Properties

Label 936.6.a.n.1.2
Level $936$
Weight $6$
Character 936.1
Self dual yes
Analytic conductor $150.119$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,6,Mod(1,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 936.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(150.119255345\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 147x^{2} - 398x + 828 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{7}\cdot 3 \)
Twist minimal: no (minimal twist has level 312)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-9.92415\) of defining polynomial
Character \(\chi\) \(=\) 936.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-12.4897 q^{5} +98.5962 q^{7} +616.610 q^{11} -169.000 q^{13} +1784.10 q^{17} +1126.41 q^{19} +4720.49 q^{23} -2969.01 q^{25} -3491.00 q^{29} +3908.28 q^{31} -1231.44 q^{35} +4647.10 q^{37} -5387.66 q^{41} -11949.7 q^{43} +15079.7 q^{47} -7085.79 q^{49} +8699.89 q^{53} -7701.29 q^{55} +21525.5 q^{59} -2865.97 q^{61} +2110.76 q^{65} +15998.4 q^{67} -58912.0 q^{71} -59570.0 q^{73} +60795.4 q^{77} +67080.5 q^{79} +72416.0 q^{83} -22282.9 q^{85} -121030. q^{89} -16662.8 q^{91} -14068.6 q^{95} -95672.6 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 56 q^{5} + 48 q^{7} + 368 q^{11} - 676 q^{13} + 1976 q^{17} - 1808 q^{19} + 240 q^{23} + 2652 q^{25} + 4792 q^{29} - 9296 q^{31} + 21424 q^{35} - 7800 q^{37} + 8792 q^{41} - 19136 q^{43} + 37968 q^{47}+ \cdots + 53512 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −12.4897 −0.223423 −0.111712 0.993741i \(-0.535633\pi\)
−0.111712 + 0.993741i \(0.535633\pi\)
\(6\) 0 0
\(7\) 98.5962 0.760528 0.380264 0.924878i \(-0.375833\pi\)
0.380264 + 0.924878i \(0.375833\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 616.610 1.53649 0.768243 0.640158i \(-0.221131\pi\)
0.768243 + 0.640158i \(0.221131\pi\)
\(12\) 0 0
\(13\) −169.000 −0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1784.10 1.49726 0.748630 0.662988i \(-0.230712\pi\)
0.748630 + 0.662988i \(0.230712\pi\)
\(18\) 0 0
\(19\) 1126.41 0.715837 0.357919 0.933753i \(-0.383486\pi\)
0.357919 + 0.933753i \(0.383486\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4720.49 1.86066 0.930330 0.366722i \(-0.119520\pi\)
0.930330 + 0.366722i \(0.119520\pi\)
\(24\) 0 0
\(25\) −2969.01 −0.950082
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3491.00 −0.770822 −0.385411 0.922745i \(-0.625940\pi\)
−0.385411 + 0.922745i \(0.625940\pi\)
\(30\) 0 0
\(31\) 3908.28 0.730435 0.365218 0.930922i \(-0.380995\pi\)
0.365218 + 0.930922i \(0.380995\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1231.44 −0.169919
\(36\) 0 0
\(37\) 4647.10 0.558056 0.279028 0.960283i \(-0.409988\pi\)
0.279028 + 0.960283i \(0.409988\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5387.66 −0.500542 −0.250271 0.968176i \(-0.580520\pi\)
−0.250271 + 0.968176i \(0.580520\pi\)
\(42\) 0 0
\(43\) −11949.7 −0.985564 −0.492782 0.870153i \(-0.664020\pi\)
−0.492782 + 0.870153i \(0.664020\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 15079.7 0.995745 0.497873 0.867250i \(-0.334115\pi\)
0.497873 + 0.867250i \(0.334115\pi\)
\(48\) 0 0
\(49\) −7085.79 −0.421598
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8699.89 0.425426 0.212713 0.977115i \(-0.431770\pi\)
0.212713 + 0.977115i \(0.431770\pi\)
\(54\) 0 0
\(55\) −7701.29 −0.343287
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 21525.5 0.805050 0.402525 0.915409i \(-0.368133\pi\)
0.402525 + 0.915409i \(0.368133\pi\)
\(60\) 0 0
\(61\) −2865.97 −0.0986161 −0.0493080 0.998784i \(-0.515702\pi\)
−0.0493080 + 0.998784i \(0.515702\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2110.76 0.0619664
\(66\) 0 0
\(67\) 15998.4 0.435400 0.217700 0.976016i \(-0.430144\pi\)
0.217700 + 0.976016i \(0.430144\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −58912.0 −1.38694 −0.693471 0.720485i \(-0.743919\pi\)
−0.693471 + 0.720485i \(0.743919\pi\)
\(72\) 0 0
\(73\) −59570.0 −1.30834 −0.654170 0.756348i \(-0.726982\pi\)
−0.654170 + 0.756348i \(0.726982\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 60795.4 1.16854
\(78\) 0 0
\(79\) 67080.5 1.20928 0.604642 0.796497i \(-0.293316\pi\)
0.604642 + 0.796497i \(0.293316\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 72416.0 1.15382 0.576912 0.816807i \(-0.304258\pi\)
0.576912 + 0.816807i \(0.304258\pi\)
\(84\) 0 0
\(85\) −22282.9 −0.334523
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −121030. −1.61964 −0.809822 0.586675i \(-0.800436\pi\)
−0.809822 + 0.586675i \(0.800436\pi\)
\(90\) 0 0
\(91\) −16662.8 −0.210932
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −14068.6 −0.159935
\(96\) 0 0
\(97\) −95672.6 −1.03242 −0.516212 0.856461i \(-0.672658\pi\)
−0.516212 + 0.856461i \(0.672658\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −20048.9 −0.195564 −0.0977818 0.995208i \(-0.531175\pi\)
−0.0977818 + 0.995208i \(0.531175\pi\)
\(102\) 0 0
\(103\) −107610. −0.999445 −0.499722 0.866186i \(-0.666565\pi\)
−0.499722 + 0.866186i \(0.666565\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 214337. 1.80983 0.904915 0.425593i \(-0.139934\pi\)
0.904915 + 0.425593i \(0.139934\pi\)
\(108\) 0 0
\(109\) −155883. −1.25670 −0.628352 0.777929i \(-0.716270\pi\)
−0.628352 + 0.777929i \(0.716270\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 260648. 1.92025 0.960127 0.279565i \(-0.0901903\pi\)
0.960127 + 0.279565i \(0.0901903\pi\)
\(114\) 0 0
\(115\) −58957.6 −0.415715
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 175906. 1.13871
\(120\) 0 0
\(121\) 219157. 1.36079
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 76112.5 0.435693
\(126\) 0 0
\(127\) 38277.7 0.210590 0.105295 0.994441i \(-0.466421\pi\)
0.105295 + 0.994441i \(0.466421\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −372611. −1.89704 −0.948522 0.316712i \(-0.897421\pi\)
−0.948522 + 0.316712i \(0.897421\pi\)
\(132\) 0 0
\(133\) 111060. 0.544414
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 251087. 1.14294 0.571470 0.820623i \(-0.306373\pi\)
0.571470 + 0.820623i \(0.306373\pi\)
\(138\) 0 0
\(139\) 286317. 1.25693 0.628465 0.777838i \(-0.283684\pi\)
0.628465 + 0.777838i \(0.283684\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −104207. −0.426145
\(144\) 0 0
\(145\) 43601.6 0.172220
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 368403. 1.35943 0.679716 0.733476i \(-0.262103\pi\)
0.679716 + 0.733476i \(0.262103\pi\)
\(150\) 0 0
\(151\) −249669. −0.891091 −0.445546 0.895259i \(-0.646990\pi\)
−0.445546 + 0.895259i \(0.646990\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −48813.4 −0.163196
\(156\) 0 0
\(157\) −172234. −0.557661 −0.278830 0.960340i \(-0.589947\pi\)
−0.278830 + 0.960340i \(0.589947\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 465422. 1.41508
\(162\) 0 0
\(163\) 395259. 1.16523 0.582617 0.812747i \(-0.302029\pi\)
0.582617 + 0.812747i \(0.302029\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −333684. −0.925858 −0.462929 0.886395i \(-0.653202\pi\)
−0.462929 + 0.886395i \(0.653202\pi\)
\(168\) 0 0
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −370115. −0.940202 −0.470101 0.882613i \(-0.655783\pi\)
−0.470101 + 0.882613i \(0.655783\pi\)
\(174\) 0 0
\(175\) −292733. −0.722564
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −205085. −0.478412 −0.239206 0.970969i \(-0.576887\pi\)
−0.239206 + 0.970969i \(0.576887\pi\)
\(180\) 0 0
\(181\) 55771.6 0.126537 0.0632684 0.997997i \(-0.479848\pi\)
0.0632684 + 0.997997i \(0.479848\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −58041.0 −0.124683
\(186\) 0 0
\(187\) 1.10009e6 2.30052
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −273280. −0.542032 −0.271016 0.962575i \(-0.587360\pi\)
−0.271016 + 0.962575i \(0.587360\pi\)
\(192\) 0 0
\(193\) 123446. 0.238553 0.119276 0.992861i \(-0.461943\pi\)
0.119276 + 0.992861i \(0.461943\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 202130. 0.371077 0.185539 0.982637i \(-0.440597\pi\)
0.185539 + 0.982637i \(0.440597\pi\)
\(198\) 0 0
\(199\) 755484. 1.35236 0.676180 0.736736i \(-0.263634\pi\)
0.676180 + 0.736736i \(0.263634\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −344199. −0.586232
\(204\) 0 0
\(205\) 67290.5 0.111833
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 694559. 1.09987
\(210\) 0 0
\(211\) 572071. 0.884593 0.442297 0.896869i \(-0.354164\pi\)
0.442297 + 0.896869i \(0.354164\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 149248. 0.220198
\(216\) 0 0
\(217\) 385342. 0.555516
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −301513. −0.415265
\(222\) 0 0
\(223\) 1.40791e6 1.89588 0.947942 0.318444i \(-0.103160\pi\)
0.947942 + 0.318444i \(0.103160\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2603.04 −0.00335286 −0.00167643 0.999999i \(-0.500534\pi\)
−0.00167643 + 0.999999i \(0.500534\pi\)
\(228\) 0 0
\(229\) −1.37017e6 −1.72658 −0.863290 0.504709i \(-0.831600\pi\)
−0.863290 + 0.504709i \(0.831600\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −787976. −0.950874 −0.475437 0.879750i \(-0.657710\pi\)
−0.475437 + 0.879750i \(0.657710\pi\)
\(234\) 0 0
\(235\) −188341. −0.222472
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −818370. −0.926734 −0.463367 0.886166i \(-0.653359\pi\)
−0.463367 + 0.886166i \(0.653359\pi\)
\(240\) 0 0
\(241\) 1.30702e6 1.44958 0.724788 0.688972i \(-0.241938\pi\)
0.724788 + 0.688972i \(0.241938\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 88499.6 0.0941947
\(246\) 0 0
\(247\) −190364. −0.198538
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 366310. 0.366999 0.183500 0.983020i \(-0.441257\pi\)
0.183500 + 0.983020i \(0.441257\pi\)
\(252\) 0 0
\(253\) 2.91070e6 2.85888
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 49390.2 0.0466453 0.0233227 0.999728i \(-0.492575\pi\)
0.0233227 + 0.999728i \(0.492575\pi\)
\(258\) 0 0
\(259\) 458186. 0.424417
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1.76703e6 1.57526 0.787632 0.616146i \(-0.211307\pi\)
0.787632 + 0.616146i \(0.211307\pi\)
\(264\) 0 0
\(265\) −108659. −0.0950500
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.96524e6 1.65590 0.827952 0.560799i \(-0.189506\pi\)
0.827952 + 0.560799i \(0.189506\pi\)
\(270\) 0 0
\(271\) 702919. 0.581409 0.290705 0.956813i \(-0.406110\pi\)
0.290705 + 0.956813i \(0.406110\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.83072e6 −1.45979
\(276\) 0 0
\(277\) −1.26132e6 −0.987700 −0.493850 0.869547i \(-0.664411\pi\)
−0.493850 + 0.869547i \(0.664411\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −1.04007e6 −0.785772 −0.392886 0.919587i \(-0.628523\pi\)
−0.392886 + 0.919587i \(0.628523\pi\)
\(282\) 0 0
\(283\) −1.12947e6 −0.838321 −0.419160 0.907912i \(-0.637676\pi\)
−0.419160 + 0.907912i \(0.637676\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −531203. −0.380676
\(288\) 0 0
\(289\) 1.76316e6 1.24179
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 2.56374e6 1.74464 0.872319 0.488936i \(-0.162615\pi\)
0.872319 + 0.488936i \(0.162615\pi\)
\(294\) 0 0
\(295\) −268848. −0.179867
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −797762. −0.516055
\(300\) 0 0
\(301\) −1.17819e6 −0.749549
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 35795.3 0.0220331
\(306\) 0 0
\(307\) 2.95980e6 1.79233 0.896163 0.443724i \(-0.146343\pi\)
0.896163 + 0.443724i \(0.146343\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1.24424e6 −0.729464 −0.364732 0.931113i \(-0.618839\pi\)
−0.364732 + 0.931113i \(0.618839\pi\)
\(312\) 0 0
\(313\) 1.60429e6 0.925597 0.462798 0.886464i \(-0.346845\pi\)
0.462798 + 0.886464i \(0.346845\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.98163e6 −1.10758 −0.553790 0.832656i \(-0.686819\pi\)
−0.553790 + 0.832656i \(0.686819\pi\)
\(318\) 0 0
\(319\) −2.15258e6 −1.18436
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.00964e6 1.07179
\(324\) 0 0
\(325\) 501762. 0.263505
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.48680e6 0.757292
\(330\) 0 0
\(331\) −2.45028e6 −1.22927 −0.614633 0.788814i \(-0.710696\pi\)
−0.614633 + 0.788814i \(0.710696\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −199815. −0.0972785
\(336\) 0 0
\(337\) 3.06994e6 1.47250 0.736249 0.676711i \(-0.236595\pi\)
0.736249 + 0.676711i \(0.236595\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.40989e6 1.12230
\(342\) 0 0
\(343\) −2.35574e6 −1.08116
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.69414e6 −0.755309 −0.377654 0.925947i \(-0.623269\pi\)
−0.377654 + 0.925947i \(0.623269\pi\)
\(348\) 0 0
\(349\) 1.01115e6 0.444377 0.222188 0.975004i \(-0.428680\pi\)
0.222188 + 0.975004i \(0.428680\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −742397. −0.317102 −0.158551 0.987351i \(-0.550682\pi\)
−0.158551 + 0.987351i \(0.550682\pi\)
\(354\) 0 0
\(355\) 735796. 0.309875
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.43654e6 0.588278 0.294139 0.955763i \(-0.404967\pi\)
0.294139 + 0.955763i \(0.404967\pi\)
\(360\) 0 0
\(361\) −1.20729e6 −0.487577
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 744014. 0.292313
\(366\) 0 0
\(367\) 805385. 0.312132 0.156066 0.987747i \(-0.450119\pi\)
0.156066 + 0.987747i \(0.450119\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 857776. 0.323548
\(372\) 0 0
\(373\) 2.10938e6 0.785025 0.392512 0.919747i \(-0.371606\pi\)
0.392512 + 0.919747i \(0.371606\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 589978. 0.213788
\(378\) 0 0
\(379\) 285684. 0.102162 0.0510809 0.998695i \(-0.483733\pi\)
0.0510809 + 0.998695i \(0.483733\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2.31466e6 0.806287 0.403144 0.915137i \(-0.367918\pi\)
0.403144 + 0.915137i \(0.367918\pi\)
\(384\) 0 0
\(385\) −759318. −0.261079
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 3.35677e6 1.12473 0.562363 0.826890i \(-0.309892\pi\)
0.562363 + 0.826890i \(0.309892\pi\)
\(390\) 0 0
\(391\) 8.42183e6 2.78589
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −837817. −0.270182
\(396\) 0 0
\(397\) 2.09116e6 0.665904 0.332952 0.942944i \(-0.391955\pi\)
0.332952 + 0.942944i \(0.391955\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.54044e6 0.478393 0.239197 0.970971i \(-0.423116\pi\)
0.239197 + 0.970971i \(0.423116\pi\)
\(402\) 0 0
\(403\) −660500. −0.202586
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.86545e6 0.857446
\(408\) 0 0
\(409\) −2.35747e6 −0.696848 −0.348424 0.937337i \(-0.613283\pi\)
−0.348424 + 0.937337i \(0.613283\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2.12233e6 0.612263
\(414\) 0 0
\(415\) −904456. −0.257791
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 2.30460e6 0.641300 0.320650 0.947198i \(-0.396099\pi\)
0.320650 + 0.947198i \(0.396099\pi\)
\(420\) 0 0
\(421\) 1.60143e6 0.440354 0.220177 0.975460i \(-0.429337\pi\)
0.220177 + 0.975460i \(0.429337\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −5.29701e6 −1.42252
\(426\) 0 0
\(427\) −282574. −0.0750003
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.32525e6 0.343640 0.171820 0.985128i \(-0.445035\pi\)
0.171820 + 0.985128i \(0.445035\pi\)
\(432\) 0 0
\(433\) −69801.4 −0.0178914 −0.00894570 0.999960i \(-0.502848\pi\)
−0.00894570 + 0.999960i \(0.502848\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.31723e6 1.33193
\(438\) 0 0
\(439\) −1.42955e6 −0.354028 −0.177014 0.984208i \(-0.556644\pi\)
−0.177014 + 0.984208i \(0.556644\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 6.90924e6 1.67271 0.836356 0.548187i \(-0.184682\pi\)
0.836356 + 0.548187i \(0.184682\pi\)
\(444\) 0 0
\(445\) 1.51164e6 0.361866
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 3.00300e6 0.702974 0.351487 0.936193i \(-0.385676\pi\)
0.351487 + 0.936193i \(0.385676\pi\)
\(450\) 0 0
\(451\) −3.32209e6 −0.769077
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 208113. 0.0471272
\(456\) 0 0
\(457\) −4.93899e6 −1.10624 −0.553118 0.833103i \(-0.686562\pi\)
−0.553118 + 0.833103i \(0.686562\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3.34186e6 0.732378 0.366189 0.930540i \(-0.380662\pi\)
0.366189 + 0.930540i \(0.380662\pi\)
\(462\) 0 0
\(463\) −8.18534e6 −1.77453 −0.887267 0.461256i \(-0.847399\pi\)
−0.887267 + 0.461256i \(0.847399\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −2.73162e6 −0.579599 −0.289800 0.957087i \(-0.593589\pi\)
−0.289800 + 0.957087i \(0.593589\pi\)
\(468\) 0 0
\(469\) 1.57738e6 0.331134
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −7.36829e6 −1.51431
\(474\) 0 0
\(475\) −3.34433e6 −0.680104
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −5.87735e6 −1.17042 −0.585211 0.810881i \(-0.698988\pi\)
−0.585211 + 0.810881i \(0.698988\pi\)
\(480\) 0 0
\(481\) −785360. −0.154777
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.19493e6 0.230667
\(486\) 0 0
\(487\) −3.31383e6 −0.633151 −0.316575 0.948567i \(-0.602533\pi\)
−0.316575 + 0.948567i \(0.602533\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −9.43187e6 −1.76561 −0.882803 0.469743i \(-0.844347\pi\)
−0.882803 + 0.469743i \(0.844347\pi\)
\(492\) 0 0
\(493\) −6.22829e6 −1.15412
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −5.80850e6 −1.05481
\(498\) 0 0
\(499\) −303155. −0.0545021 −0.0272511 0.999629i \(-0.508675\pi\)
−0.0272511 + 0.999629i \(0.508675\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −5.76211e6 −1.01546 −0.507728 0.861517i \(-0.669515\pi\)
−0.507728 + 0.861517i \(0.669515\pi\)
\(504\) 0 0
\(505\) 250406. 0.0436934
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −6.52865e6 −1.11694 −0.558469 0.829526i \(-0.688611\pi\)
−0.558469 + 0.829526i \(0.688611\pi\)
\(510\) 0 0
\(511\) −5.87338e6 −0.995029
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1.34402e6 0.223299
\(516\) 0 0
\(517\) 9.29829e6 1.52995
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 3.68227e6 0.594321 0.297160 0.954828i \(-0.403960\pi\)
0.297160 + 0.954828i \(0.403960\pi\)
\(522\) 0 0
\(523\) −2.51775e6 −0.402494 −0.201247 0.979541i \(-0.564499\pi\)
−0.201247 + 0.979541i \(0.564499\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.97277e6 1.09365
\(528\) 0 0
\(529\) 1.58467e7 2.46206
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 910515. 0.138826
\(534\) 0 0
\(535\) −2.67701e6 −0.404358
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −4.36917e6 −0.647779
\(540\) 0 0
\(541\) −8.92318e6 −1.31077 −0.655385 0.755295i \(-0.727494\pi\)
−0.655385 + 0.755295i \(0.727494\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1.94694e6 0.280777
\(546\) 0 0
\(547\) 919340. 0.131374 0.0656868 0.997840i \(-0.479076\pi\)
0.0656868 + 0.997840i \(0.479076\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −3.93231e6 −0.551783
\(552\) 0 0
\(553\) 6.61388e6 0.919694
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 4.02040e6 0.549075 0.274538 0.961576i \(-0.411475\pi\)
0.274538 + 0.961576i \(0.411475\pi\)
\(558\) 0 0
\(559\) 2.01949e6 0.273346
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 3.06726e6 0.407830 0.203915 0.978989i \(-0.434633\pi\)
0.203915 + 0.978989i \(0.434633\pi\)
\(564\) 0 0
\(565\) −3.25543e6 −0.429029
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 7.84400e6 1.01568 0.507840 0.861451i \(-0.330444\pi\)
0.507840 + 0.861451i \(0.330444\pi\)
\(570\) 0 0
\(571\) −3.33691e6 −0.428306 −0.214153 0.976800i \(-0.568699\pi\)
−0.214153 + 0.976800i \(0.568699\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.40152e7 −1.76778
\(576\) 0 0
\(577\) −7.49913e6 −0.937717 −0.468858 0.883273i \(-0.655335\pi\)
−0.468858 + 0.883273i \(0.655335\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 7.13994e6 0.877515
\(582\) 0 0
\(583\) 5.36444e6 0.653662
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 5.45467e6 0.653391 0.326696 0.945130i \(-0.394065\pi\)
0.326696 + 0.945130i \(0.394065\pi\)
\(588\) 0 0
\(589\) 4.40235e6 0.522873
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −3.88062e6 −0.453174 −0.226587 0.973991i \(-0.572757\pi\)
−0.226587 + 0.973991i \(0.572757\pi\)
\(594\) 0 0
\(595\) −2.19701e6 −0.254414
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −1.12527e7 −1.28141 −0.640705 0.767787i \(-0.721358\pi\)
−0.640705 + 0.767787i \(0.721358\pi\)
\(600\) 0 0
\(601\) 3.37601e6 0.381257 0.190628 0.981662i \(-0.438947\pi\)
0.190628 + 0.981662i \(0.438947\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −2.73721e6 −0.304032
\(606\) 0 0
\(607\) 836171. 0.0921135 0.0460568 0.998939i \(-0.485334\pi\)
0.0460568 + 0.998939i \(0.485334\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.54847e6 −0.276170
\(612\) 0 0
\(613\) 5.01065e6 0.538571 0.269286 0.963060i \(-0.413212\pi\)
0.269286 + 0.963060i \(0.413212\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.47301e7 −1.55773 −0.778864 0.627193i \(-0.784204\pi\)
−0.778864 + 0.627193i \(0.784204\pi\)
\(618\) 0 0
\(619\) 6.91542e6 0.725424 0.362712 0.931901i \(-0.381851\pi\)
0.362712 + 0.931901i \(0.381851\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −1.19331e7 −1.23178
\(624\) 0 0
\(625\) 8.32752e6 0.852738
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 8.29090e6 0.835555
\(630\) 0 0
\(631\) −1.33542e7 −1.33519 −0.667596 0.744524i \(-0.732677\pi\)
−0.667596 + 0.744524i \(0.732677\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −478079. −0.0470506
\(636\) 0 0
\(637\) 1.19750e6 0.116930
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −918127. −0.0882587 −0.0441293 0.999026i \(-0.514051\pi\)
−0.0441293 + 0.999026i \(0.514051\pi\)
\(642\) 0 0
\(643\) −2.89311e6 −0.275954 −0.137977 0.990435i \(-0.544060\pi\)
−0.137977 + 0.990435i \(0.544060\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −5.69334e6 −0.534695 −0.267348 0.963600i \(-0.586147\pi\)
−0.267348 + 0.963600i \(0.586147\pi\)
\(648\) 0 0
\(649\) 1.32728e7 1.23695
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.15993e6 0.106451 0.0532254 0.998583i \(-0.483050\pi\)
0.0532254 + 0.998583i \(0.483050\pi\)
\(654\) 0 0
\(655\) 4.65381e6 0.423843
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 2.00691e7 1.80017 0.900085 0.435714i \(-0.143504\pi\)
0.900085 + 0.435714i \(0.143504\pi\)
\(660\) 0 0
\(661\) −1.48412e7 −1.32119 −0.660594 0.750743i \(-0.729696\pi\)
−0.660594 + 0.750743i \(0.729696\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.38711e6 −0.121635
\(666\) 0 0
\(667\) −1.64792e7 −1.43424
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1.76719e6 −0.151522
\(672\) 0 0
\(673\) 1.13728e7 0.967900 0.483950 0.875096i \(-0.339202\pi\)
0.483950 + 0.875096i \(0.339202\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −1.97484e7 −1.65600 −0.827998 0.560731i \(-0.810520\pi\)
−0.827998 + 0.560731i \(0.810520\pi\)
\(678\) 0 0
\(679\) −9.43295e6 −0.785187
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.61752e7 −1.32677 −0.663387 0.748277i \(-0.730881\pi\)
−0.663387 + 0.748277i \(0.730881\pi\)
\(684\) 0 0
\(685\) −3.13601e6 −0.255359
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1.47028e6 −0.117992
\(690\) 0 0
\(691\) 2.00679e7 1.59885 0.799424 0.600767i \(-0.205138\pi\)
0.799424 + 0.600767i \(0.205138\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −3.57603e6 −0.280827
\(696\) 0 0
\(697\) −9.61214e6 −0.749442
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −3.41979e6 −0.262847 −0.131424 0.991326i \(-0.541955\pi\)
−0.131424 + 0.991326i \(0.541955\pi\)
\(702\) 0 0
\(703\) 5.23456e6 0.399477
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.97675e6 −0.148732
\(708\) 0 0
\(709\) −3.26171e6 −0.243685 −0.121843 0.992549i \(-0.538880\pi\)
−0.121843 + 0.992549i \(0.538880\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.84490e7 1.35909
\(714\) 0 0
\(715\) 1.30152e6 0.0952106
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1.11854e7 −0.806917 −0.403459 0.914998i \(-0.632192\pi\)
−0.403459 + 0.914998i \(0.632192\pi\)
\(720\) 0 0
\(721\) −1.06099e7 −0.760105
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.03648e7 0.732344
\(726\) 0 0
\(727\) −7.39578e6 −0.518977 −0.259488 0.965746i \(-0.583554\pi\)
−0.259488 + 0.965746i \(0.583554\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −2.13194e7 −1.47565
\(732\) 0 0
\(733\) −2.20521e6 −0.151597 −0.0757985 0.997123i \(-0.524151\pi\)
−0.0757985 + 0.997123i \(0.524151\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 9.86476e6 0.668987
\(738\) 0 0
\(739\) −5.08425e6 −0.342465 −0.171232 0.985231i \(-0.554775\pi\)
−0.171232 + 0.985231i \(0.554775\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −6.19234e6 −0.411513 −0.205756 0.978603i \(-0.565965\pi\)
−0.205756 + 0.978603i \(0.565965\pi\)
\(744\) 0 0
\(745\) −4.60125e6 −0.303728
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2.11328e7 1.37643
\(750\) 0 0
\(751\) −1.08001e7 −0.698762 −0.349381 0.936981i \(-0.613608\pi\)
−0.349381 + 0.936981i \(0.613608\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 3.11830e6 0.199090
\(756\) 0 0
\(757\) −2.54604e7 −1.61482 −0.807412 0.589988i \(-0.799133\pi\)
−0.807412 + 0.589988i \(0.799133\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1.21948e7 −0.763332 −0.381666 0.924300i \(-0.624650\pi\)
−0.381666 + 0.924300i \(0.624650\pi\)
\(762\) 0 0
\(763\) −1.53695e7 −0.955759
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −3.63781e6 −0.223281
\(768\) 0 0
\(769\) −877872. −0.0535322 −0.0267661 0.999642i \(-0.508521\pi\)
−0.0267661 + 0.999642i \(0.508521\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 3.34247e6 0.201196 0.100598 0.994927i \(-0.467924\pi\)
0.100598 + 0.994927i \(0.467924\pi\)
\(774\) 0 0
\(775\) −1.16037e7 −0.693973
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −6.06875e6 −0.358307
\(780\) 0 0
\(781\) −3.63257e7 −2.13102
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2.15116e6 0.124594
\(786\) 0 0
\(787\) 1.91537e7 1.10234 0.551169 0.834394i \(-0.314182\pi\)
0.551169 + 0.834394i \(0.314182\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 2.56989e7 1.46041
\(792\) 0 0
\(793\) 484350. 0.0273512
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.40570e7 0.783877 0.391939 0.919991i \(-0.371805\pi\)
0.391939 + 0.919991i \(0.371805\pi\)
\(798\) 0 0
\(799\) 2.69037e7 1.49089
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −3.67315e7 −2.01025
\(804\) 0 0
\(805\) −5.81300e6 −0.316163
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −2.93356e6 −0.157588 −0.0787941 0.996891i \(-0.525107\pi\)
−0.0787941 + 0.996891i \(0.525107\pi\)
\(810\) 0 0
\(811\) −1.39811e7 −0.746430 −0.373215 0.927745i \(-0.621745\pi\)
−0.373215 + 0.927745i \(0.621745\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −4.93668e6 −0.260340
\(816\) 0 0
\(817\) −1.34603e7 −0.705504
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 4.33466e6 0.224438 0.112219 0.993683i \(-0.464204\pi\)
0.112219 + 0.993683i \(0.464204\pi\)
\(822\) 0 0
\(823\) −2.82999e7 −1.45642 −0.728208 0.685356i \(-0.759647\pi\)
−0.728208 + 0.685356i \(0.759647\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 8.41388e6 0.427792 0.213896 0.976856i \(-0.431385\pi\)
0.213896 + 0.976856i \(0.431385\pi\)
\(828\) 0 0
\(829\) 1.48710e6 0.0751545 0.0375772 0.999294i \(-0.488036\pi\)
0.0375772 + 0.999294i \(0.488036\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1.26418e7 −0.631241
\(834\) 0 0
\(835\) 4.16763e6 0.206858
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 3.09088e6 0.151593 0.0757963 0.997123i \(-0.475850\pi\)
0.0757963 + 0.997123i \(0.475850\pi\)
\(840\) 0 0
\(841\) −8.32410e6 −0.405833
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −356719. −0.0171864
\(846\) 0 0
\(847\) 2.16080e7 1.03492
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.19366e7 1.03835
\(852\) 0 0
\(853\) −2.17219e7 −1.02218 −0.511088 0.859529i \(-0.670757\pi\)
−0.511088 + 0.859529i \(0.670757\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 8.65291e6 0.402448 0.201224 0.979545i \(-0.435508\pi\)
0.201224 + 0.979545i \(0.435508\pi\)
\(858\) 0 0
\(859\) −2.49282e7 −1.15268 −0.576340 0.817210i \(-0.695520\pi\)
−0.576340 + 0.817210i \(0.695520\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −7.85566e6 −0.359050 −0.179525 0.983753i \(-0.557456\pi\)
−0.179525 + 0.983753i \(0.557456\pi\)
\(864\) 0 0
\(865\) 4.62264e6 0.210063
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 4.13625e7 1.85805
\(870\) 0 0
\(871\) −2.70373e6 −0.120758
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 7.50440e6 0.331357
\(876\) 0 0
\(877\) −4.19542e7 −1.84194 −0.920972 0.389630i \(-0.872603\pi\)
−0.920972 + 0.389630i \(0.872603\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −2.75936e7 −1.19776 −0.598878 0.800840i \(-0.704387\pi\)
−0.598878 + 0.800840i \(0.704387\pi\)
\(882\) 0 0
\(883\) −8.37978e6 −0.361685 −0.180843 0.983512i \(-0.557882\pi\)
−0.180843 + 0.983512i \(0.557882\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −8.51154e6 −0.363245 −0.181622 0.983368i \(-0.558135\pi\)
−0.181622 + 0.983368i \(0.558135\pi\)
\(888\) 0 0
\(889\) 3.77404e6 0.160159
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.69860e7 0.712792
\(894\) 0 0
\(895\) 2.56146e6 0.106888
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −1.36438e7 −0.563036
\(900\) 0 0
\(901\) 1.55215e7 0.636974
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −696572. −0.0282712
\(906\) 0 0
\(907\) 4.32628e7 1.74621 0.873105 0.487532i \(-0.162103\pi\)
0.873105 + 0.487532i \(0.162103\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 8.31414e6 0.331911 0.165955 0.986133i \(-0.446929\pi\)
0.165955 + 0.986133i \(0.446929\pi\)
\(912\) 0 0
\(913\) 4.46524e7 1.77283
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −3.67380e7 −1.44275
\(918\) 0 0
\(919\) 3.03484e7 1.18535 0.592675 0.805442i \(-0.298072\pi\)
0.592675 + 0.805442i \(0.298072\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 9.95613e6 0.384668
\(924\) 0 0
\(925\) −1.37973e7 −0.530199
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 4.88666e7 1.85769 0.928844 0.370472i \(-0.120804\pi\)
0.928844 + 0.370472i \(0.120804\pi\)
\(930\) 0 0
\(931\) −7.98154e6 −0.301795
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −1.37399e7 −0.513989
\(936\) 0 0
\(937\) 4.72400e7 1.75776 0.878882 0.477038i \(-0.158290\pi\)
0.878882 + 0.477038i \(0.158290\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 4.29259e7 1.58032 0.790160 0.612901i \(-0.209997\pi\)
0.790160 + 0.612901i \(0.209997\pi\)
\(942\) 0 0
\(943\) −2.54324e7 −0.931340
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −5.26004e6 −0.190596 −0.0952980 0.995449i \(-0.530380\pi\)
−0.0952980 + 0.995449i \(0.530380\pi\)
\(948\) 0 0
\(949\) 1.00673e7 0.362868
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 2.86111e7 1.02047 0.510237 0.860034i \(-0.329558\pi\)
0.510237 + 0.860034i \(0.329558\pi\)
\(954\) 0 0
\(955\) 3.41320e6 0.121103
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 2.47562e7 0.869237
\(960\) 0 0
\(961\) −1.33545e7 −0.466464
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1.54181e6 −0.0532981
\(966\) 0 0
\(967\) −1.15733e7 −0.398007 −0.199003 0.979999i \(-0.563770\pi\)
−0.199003 + 0.979999i \(0.563770\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −2.36472e7 −0.804880 −0.402440 0.915446i \(-0.631838\pi\)
−0.402440 + 0.915446i \(0.631838\pi\)
\(972\) 0 0
\(973\) 2.82298e7 0.955930
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1.50308e7 −0.503786 −0.251893 0.967755i \(-0.581053\pi\)
−0.251893 + 0.967755i \(0.581053\pi\)
\(978\) 0 0
\(979\) −7.46286e7 −2.48856
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −1.58366e7 −0.522731 −0.261366 0.965240i \(-0.584173\pi\)
−0.261366 + 0.965240i \(0.584173\pi\)
\(984\) 0 0
\(985\) −2.52454e6 −0.0829072
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −5.64083e7 −1.83380
\(990\) 0 0
\(991\) −1.37246e7 −0.443931 −0.221965 0.975055i \(-0.571247\pi\)
−0.221965 + 0.975055i \(0.571247\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −9.43579e6 −0.302148
\(996\) 0 0
\(997\) −6.01789e7 −1.91737 −0.958685 0.284469i \(-0.908183\pi\)
−0.958685 + 0.284469i \(0.908183\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.6.a.n.1.2 4
3.2 odd 2 312.6.a.h.1.3 4
12.11 even 2 624.6.a.u.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.6.a.h.1.3 4 3.2 odd 2
624.6.a.u.1.3 4 12.11 even 2
936.6.a.n.1.2 4 1.1 even 1 trivial