Properties

Label 936.4.a.l.1.3
Level $936$
Weight $4$
Character 936.1
Self dual yes
Analytic conductor $55.226$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,4,Mod(1,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 936.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.2257877654\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.13916.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 16x - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 312)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.388065\) of defining polynomial
Character \(\chi\) \(=\) 936.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+20.1466 q^{5} -19.6988 q^{7} -13.5523 q^{11} +13.0000 q^{13} -116.377 q^{17} +68.1169 q^{19} -122.377 q^{23} +280.884 q^{25} -204.193 q^{29} -194.603 q^{31} -396.863 q^{35} -142.879 q^{37} +175.051 q^{41} -219.490 q^{43} -236.413 q^{47} +45.0432 q^{49} +628.790 q^{53} -273.031 q^{55} -446.014 q^{59} +224.470 q^{61} +261.905 q^{65} +165.328 q^{67} -902.979 q^{71} -15.1121 q^{73} +266.963 q^{77} +670.013 q^{79} -1040.50 q^{83} -2344.60 q^{85} +562.139 q^{89} -256.085 q^{91} +1372.32 q^{95} +1648.53 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 4 q^{5} + 6 q^{7} - 32 q^{11} + 39 q^{13} - 158 q^{17} + 70 q^{19} - 176 q^{23} + 209 q^{25} - 222 q^{29} + 54 q^{31} - 496 q^{35} - 90 q^{37} - 104 q^{41} + 140 q^{43} - 328 q^{47} - 65 q^{49} + 358 q^{53}+ \cdots - 742 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 20.1466 1.80196 0.900981 0.433858i \(-0.142848\pi\)
0.900981 + 0.433858i \(0.142848\pi\)
\(6\) 0 0
\(7\) −19.6988 −1.06364 −0.531818 0.846859i \(-0.678491\pi\)
−0.531818 + 0.846859i \(0.678491\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −13.5523 −0.371469 −0.185735 0.982600i \(-0.559466\pi\)
−0.185735 + 0.982600i \(0.559466\pi\)
\(12\) 0 0
\(13\) 13.0000 0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −116.377 −1.66033 −0.830165 0.557518i \(-0.811754\pi\)
−0.830165 + 0.557518i \(0.811754\pi\)
\(18\) 0 0
\(19\) 68.1169 0.822478 0.411239 0.911528i \(-0.365096\pi\)
0.411239 + 0.911528i \(0.365096\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −122.377 −1.10945 −0.554726 0.832033i \(-0.687177\pi\)
−0.554726 + 0.832033i \(0.687177\pi\)
\(24\) 0 0
\(25\) 280.884 2.24707
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −204.193 −1.30751 −0.653753 0.756708i \(-0.726806\pi\)
−0.653753 + 0.756708i \(0.726806\pi\)
\(30\) 0 0
\(31\) −194.603 −1.12747 −0.563737 0.825954i \(-0.690637\pi\)
−0.563737 + 0.825954i \(0.690637\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −396.863 −1.91663
\(36\) 0 0
\(37\) −142.879 −0.634844 −0.317422 0.948284i \(-0.602817\pi\)
−0.317422 + 0.948284i \(0.602817\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 175.051 0.666788 0.333394 0.942788i \(-0.391806\pi\)
0.333394 + 0.942788i \(0.391806\pi\)
\(42\) 0 0
\(43\) −219.490 −0.778417 −0.389209 0.921150i \(-0.627252\pi\)
−0.389209 + 0.921150i \(0.627252\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −236.413 −0.733711 −0.366855 0.930278i \(-0.619566\pi\)
−0.366855 + 0.930278i \(0.619566\pi\)
\(48\) 0 0
\(49\) 45.0432 0.131321
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 628.790 1.62964 0.814820 0.579714i \(-0.196836\pi\)
0.814820 + 0.579714i \(0.196836\pi\)
\(54\) 0 0
\(55\) −273.031 −0.669373
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −446.014 −0.984170 −0.492085 0.870547i \(-0.663765\pi\)
−0.492085 + 0.870547i \(0.663765\pi\)
\(60\) 0 0
\(61\) 224.470 0.471154 0.235577 0.971856i \(-0.424302\pi\)
0.235577 + 0.971856i \(0.424302\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 261.905 0.499774
\(66\) 0 0
\(67\) 165.328 0.301463 0.150731 0.988575i \(-0.451837\pi\)
0.150731 + 0.988575i \(0.451837\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −902.979 −1.50935 −0.754675 0.656098i \(-0.772206\pi\)
−0.754675 + 0.656098i \(0.772206\pi\)
\(72\) 0 0
\(73\) −15.1121 −0.0242293 −0.0121147 0.999927i \(-0.503856\pi\)
−0.0121147 + 0.999927i \(0.503856\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 266.963 0.395108
\(78\) 0 0
\(79\) 670.013 0.954207 0.477104 0.878847i \(-0.341687\pi\)
0.477104 + 0.878847i \(0.341687\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1040.50 −1.37602 −0.688010 0.725701i \(-0.741515\pi\)
−0.688010 + 0.725701i \(0.741515\pi\)
\(84\) 0 0
\(85\) −2344.60 −2.99185
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 562.139 0.669512 0.334756 0.942305i \(-0.391346\pi\)
0.334756 + 0.942305i \(0.391346\pi\)
\(90\) 0 0
\(91\) −256.085 −0.295000
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1372.32 1.48207
\(96\) 0 0
\(97\) 1648.53 1.72560 0.862798 0.505548i \(-0.168710\pi\)
0.862798 + 0.505548i \(0.168710\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −397.182 −0.391298 −0.195649 0.980674i \(-0.562681\pi\)
−0.195649 + 0.980674i \(0.562681\pi\)
\(102\) 0 0
\(103\) 1642.17 1.57095 0.785476 0.618892i \(-0.212418\pi\)
0.785476 + 0.618892i \(0.212418\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 644.674 0.582458 0.291229 0.956653i \(-0.405936\pi\)
0.291229 + 0.956653i \(0.405936\pi\)
\(108\) 0 0
\(109\) −297.565 −0.261482 −0.130741 0.991417i \(-0.541736\pi\)
−0.130741 + 0.991417i \(0.541736\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1902.40 −1.58374 −0.791872 0.610687i \(-0.790893\pi\)
−0.791872 + 0.610687i \(0.790893\pi\)
\(114\) 0 0
\(115\) −2465.48 −1.99919
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2292.49 1.76599
\(120\) 0 0
\(121\) −1147.34 −0.862011
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3140.52 2.24717
\(126\) 0 0
\(127\) 175.822 0.122848 0.0614240 0.998112i \(-0.480436\pi\)
0.0614240 + 0.998112i \(0.480436\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −2195.26 −1.46413 −0.732066 0.681234i \(-0.761444\pi\)
−0.732066 + 0.681234i \(0.761444\pi\)
\(132\) 0 0
\(133\) −1341.82 −0.874817
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 927.288 0.578274 0.289137 0.957288i \(-0.406632\pi\)
0.289137 + 0.957288i \(0.406632\pi\)
\(138\) 0 0
\(139\) −2911.57 −1.77666 −0.888331 0.459205i \(-0.848134\pi\)
−0.888331 + 0.459205i \(0.848134\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −176.179 −0.103027
\(144\) 0 0
\(145\) −4113.78 −2.35608
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −3078.29 −1.69251 −0.846254 0.532780i \(-0.821147\pi\)
−0.846254 + 0.532780i \(0.821147\pi\)
\(150\) 0 0
\(151\) −866.444 −0.466955 −0.233478 0.972362i \(-0.575011\pi\)
−0.233478 + 0.972362i \(0.575011\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −3920.58 −2.03167
\(156\) 0 0
\(157\) −1545.89 −0.785831 −0.392915 0.919575i \(-0.628533\pi\)
−0.392915 + 0.919575i \(0.628533\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2410.68 1.18005
\(162\) 0 0
\(163\) 1635.09 0.785707 0.392854 0.919601i \(-0.371488\pi\)
0.392854 + 0.919601i \(0.371488\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2260.09 −1.04725 −0.523626 0.851948i \(-0.675421\pi\)
−0.523626 + 0.851948i \(0.675421\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3079.96 1.35355 0.676777 0.736188i \(-0.263376\pi\)
0.676777 + 0.736188i \(0.263376\pi\)
\(174\) 0 0
\(175\) −5533.07 −2.39006
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1564.49 0.653272 0.326636 0.945150i \(-0.394085\pi\)
0.326636 + 0.945150i \(0.394085\pi\)
\(180\) 0 0
\(181\) 641.793 0.263559 0.131779 0.991279i \(-0.457931\pi\)
0.131779 + 0.991279i \(0.457931\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2878.53 −1.14396
\(186\) 0 0
\(187\) 1577.17 0.616761
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4000.90 −1.51568 −0.757841 0.652439i \(-0.773746\pi\)
−0.757841 + 0.652439i \(0.773746\pi\)
\(192\) 0 0
\(193\) −4255.28 −1.58706 −0.793528 0.608533i \(-0.791758\pi\)
−0.793528 + 0.608533i \(0.791758\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3774.59 −1.36512 −0.682559 0.730831i \(-0.739133\pi\)
−0.682559 + 0.730831i \(0.739133\pi\)
\(198\) 0 0
\(199\) 2071.28 0.737835 0.368918 0.929462i \(-0.379728\pi\)
0.368918 + 0.929462i \(0.379728\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 4022.36 1.39071
\(204\) 0 0
\(205\) 3526.67 1.20153
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −923.138 −0.305525
\(210\) 0 0
\(211\) −2753.26 −0.898304 −0.449152 0.893455i \(-0.648274\pi\)
−0.449152 + 0.893455i \(0.648274\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −4421.97 −1.40268
\(216\) 0 0
\(217\) 3833.45 1.19922
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1512.90 −0.460493
\(222\) 0 0
\(223\) 3994.02 1.19937 0.599685 0.800236i \(-0.295293\pi\)
0.599685 + 0.800236i \(0.295293\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1797.20 −0.525480 −0.262740 0.964867i \(-0.584626\pi\)
−0.262740 + 0.964867i \(0.584626\pi\)
\(228\) 0 0
\(229\) −5171.16 −1.49223 −0.746114 0.665819i \(-0.768082\pi\)
−0.746114 + 0.665819i \(0.768082\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4501.40 1.26565 0.632826 0.774294i \(-0.281895\pi\)
0.632826 + 0.774294i \(0.281895\pi\)
\(234\) 0 0
\(235\) −4762.91 −1.32212
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 6948.26 1.88053 0.940263 0.340450i \(-0.110579\pi\)
0.940263 + 0.340450i \(0.110579\pi\)
\(240\) 0 0
\(241\) 1484.32 0.396737 0.198368 0.980128i \(-0.436436\pi\)
0.198368 + 0.980128i \(0.436436\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 907.465 0.236636
\(246\) 0 0
\(247\) 885.519 0.228114
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2840.45 0.714293 0.357147 0.934048i \(-0.383750\pi\)
0.357147 + 0.934048i \(0.383750\pi\)
\(252\) 0 0
\(253\) 1658.49 0.412127
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1500.98 0.364313 0.182156 0.983270i \(-0.441692\pi\)
0.182156 + 0.983270i \(0.441692\pi\)
\(258\) 0 0
\(259\) 2814.55 0.675242
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 690.021 0.161781 0.0808907 0.996723i \(-0.474224\pi\)
0.0808907 + 0.996723i \(0.474224\pi\)
\(264\) 0 0
\(265\) 12667.9 2.93655
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −507.641 −0.115061 −0.0575305 0.998344i \(-0.518323\pi\)
−0.0575305 + 0.998344i \(0.518323\pi\)
\(270\) 0 0
\(271\) −1528.40 −0.342598 −0.171299 0.985219i \(-0.554796\pi\)
−0.171299 + 0.985219i \(0.554796\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3806.61 −0.834717
\(276\) 0 0
\(277\) 3886.11 0.842939 0.421469 0.906843i \(-0.361515\pi\)
0.421469 + 0.906843i \(0.361515\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −2705.38 −0.574339 −0.287170 0.957880i \(-0.592714\pi\)
−0.287170 + 0.957880i \(0.592714\pi\)
\(282\) 0 0
\(283\) −2944.62 −0.618514 −0.309257 0.950978i \(-0.600080\pi\)
−0.309257 + 0.950978i \(0.600080\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3448.29 −0.709220
\(288\) 0 0
\(289\) 8630.65 1.75670
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3835.89 0.764830 0.382415 0.923991i \(-0.375092\pi\)
0.382415 + 0.923991i \(0.375092\pi\)
\(294\) 0 0
\(295\) −8985.63 −1.77344
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1590.90 −0.307707
\(300\) 0 0
\(301\) 4323.70 0.827953
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4522.29 0.849002
\(306\) 0 0
\(307\) 4068.20 0.756301 0.378151 0.925744i \(-0.376560\pi\)
0.378151 + 0.925744i \(0.376560\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −7154.18 −1.30443 −0.652213 0.758036i \(-0.726159\pi\)
−0.652213 + 0.758036i \(0.726159\pi\)
\(312\) 0 0
\(313\) 6439.37 1.16286 0.581429 0.813597i \(-0.302494\pi\)
0.581429 + 0.813597i \(0.302494\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7721.21 1.36803 0.684016 0.729467i \(-0.260232\pi\)
0.684016 + 0.729467i \(0.260232\pi\)
\(318\) 0 0
\(319\) 2767.27 0.485698
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −7927.25 −1.36559
\(324\) 0 0
\(325\) 3651.49 0.623225
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4657.06 0.780401
\(330\) 0 0
\(331\) −2940.41 −0.488276 −0.244138 0.969740i \(-0.578505\pi\)
−0.244138 + 0.969740i \(0.578505\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 3330.79 0.543225
\(336\) 0 0
\(337\) 5321.56 0.860189 0.430094 0.902784i \(-0.358480\pi\)
0.430094 + 0.902784i \(0.358480\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2637.31 0.418822
\(342\) 0 0
\(343\) 5869.40 0.923958
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 10398.3 1.60868 0.804339 0.594170i \(-0.202519\pi\)
0.804339 + 0.594170i \(0.202519\pi\)
\(348\) 0 0
\(349\) −2289.87 −0.351214 −0.175607 0.984460i \(-0.556189\pi\)
−0.175607 + 0.984460i \(0.556189\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −11216.7 −1.69124 −0.845619 0.533787i \(-0.820769\pi\)
−0.845619 + 0.533787i \(0.820769\pi\)
\(354\) 0 0
\(355\) −18191.9 −2.71979
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1447.78 −0.212844 −0.106422 0.994321i \(-0.533939\pi\)
−0.106422 + 0.994321i \(0.533939\pi\)
\(360\) 0 0
\(361\) −2219.09 −0.323530
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −304.457 −0.0436603
\(366\) 0 0
\(367\) 6365.59 0.905398 0.452699 0.891663i \(-0.350461\pi\)
0.452699 + 0.891663i \(0.350461\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −12386.4 −1.73334
\(372\) 0 0
\(373\) −9805.65 −1.36117 −0.680586 0.732668i \(-0.738275\pi\)
−0.680586 + 0.732668i \(0.738275\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2654.51 −0.362637
\(378\) 0 0
\(379\) 7337.60 0.994478 0.497239 0.867614i \(-0.334347\pi\)
0.497239 + 0.867614i \(0.334347\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3729.09 0.497514 0.248757 0.968566i \(-0.419978\pi\)
0.248757 + 0.968566i \(0.419978\pi\)
\(384\) 0 0
\(385\) 5378.39 0.711969
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 13546.0 1.76558 0.882788 0.469771i \(-0.155664\pi\)
0.882788 + 0.469771i \(0.155664\pi\)
\(390\) 0 0
\(391\) 14241.9 1.84206
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 13498.5 1.71945
\(396\) 0 0
\(397\) −11119.4 −1.40570 −0.702852 0.711336i \(-0.748090\pi\)
−0.702852 + 0.711336i \(0.748090\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2852.32 0.355207 0.177603 0.984102i \(-0.443166\pi\)
0.177603 + 0.984102i \(0.443166\pi\)
\(402\) 0 0
\(403\) −2529.84 −0.312705
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1936.34 0.235825
\(408\) 0 0
\(409\) −6656.75 −0.804781 −0.402390 0.915468i \(-0.631821\pi\)
−0.402390 + 0.915468i \(0.631821\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 8785.94 1.04680
\(414\) 0 0
\(415\) −20962.5 −2.47954
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −10198.0 −1.18903 −0.594514 0.804085i \(-0.702656\pi\)
−0.594514 + 0.804085i \(0.702656\pi\)
\(420\) 0 0
\(421\) −4463.77 −0.516747 −0.258374 0.966045i \(-0.583187\pi\)
−0.258374 + 0.966045i \(0.583187\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −32688.4 −3.73088
\(426\) 0 0
\(427\) −4421.79 −0.501137
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −3656.22 −0.408617 −0.204309 0.978907i \(-0.565495\pi\)
−0.204309 + 0.978907i \(0.565495\pi\)
\(432\) 0 0
\(433\) −2816.59 −0.312602 −0.156301 0.987709i \(-0.549957\pi\)
−0.156301 + 0.987709i \(0.549957\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −8335.95 −0.912500
\(438\) 0 0
\(439\) 11396.3 1.23899 0.619496 0.785000i \(-0.287337\pi\)
0.619496 + 0.785000i \(0.287337\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4245.96 0.455376 0.227688 0.973734i \(-0.426883\pi\)
0.227688 + 0.973734i \(0.426883\pi\)
\(444\) 0 0
\(445\) 11325.2 1.20644
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2021.21 0.212443 0.106222 0.994342i \(-0.466125\pi\)
0.106222 + 0.994342i \(0.466125\pi\)
\(450\) 0 0
\(451\) −2372.33 −0.247691
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −5159.22 −0.531578
\(456\) 0 0
\(457\) 13740.0 1.40641 0.703206 0.710986i \(-0.251751\pi\)
0.703206 + 0.710986i \(0.251751\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1519.14 −0.153478 −0.0767392 0.997051i \(-0.524451\pi\)
−0.0767392 + 0.997051i \(0.524451\pi\)
\(462\) 0 0
\(463\) −1108.49 −0.111265 −0.0556325 0.998451i \(-0.517718\pi\)
−0.0556325 + 0.998451i \(0.517718\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 10147.9 1.00554 0.502771 0.864420i \(-0.332314\pi\)
0.502771 + 0.864420i \(0.332314\pi\)
\(468\) 0 0
\(469\) −3256.76 −0.320647
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2974.59 0.289158
\(474\) 0 0
\(475\) 19132.9 1.84816
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 14277.3 1.36190 0.680948 0.732332i \(-0.261568\pi\)
0.680948 + 0.732332i \(0.261568\pi\)
\(480\) 0 0
\(481\) −1857.43 −0.176074
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 33212.2 3.10946
\(486\) 0 0
\(487\) −2138.76 −0.199007 −0.0995037 0.995037i \(-0.531726\pi\)
−0.0995037 + 0.995037i \(0.531726\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −511.287 −0.0469940 −0.0234970 0.999724i \(-0.507480\pi\)
−0.0234970 + 0.999724i \(0.507480\pi\)
\(492\) 0 0
\(493\) 23763.4 2.17089
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 17787.6 1.60540
\(498\) 0 0
\(499\) −484.443 −0.0434602 −0.0217301 0.999764i \(-0.506917\pi\)
−0.0217301 + 0.999764i \(0.506917\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −20675.7 −1.83277 −0.916386 0.400295i \(-0.868908\pi\)
−0.916386 + 0.400295i \(0.868908\pi\)
\(504\) 0 0
\(505\) −8001.85 −0.705104
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 15364.4 1.33795 0.668975 0.743285i \(-0.266734\pi\)
0.668975 + 0.743285i \(0.266734\pi\)
\(510\) 0 0
\(511\) 297.691 0.0257712
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 33084.1 2.83080
\(516\) 0 0
\(517\) 3203.93 0.272551
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 13318.8 1.11997 0.559986 0.828502i \(-0.310807\pi\)
0.559986 + 0.828502i \(0.310807\pi\)
\(522\) 0 0
\(523\) 12904.9 1.07895 0.539476 0.842001i \(-0.318622\pi\)
0.539476 + 0.842001i \(0.318622\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 22647.3 1.87198
\(528\) 0 0
\(529\) 2809.17 0.230885
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2275.66 0.184934
\(534\) 0 0
\(535\) 12988.0 1.04957
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −610.437 −0.0487818
\(540\) 0 0
\(541\) −5767.47 −0.458342 −0.229171 0.973386i \(-0.573602\pi\)
−0.229171 + 0.973386i \(0.573602\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −5994.91 −0.471181
\(546\) 0 0
\(547\) −1804.58 −0.141057 −0.0705286 0.997510i \(-0.522469\pi\)
−0.0705286 + 0.997510i \(0.522469\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −13909.0 −1.07539
\(552\) 0 0
\(553\) −13198.5 −1.01493
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 3897.95 0.296519 0.148260 0.988948i \(-0.452633\pi\)
0.148260 + 0.988948i \(0.452633\pi\)
\(558\) 0 0
\(559\) −2853.37 −0.215894
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 18806.2 1.40779 0.703894 0.710305i \(-0.251443\pi\)
0.703894 + 0.710305i \(0.251443\pi\)
\(564\) 0 0
\(565\) −38326.9 −2.85385
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −24680.0 −1.81835 −0.909175 0.416415i \(-0.863286\pi\)
−0.909175 + 0.416415i \(0.863286\pi\)
\(570\) 0 0
\(571\) 23437.7 1.71775 0.858877 0.512182i \(-0.171163\pi\)
0.858877 + 0.512182i \(0.171163\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −34373.7 −2.49302
\(576\) 0 0
\(577\) 10814.1 0.780240 0.390120 0.920764i \(-0.372434\pi\)
0.390120 + 0.920764i \(0.372434\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 20496.6 1.46358
\(582\) 0 0
\(583\) −8521.52 −0.605361
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −27148.1 −1.90889 −0.954447 0.298379i \(-0.903554\pi\)
−0.954447 + 0.298379i \(0.903554\pi\)
\(588\) 0 0
\(589\) −13255.7 −0.927323
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −4549.19 −0.315030 −0.157515 0.987517i \(-0.550348\pi\)
−0.157515 + 0.987517i \(0.550348\pi\)
\(594\) 0 0
\(595\) 46185.8 3.18224
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −2875.51 −0.196144 −0.0980720 0.995179i \(-0.531268\pi\)
−0.0980720 + 0.995179i \(0.531268\pi\)
\(600\) 0 0
\(601\) −22636.2 −1.53636 −0.768179 0.640235i \(-0.778837\pi\)
−0.768179 + 0.640235i \(0.778837\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −23114.9 −1.55331
\(606\) 0 0
\(607\) −3458.51 −0.231263 −0.115631 0.993292i \(-0.536889\pi\)
−0.115631 + 0.993292i \(0.536889\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −3073.37 −0.203495
\(612\) 0 0
\(613\) −18029.5 −1.18794 −0.593969 0.804488i \(-0.702440\pi\)
−0.593969 + 0.804488i \(0.702440\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −5410.04 −0.352999 −0.176499 0.984301i \(-0.556477\pi\)
−0.176499 + 0.984301i \(0.556477\pi\)
\(618\) 0 0
\(619\) −2133.47 −0.138532 −0.0692661 0.997598i \(-0.522066\pi\)
−0.0692661 + 0.997598i \(0.522066\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −11073.5 −0.712117
\(624\) 0 0
\(625\) 28160.1 1.80225
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 16627.9 1.05405
\(630\) 0 0
\(631\) 20370.5 1.28516 0.642580 0.766219i \(-0.277864\pi\)
0.642580 + 0.766219i \(0.277864\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 3542.21 0.221367
\(636\) 0 0
\(637\) 585.561 0.0364220
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 14112.2 0.869573 0.434787 0.900534i \(-0.356824\pi\)
0.434787 + 0.900534i \(0.356824\pi\)
\(642\) 0 0
\(643\) 20309.8 1.24563 0.622815 0.782369i \(-0.285989\pi\)
0.622815 + 0.782369i \(0.285989\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −12214.8 −0.742212 −0.371106 0.928590i \(-0.621021\pi\)
−0.371106 + 0.928590i \(0.621021\pi\)
\(648\) 0 0
\(649\) 6044.49 0.365589
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −31803.3 −1.90591 −0.952955 0.303111i \(-0.901975\pi\)
−0.952955 + 0.303111i \(0.901975\pi\)
\(654\) 0 0
\(655\) −44227.0 −2.63831
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 21545.8 1.27360 0.636802 0.771027i \(-0.280257\pi\)
0.636802 + 0.771027i \(0.280257\pi\)
\(660\) 0 0
\(661\) 26775.5 1.57556 0.787781 0.615956i \(-0.211230\pi\)
0.787781 + 0.615956i \(0.211230\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −27033.1 −1.57639
\(666\) 0 0
\(667\) 24988.5 1.45062
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −3042.07 −0.175019
\(672\) 0 0
\(673\) 15091.5 0.864388 0.432194 0.901781i \(-0.357740\pi\)
0.432194 + 0.901781i \(0.357740\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −17169.2 −0.974689 −0.487345 0.873210i \(-0.662034\pi\)
−0.487345 + 0.873210i \(0.662034\pi\)
\(678\) 0 0
\(679\) −32474.1 −1.83541
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1579.31 −0.0884781 −0.0442391 0.999021i \(-0.514086\pi\)
−0.0442391 + 0.999021i \(0.514086\pi\)
\(684\) 0 0
\(685\) 18681.7 1.04203
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 8174.27 0.451981
\(690\) 0 0
\(691\) −2423.59 −0.133427 −0.0667134 0.997772i \(-0.521251\pi\)
−0.0667134 + 0.997772i \(0.521251\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −58658.0 −3.20148
\(696\) 0 0
\(697\) −20371.9 −1.10709
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −7893.64 −0.425305 −0.212652 0.977128i \(-0.568210\pi\)
−0.212652 + 0.977128i \(0.568210\pi\)
\(702\) 0 0
\(703\) −9732.49 −0.522145
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 7824.01 0.416198
\(708\) 0 0
\(709\) −11523.5 −0.610399 −0.305199 0.952288i \(-0.598723\pi\)
−0.305199 + 0.952288i \(0.598723\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 23814.9 1.25088
\(714\) 0 0
\(715\) −3549.41 −0.185651
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 4029.94 0.209028 0.104514 0.994523i \(-0.466671\pi\)
0.104514 + 0.994523i \(0.466671\pi\)
\(720\) 0 0
\(721\) −32348.9 −1.67092
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −57354.4 −2.93806
\(726\) 0 0
\(727\) −36930.6 −1.88402 −0.942009 0.335588i \(-0.891065\pi\)
−0.942009 + 0.335588i \(0.891065\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 25543.7 1.29243
\(732\) 0 0
\(733\) 14378.9 0.724552 0.362276 0.932071i \(-0.382000\pi\)
0.362276 + 0.932071i \(0.382000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2240.57 −0.111984
\(738\) 0 0
\(739\) −30657.0 −1.52603 −0.763015 0.646381i \(-0.776282\pi\)
−0.763015 + 0.646381i \(0.776282\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 31072.6 1.53424 0.767122 0.641501i \(-0.221688\pi\)
0.767122 + 0.641501i \(0.221688\pi\)
\(744\) 0 0
\(745\) −62017.0 −3.04983
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −12699.3 −0.619524
\(750\) 0 0
\(751\) 149.995 0.00728816 0.00364408 0.999993i \(-0.498840\pi\)
0.00364408 + 0.999993i \(0.498840\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −17455.9 −0.841436
\(756\) 0 0
\(757\) 13482.2 0.647318 0.323659 0.946174i \(-0.395087\pi\)
0.323659 + 0.946174i \(0.395087\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −11123.3 −0.529857 −0.264928 0.964268i \(-0.585348\pi\)
−0.264928 + 0.964268i \(0.585348\pi\)
\(762\) 0 0
\(763\) 5861.67 0.278122
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −5798.18 −0.272960
\(768\) 0 0
\(769\) 2527.85 0.118539 0.0592695 0.998242i \(-0.481123\pi\)
0.0592695 + 0.998242i \(0.481123\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −9690.00 −0.450873 −0.225437 0.974258i \(-0.572381\pi\)
−0.225437 + 0.974258i \(0.572381\pi\)
\(774\) 0 0
\(775\) −54660.8 −2.53351
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 11923.9 0.548419
\(780\) 0 0
\(781\) 12237.4 0.560677
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −31144.3 −1.41604
\(786\) 0 0
\(787\) 34825.8 1.57739 0.788694 0.614786i \(-0.210757\pi\)
0.788694 + 0.614786i \(0.210757\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 37475.1 1.68453
\(792\) 0 0
\(793\) 2918.11 0.130675
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −11789.0 −0.523950 −0.261975 0.965075i \(-0.584374\pi\)
−0.261975 + 0.965075i \(0.584374\pi\)
\(798\) 0 0
\(799\) 27513.1 1.21820
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 204.803 0.00900044
\(804\) 0 0
\(805\) 48567.0 2.12641
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 31672.3 1.37644 0.688220 0.725502i \(-0.258392\pi\)
0.688220 + 0.725502i \(0.258392\pi\)
\(810\) 0 0
\(811\) −978.791 −0.0423798 −0.0211899 0.999775i \(-0.506745\pi\)
−0.0211899 + 0.999775i \(0.506745\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 32941.5 1.41582
\(816\) 0 0
\(817\) −14951.0 −0.640231
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −14144.2 −0.601261 −0.300630 0.953741i \(-0.597197\pi\)
−0.300630 + 0.953741i \(0.597197\pi\)
\(822\) 0 0
\(823\) −29145.9 −1.23446 −0.617232 0.786781i \(-0.711746\pi\)
−0.617232 + 0.786781i \(0.711746\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 41540.2 1.74667 0.873333 0.487123i \(-0.161954\pi\)
0.873333 + 0.487123i \(0.161954\pi\)
\(828\) 0 0
\(829\) −23632.8 −0.990111 −0.495056 0.868861i \(-0.664852\pi\)
−0.495056 + 0.868861i \(0.664852\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −5242.00 −0.218037
\(834\) 0 0
\(835\) −45533.0 −1.88711
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 4136.95 0.170230 0.0851152 0.996371i \(-0.472874\pi\)
0.0851152 + 0.996371i \(0.472874\pi\)
\(840\) 0 0
\(841\) 17305.7 0.709571
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 3404.77 0.138612
\(846\) 0 0
\(847\) 22601.2 0.916866
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 17485.2 0.704329
\(852\) 0 0
\(853\) −17049.0 −0.684345 −0.342173 0.939637i \(-0.611163\pi\)
−0.342173 + 0.939637i \(0.611163\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 692.763 0.0276130 0.0138065 0.999905i \(-0.495605\pi\)
0.0138065 + 0.999905i \(0.495605\pi\)
\(858\) 0 0
\(859\) −18591.1 −0.738441 −0.369220 0.929342i \(-0.620375\pi\)
−0.369220 + 0.929342i \(0.620375\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −13759.6 −0.542738 −0.271369 0.962475i \(-0.587476\pi\)
−0.271369 + 0.962475i \(0.587476\pi\)
\(864\) 0 0
\(865\) 62050.5 2.43905
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −9080.19 −0.354458
\(870\) 0 0
\(871\) 2149.26 0.0836108
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −61864.5 −2.39017
\(876\) 0 0
\(877\) 10418.1 0.401133 0.200566 0.979680i \(-0.435722\pi\)
0.200566 + 0.979680i \(0.435722\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 10012.1 0.382880 0.191440 0.981504i \(-0.438684\pi\)
0.191440 + 0.981504i \(0.438684\pi\)
\(882\) 0 0
\(883\) −18276.9 −0.696565 −0.348283 0.937390i \(-0.613235\pi\)
−0.348283 + 0.937390i \(0.613235\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −8044.35 −0.304513 −0.152256 0.988341i \(-0.548654\pi\)
−0.152256 + 0.988341i \(0.548654\pi\)
\(888\) 0 0
\(889\) −3463.49 −0.130666
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −16103.7 −0.603461
\(894\) 0 0
\(895\) 31519.1 1.17717
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 39736.5 1.47418
\(900\) 0 0
\(901\) −73176.8 −2.70574
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 12929.9 0.474923
\(906\) 0 0
\(907\) 36799.1 1.34718 0.673592 0.739104i \(-0.264751\pi\)
0.673592 + 0.739104i \(0.264751\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 4530.89 0.164781 0.0823904 0.996600i \(-0.473745\pi\)
0.0823904 + 0.996600i \(0.473745\pi\)
\(912\) 0 0
\(913\) 14101.1 0.511149
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 43244.1 1.55730
\(918\) 0 0
\(919\) −31538.8 −1.13207 −0.566033 0.824382i \(-0.691523\pi\)
−0.566033 + 0.824382i \(0.691523\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −11738.7 −0.418619
\(924\) 0 0
\(925\) −40132.5 −1.42654
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 39177.6 1.38361 0.691805 0.722084i \(-0.256816\pi\)
0.691805 + 0.722084i \(0.256816\pi\)
\(930\) 0 0
\(931\) 3068.20 0.108009
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 31774.6 1.11138
\(936\) 0 0
\(937\) −25066.2 −0.873936 −0.436968 0.899477i \(-0.643948\pi\)
−0.436968 + 0.899477i \(0.643948\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 18774.7 0.650412 0.325206 0.945643i \(-0.394566\pi\)
0.325206 + 0.945643i \(0.394566\pi\)
\(942\) 0 0
\(943\) −21422.2 −0.739770
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 45833.2 1.57273 0.786367 0.617760i \(-0.211960\pi\)
0.786367 + 0.617760i \(0.211960\pi\)
\(948\) 0 0
\(949\) −196.458 −0.00672000
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −33232.5 −1.12960 −0.564798 0.825229i \(-0.691046\pi\)
−0.564798 + 0.825229i \(0.691046\pi\)
\(954\) 0 0
\(955\) −80604.4 −2.73120
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −18266.5 −0.615073
\(960\) 0 0
\(961\) 8079.27 0.271198
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −85729.3 −2.85982
\(966\) 0 0
\(967\) −18054.3 −0.600400 −0.300200 0.953876i \(-0.597053\pi\)
−0.300200 + 0.953876i \(0.597053\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 26222.9 0.866667 0.433333 0.901234i \(-0.357337\pi\)
0.433333 + 0.901234i \(0.357337\pi\)
\(972\) 0 0
\(973\) 57354.4 1.88972
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 5968.90 0.195457 0.0977287 0.995213i \(-0.468842\pi\)
0.0977287 + 0.995213i \(0.468842\pi\)
\(978\) 0 0
\(979\) −7618.25 −0.248703
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −22537.8 −0.731277 −0.365639 0.930757i \(-0.619149\pi\)
−0.365639 + 0.930757i \(0.619149\pi\)
\(984\) 0 0
\(985\) −76044.9 −2.45989
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 26860.6 0.863617
\(990\) 0 0
\(991\) 11681.6 0.374447 0.187223 0.982317i \(-0.440051\pi\)
0.187223 + 0.982317i \(0.440051\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 41729.2 1.32955
\(996\) 0 0
\(997\) −23095.6 −0.733645 −0.366822 0.930291i \(-0.619554\pi\)
−0.366822 + 0.930291i \(0.619554\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.4.a.l.1.3 3
3.2 odd 2 312.4.a.h.1.1 3
4.3 odd 2 1872.4.a.bl.1.3 3
12.11 even 2 624.4.a.s.1.1 3
24.5 odd 2 2496.4.a.bm.1.3 3
24.11 even 2 2496.4.a.bq.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.4.a.h.1.1 3 3.2 odd 2
624.4.a.s.1.1 3 12.11 even 2
936.4.a.l.1.3 3 1.1 even 1 trivial
1872.4.a.bl.1.3 3 4.3 odd 2
2496.4.a.bm.1.3 3 24.5 odd 2
2496.4.a.bq.1.3 3 24.11 even 2