 2925.2.c.d.2224.2 2
20.7 even 4 2925.2.c.d.2224.1 2
20.19 odd 2 2925.2.a.t.1.1 1
52.51 odd 2 7605.2.a.v.1.1 1
60.23 odd 4 975.2.c.b.274.1 2
60.47 odd 4 975.2.c.b.274.2 2
60.59 even 2 975.2.a.b.1.1 1
84.83 odd 2 9555.2.a.t.1.1 1
156.155 even 2 2535.2.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.a.d.1.1 1 12.11 even 2
585.2.a.a.1.1 1 4.3 odd 2
975.2.a.b.1.1 1 60.59 even 2
975.2.c.b.274.1 2 60.23 odd 4
975.2.c.b.274.2 2 60.47 odd 4
2535.2.a.b.1.1 1 156.155 even 2
2925.2.a.t.1.1 1 20.19 odd 2
2925.2.c.d.2224.1 2 20.7 even 4
2925.2.c.d.2224.2 2 20.3 even 4
3120.2.a.n.1.1 1 3.2 odd 2
7605.2.a.v.1.1 1 52.51 odd 2
9360.2.a.w.1.1 1 1.1 even 1 trivial
9555.2.a.t.1.1 1 84.83 odd 2