# Properties

 Label 9360.2.a.r Level $9360$ Weight $2$ Character orbit 9360.a Self dual yes Analytic conductor $74.740$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [9360,2,Mod(1,9360)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(9360, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("9360.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$9360 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 9360.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$74.7399762919$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 585) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - q^{5} + q^{7}+O(q^{10})$$ q - q^5 + q^7 $$q - q^{5} + q^{7} - 3 q^{11} + q^{13} + 3 q^{17} + 4 q^{19} - 9 q^{23} + q^{25} + 6 q^{29} - 2 q^{31} - q^{35} - q^{37} + 3 q^{41} - 2 q^{43} - 6 q^{47} - 6 q^{49} - 9 q^{53} + 3 q^{55} - 12 q^{59} + 5 q^{61} - q^{65} + 4 q^{67} + 9 q^{71} + 14 q^{73} - 3 q^{77} + 7 q^{79} - 3 q^{85} - 15 q^{89} + q^{91} - 4 q^{95} + 5 q^{97}+O(q^{100})$$ q - q^5 + q^7 - 3 * q^11 + q^13 + 3 * q^17 + 4 * q^19 - 9 * q^23 + q^25 + 6 * q^29 - 2 * q^31 - q^35 - q^37 + 3 * q^41 - 2 * q^43 - 6 * q^47 - 6 * q^49 - 9 * q^53 + 3 * q^55 - 12 * q^59 + 5 * q^61 - q^65 + 4 * q^67 + 9 * q^71 + 14 * q^73 - 3 * q^77 + 7 * q^79 - 3 * q^85 - 15 * q^89 + q^91 - 4 * q^95 + 5 * q^97

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 0 0 −1.00000 0 1.00000 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$1$$
$$5$$ $$1$$
$$13$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 9360.2.a.r 1
3.b odd 2 1 9360.2.a.bu 1
4.b odd 2 1 585.2.a.e 1
12.b even 2 1 585.2.a.f yes 1
20.d odd 2 1 2925.2.a.k 1
20.e even 4 2 2925.2.c.m 2
52.b odd 2 1 7605.2.a.m 1
60.h even 2 1 2925.2.a.i 1
60.l odd 4 2 2925.2.c.l 2
156.h even 2 1 7605.2.a.j 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
585.2.a.e 1 4.b odd 2 1
585.2.a.f yes 1 12.b even 2 1
2925.2.a.i 1 60.h even 2 1
2925.2.a.k 1 20.d odd 2 1
2925.2.c.l 2 60.l odd 4 2
2925.2.c.m 2 20.e even 4 2
7605.2.a.j 1 156.h even 2 1
7605.2.a.m 1 52.b odd 2 1
9360.2.a.r 1 1.a even 1 1 trivial
9360.2.a.bu 1 3.b odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(9360))$$:

 $$T_{7} - 1$$ T7 - 1 $$T_{11} + 3$$ T11 + 3 $$T_{17} - 3$$ T17 - 3 $$T_{19} - 4$$ T19 - 4 $$T_{31} + 2$$ T31 + 2

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T$$
$5$ $$T + 1$$
$7$ $$T - 1$$
$11$ $$T + 3$$
$13$ $$T - 1$$
$17$ $$T - 3$$
$19$ $$T - 4$$
$23$ $$T + 9$$
$29$ $$T - 6$$
$31$ $$T + 2$$
$37$ $$T + 1$$
$41$ $$T - 3$$
$43$ $$T + 2$$
$47$ $$T + 6$$
$53$ $$T + 9$$
$59$ $$T + 12$$
$61$ $$T - 5$$
$67$ $$T - 4$$
$71$ $$T - 9$$
$73$ $$T - 14$$
$79$ $$T - 7$$
$83$ $$T$$
$89$ $$T + 15$$
$97$ $$T - 5$$