Properties

Label 936.4.a.l.1.1
Level $936$
Weight $4$
Character 936.1
Self dual yes
Analytic conductor $55.226$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,4,Mod(1,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 936.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.2257877654\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.13916.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 16x - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 312)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-3.29884\) of defining polynomial
Character \(\chi\) \(=\) 936.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-12.9600 q^{5} +1.76468 q^{7} -25.1954 q^{11} +13.0000 q^{13} +62.6216 q^{17} +139.798 q^{19} +56.6216 q^{23} +42.9625 q^{25} -75.4119 q^{29} -71.2900 q^{31} -22.8703 q^{35} +55.7602 q^{37} +40.0947 q^{41} +14.7854 q^{43} -531.136 q^{47} -339.886 q^{49} -368.053 q^{53} +326.533 q^{55} -165.872 q^{59} -145.878 q^{61} -168.480 q^{65} +901.373 q^{67} +345.660 q^{71} -292.315 q^{73} -44.4617 q^{77} -722.695 q^{79} -565.364 q^{83} -811.578 q^{85} +275.116 q^{89} +22.9408 q^{91} -1811.79 q^{95} -1821.49 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 4 q^{5} + 6 q^{7} - 32 q^{11} + 39 q^{13} - 158 q^{17} + 70 q^{19} - 176 q^{23} + 209 q^{25} - 222 q^{29} + 54 q^{31} - 496 q^{35} - 90 q^{37} - 104 q^{41} + 140 q^{43} - 328 q^{47} - 65 q^{49} + 358 q^{53}+ \cdots - 742 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −12.9600 −1.15918 −0.579590 0.814908i \(-0.696787\pi\)
−0.579590 + 0.814908i \(0.696787\pi\)
\(6\) 0 0
\(7\) 1.76468 0.0952837 0.0476418 0.998864i \(-0.484829\pi\)
0.0476418 + 0.998864i \(0.484829\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −25.1954 −0.690608 −0.345304 0.938491i \(-0.612224\pi\)
−0.345304 + 0.938491i \(0.612224\pi\)
\(12\) 0 0
\(13\) 13.0000 0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 62.6216 0.893409 0.446705 0.894681i \(-0.352597\pi\)
0.446705 + 0.894681i \(0.352597\pi\)
\(18\) 0 0
\(19\) 139.798 1.68799 0.843997 0.536347i \(-0.180196\pi\)
0.843997 + 0.536347i \(0.180196\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 56.6216 0.513322 0.256661 0.966501i \(-0.417378\pi\)
0.256661 + 0.966501i \(0.417378\pi\)
\(24\) 0 0
\(25\) 42.9625 0.343700
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −75.4119 −0.482884 −0.241442 0.970415i \(-0.577620\pi\)
−0.241442 + 0.970415i \(0.577620\pi\)
\(30\) 0 0
\(31\) −71.2900 −0.413034 −0.206517 0.978443i \(-0.566213\pi\)
−0.206517 + 0.978443i \(0.566213\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −22.8703 −0.110451
\(36\) 0 0
\(37\) 55.7602 0.247755 0.123877 0.992298i \(-0.460467\pi\)
0.123877 + 0.992298i \(0.460467\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 40.0947 0.152725 0.0763626 0.997080i \(-0.475669\pi\)
0.0763626 + 0.997080i \(0.475669\pi\)
\(42\) 0 0
\(43\) 14.7854 0.0524362 0.0262181 0.999656i \(-0.491654\pi\)
0.0262181 + 0.999656i \(0.491654\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −531.136 −1.64839 −0.824193 0.566309i \(-0.808371\pi\)
−0.824193 + 0.566309i \(0.808371\pi\)
\(48\) 0 0
\(49\) −339.886 −0.990921
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −368.053 −0.953886 −0.476943 0.878934i \(-0.658255\pi\)
−0.476943 + 0.878934i \(0.658255\pi\)
\(54\) 0 0
\(55\) 326.533 0.800539
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −165.872 −0.366012 −0.183006 0.983112i \(-0.558583\pi\)
−0.183006 + 0.983112i \(0.558583\pi\)
\(60\) 0 0
\(61\) −145.878 −0.306192 −0.153096 0.988211i \(-0.548924\pi\)
−0.153096 + 0.988211i \(0.548924\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −168.480 −0.321499
\(66\) 0 0
\(67\) 901.373 1.64358 0.821792 0.569787i \(-0.192974\pi\)
0.821792 + 0.569787i \(0.192974\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 345.660 0.577778 0.288889 0.957363i \(-0.406714\pi\)
0.288889 + 0.957363i \(0.406714\pi\)
\(72\) 0 0
\(73\) −292.315 −0.468669 −0.234335 0.972156i \(-0.575291\pi\)
−0.234335 + 0.972156i \(0.575291\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −44.4617 −0.0658037
\(78\) 0 0
\(79\) −722.695 −1.02924 −0.514618 0.857420i \(-0.672066\pi\)
−0.514618 + 0.857420i \(0.672066\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −565.364 −0.747672 −0.373836 0.927495i \(-0.621958\pi\)
−0.373836 + 0.927495i \(0.621958\pi\)
\(84\) 0 0
\(85\) −811.578 −1.03562
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 275.116 0.327665 0.163833 0.986488i \(-0.447614\pi\)
0.163833 + 0.986488i \(0.447614\pi\)
\(90\) 0 0
\(91\) 22.9408 0.0264269
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1811.79 −1.95669
\(96\) 0 0
\(97\) −1821.49 −1.90664 −0.953319 0.301964i \(-0.902358\pi\)
−0.953319 + 0.301964i \(0.902358\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 278.714 0.274584 0.137292 0.990531i \(-0.456160\pi\)
0.137292 + 0.990531i \(0.456160\pi\)
\(102\) 0 0
\(103\) −237.909 −0.227591 −0.113796 0.993504i \(-0.536301\pi\)
−0.113796 + 0.993504i \(0.536301\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −922.569 −0.833534 −0.416767 0.909013i \(-0.636837\pi\)
−0.416767 + 0.909013i \(0.636837\pi\)
\(108\) 0 0
\(109\) −361.546 −0.317705 −0.158853 0.987302i \(-0.550779\pi\)
−0.158853 + 0.987302i \(0.550779\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1069.90 0.890687 0.445344 0.895360i \(-0.353082\pi\)
0.445344 + 0.895360i \(0.353082\pi\)
\(114\) 0 0
\(115\) −733.817 −0.595033
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 110.507 0.0851273
\(120\) 0 0
\(121\) −696.194 −0.523061
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1063.21 0.760770
\(126\) 0 0
\(127\) −1753.06 −1.22488 −0.612438 0.790518i \(-0.709811\pi\)
−0.612438 + 0.790518i \(0.709811\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1731.18 −1.15461 −0.577304 0.816529i \(-0.695895\pi\)
−0.577304 + 0.816529i \(0.695895\pi\)
\(132\) 0 0
\(133\) 246.699 0.160838
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −45.9710 −0.0286684 −0.0143342 0.999897i \(-0.504563\pi\)
−0.0143342 + 0.999897i \(0.504563\pi\)
\(138\) 0 0
\(139\) 247.025 0.150736 0.0753682 0.997156i \(-0.475987\pi\)
0.0753682 + 0.997156i \(0.475987\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −327.540 −0.191540
\(144\) 0 0
\(145\) 977.341 0.559750
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3389.84 1.86380 0.931901 0.362712i \(-0.118149\pi\)
0.931901 + 0.362712i \(0.118149\pi\)
\(150\) 0 0
\(151\) −3123.16 −1.68317 −0.841587 0.540122i \(-0.818378\pi\)
−0.841587 + 0.540122i \(0.818378\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 923.921 0.478782
\(156\) 0 0
\(157\) −1878.59 −0.954955 −0.477477 0.878644i \(-0.658449\pi\)
−0.477477 + 0.878644i \(0.658449\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 99.9189 0.0489112
\(162\) 0 0
\(163\) −2230.38 −1.07176 −0.535880 0.844294i \(-0.680020\pi\)
−0.535880 + 0.844294i \(0.680020\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 952.254 0.441243 0.220622 0.975359i \(-0.429191\pi\)
0.220622 + 0.975359i \(0.429191\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3124.52 1.37314 0.686569 0.727065i \(-0.259116\pi\)
0.686569 + 0.727065i \(0.259116\pi\)
\(174\) 0 0
\(175\) 75.8150 0.0327490
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1940.12 0.810120 0.405060 0.914290i \(-0.367251\pi\)
0.405060 + 0.914290i \(0.367251\pi\)
\(180\) 0 0
\(181\) −61.8517 −0.0254000 −0.0127000 0.999919i \(-0.504043\pi\)
−0.0127000 + 0.999919i \(0.504043\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −722.654 −0.287192
\(186\) 0 0
\(187\) −1577.77 −0.616996
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1333.55 −0.505197 −0.252598 0.967571i \(-0.581285\pi\)
−0.252598 + 0.967571i \(0.581285\pi\)
\(192\) 0 0
\(193\) 4030.89 1.50337 0.751683 0.659525i \(-0.229242\pi\)
0.751683 + 0.659525i \(0.229242\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2339.69 −0.846173 −0.423087 0.906089i \(-0.639053\pi\)
−0.423087 + 0.906089i \(0.639053\pi\)
\(198\) 0 0
\(199\) −3332.68 −1.18717 −0.593587 0.804770i \(-0.702289\pi\)
−0.593587 + 0.804770i \(0.702289\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −133.078 −0.0460110
\(204\) 0 0
\(205\) −519.628 −0.177036
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −3522.26 −1.16574
\(210\) 0 0
\(211\) −1037.82 −0.338608 −0.169304 0.985564i \(-0.554152\pi\)
−0.169304 + 0.985564i \(0.554152\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −191.620 −0.0607830
\(216\) 0 0
\(217\) −125.804 −0.0393554
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 814.080 0.247787
\(222\) 0 0
\(223\) −2758.72 −0.828418 −0.414209 0.910182i \(-0.635942\pi\)
−0.414209 + 0.910182i \(0.635942\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −841.159 −0.245946 −0.122973 0.992410i \(-0.539243\pi\)
−0.122973 + 0.992410i \(0.539243\pi\)
\(228\) 0 0
\(229\) 2030.90 0.586050 0.293025 0.956105i \(-0.405338\pi\)
0.293025 + 0.956105i \(0.405338\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −4876.76 −1.37119 −0.685595 0.727983i \(-0.740458\pi\)
−0.685595 + 0.727983i \(0.740458\pi\)
\(234\) 0 0
\(235\) 6883.54 1.91078
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −4827.46 −1.30654 −0.653268 0.757127i \(-0.726603\pi\)
−0.653268 + 0.757127i \(0.726603\pi\)
\(240\) 0 0
\(241\) 4967.73 1.32780 0.663899 0.747822i \(-0.268900\pi\)
0.663899 + 0.747822i \(0.268900\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 4404.93 1.14866
\(246\) 0 0
\(247\) 1817.38 0.468166
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −4056.06 −1.01999 −0.509993 0.860179i \(-0.670352\pi\)
−0.509993 + 0.860179i \(0.670352\pi\)
\(252\) 0 0
\(253\) −1426.60 −0.354504
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5326.27 −1.29278 −0.646388 0.763008i \(-0.723721\pi\)
−0.646388 + 0.763008i \(0.723721\pi\)
\(258\) 0 0
\(259\) 98.3988 0.0236070
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −5571.89 −1.30638 −0.653189 0.757195i \(-0.726569\pi\)
−0.653189 + 0.757195i \(0.726569\pi\)
\(264\) 0 0
\(265\) 4769.98 1.10573
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −197.034 −0.0446593 −0.0223297 0.999751i \(-0.507108\pi\)
−0.0223297 + 0.999751i \(0.507108\pi\)
\(270\) 0 0
\(271\) −5389.86 −1.20816 −0.604079 0.796925i \(-0.706459\pi\)
−0.604079 + 0.796925i \(0.706459\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1082.46 −0.237362
\(276\) 0 0
\(277\) −5465.12 −1.18544 −0.592721 0.805408i \(-0.701946\pi\)
−0.592721 + 0.805408i \(0.701946\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 4794.27 1.01780 0.508900 0.860825i \(-0.330052\pi\)
0.508900 + 0.860825i \(0.330052\pi\)
\(282\) 0 0
\(283\) 2284.81 0.479921 0.239961 0.970783i \(-0.422865\pi\)
0.239961 + 0.970783i \(0.422865\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 70.7542 0.0145522
\(288\) 0 0
\(289\) −991.540 −0.201820
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6690.87 1.33408 0.667039 0.745023i \(-0.267561\pi\)
0.667039 + 0.745023i \(0.267561\pi\)
\(294\) 0 0
\(295\) 2149.71 0.424275
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 736.080 0.142370
\(300\) 0 0
\(301\) 26.0915 0.00499631
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1890.58 0.354932
\(306\) 0 0
\(307\) −4001.88 −0.743973 −0.371986 0.928238i \(-0.621323\pi\)
−0.371986 + 0.928238i \(0.621323\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 244.283 0.0445402 0.0222701 0.999752i \(-0.492911\pi\)
0.0222701 + 0.999752i \(0.492911\pi\)
\(312\) 0 0
\(313\) 1849.39 0.333973 0.166986 0.985959i \(-0.446596\pi\)
0.166986 + 0.985959i \(0.446596\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −10115.8 −1.79230 −0.896151 0.443749i \(-0.853648\pi\)
−0.896151 + 0.443749i \(0.853648\pi\)
\(318\) 0 0
\(319\) 1900.03 0.333484
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 8754.38 1.50807
\(324\) 0 0
\(325\) 558.513 0.0953252
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −937.284 −0.157064
\(330\) 0 0
\(331\) 6287.14 1.04403 0.522013 0.852938i \(-0.325181\pi\)
0.522013 + 0.852938i \(0.325181\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −11681.8 −1.90521
\(336\) 0 0
\(337\) 8013.83 1.29537 0.647687 0.761907i \(-0.275736\pi\)
0.647687 + 0.761907i \(0.275736\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1796.18 0.285245
\(342\) 0 0
\(343\) −1205.07 −0.189702
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8648.51 1.33797 0.668986 0.743275i \(-0.266728\pi\)
0.668986 + 0.743275i \(0.266728\pi\)
\(348\) 0 0
\(349\) −4093.84 −0.627903 −0.313952 0.949439i \(-0.601653\pi\)
−0.313952 + 0.949439i \(0.601653\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2804.97 0.422928 0.211464 0.977386i \(-0.432177\pi\)
0.211464 + 0.977386i \(0.432177\pi\)
\(354\) 0 0
\(355\) −4479.76 −0.669750
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 8549.11 1.25684 0.628419 0.777875i \(-0.283702\pi\)
0.628419 + 0.777875i \(0.283702\pi\)
\(360\) 0 0
\(361\) 12684.5 1.84933
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3788.41 0.543272
\(366\) 0 0
\(367\) 2955.54 0.420375 0.210188 0.977661i \(-0.432592\pi\)
0.210188 + 0.977661i \(0.432592\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −649.495 −0.0908898
\(372\) 0 0
\(373\) 10712.0 1.48698 0.743490 0.668747i \(-0.233169\pi\)
0.743490 + 0.668747i \(0.233169\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −980.355 −0.133928
\(378\) 0 0
\(379\) 3698.52 0.501267 0.250633 0.968082i \(-0.419361\pi\)
0.250633 + 0.968082i \(0.419361\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 477.469 0.0637011 0.0318505 0.999493i \(-0.489860\pi\)
0.0318505 + 0.999493i \(0.489860\pi\)
\(384\) 0 0
\(385\) 576.225 0.0762783
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1723.82 0.224682 0.112341 0.993670i \(-0.464165\pi\)
0.112341 + 0.993670i \(0.464165\pi\)
\(390\) 0 0
\(391\) 3545.73 0.458607
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 9366.16 1.19307
\(396\) 0 0
\(397\) 5468.16 0.691283 0.345641 0.938367i \(-0.387661\pi\)
0.345641 + 0.938367i \(0.387661\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6727.20 0.837757 0.418878 0.908042i \(-0.362423\pi\)
0.418878 + 0.908042i \(0.362423\pi\)
\(402\) 0 0
\(403\) −926.770 −0.114555
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1404.90 −0.171101
\(408\) 0 0
\(409\) 3274.63 0.395892 0.197946 0.980213i \(-0.436573\pi\)
0.197946 + 0.980213i \(0.436573\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −292.711 −0.0348750
\(414\) 0 0
\(415\) 7327.14 0.866687
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 351.961 0.0410368 0.0205184 0.999789i \(-0.493468\pi\)
0.0205184 + 0.999789i \(0.493468\pi\)
\(420\) 0 0
\(421\) −10956.4 −1.26836 −0.634182 0.773184i \(-0.718663\pi\)
−0.634182 + 0.773184i \(0.718663\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2690.38 0.307065
\(426\) 0 0
\(427\) −257.427 −0.0291751
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −4087.61 −0.456829 −0.228414 0.973564i \(-0.573354\pi\)
−0.228414 + 0.973564i \(0.573354\pi\)
\(432\) 0 0
\(433\) −15377.9 −1.70673 −0.853366 0.521313i \(-0.825443\pi\)
−0.853366 + 0.521313i \(0.825443\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 7915.59 0.866485
\(438\) 0 0
\(439\) −6609.85 −0.718613 −0.359306 0.933220i \(-0.616987\pi\)
−0.359306 + 0.933220i \(0.616987\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2487.10 −0.266740 −0.133370 0.991066i \(-0.542580\pi\)
−0.133370 + 0.991066i \(0.542580\pi\)
\(444\) 0 0
\(445\) −3565.51 −0.379823
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 13228.9 1.39045 0.695226 0.718792i \(-0.255304\pi\)
0.695226 + 0.718792i \(0.255304\pi\)
\(450\) 0 0
\(451\) −1010.20 −0.105473
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −297.314 −0.0306336
\(456\) 0 0
\(457\) 11721.5 1.19980 0.599898 0.800076i \(-0.295208\pi\)
0.599898 + 0.800076i \(0.295208\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1728.80 0.174660 0.0873301 0.996179i \(-0.472167\pi\)
0.0873301 + 0.996179i \(0.472167\pi\)
\(462\) 0 0
\(463\) −11326.0 −1.13685 −0.568425 0.822735i \(-0.692447\pi\)
−0.568425 + 0.822735i \(0.692447\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5221.54 0.517396 0.258698 0.965958i \(-0.416706\pi\)
0.258698 + 0.965958i \(0.416706\pi\)
\(468\) 0 0
\(469\) 1590.63 0.156607
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −372.524 −0.0362129
\(474\) 0 0
\(475\) 6006.08 0.580164
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 8525.01 0.813189 0.406595 0.913609i \(-0.366716\pi\)
0.406595 + 0.913609i \(0.366716\pi\)
\(480\) 0 0
\(481\) 724.883 0.0687148
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 23606.5 2.21014
\(486\) 0 0
\(487\) 681.285 0.0633921 0.0316961 0.999498i \(-0.489909\pi\)
0.0316961 + 0.999498i \(0.489909\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −20581.2 −1.89169 −0.945844 0.324623i \(-0.894763\pi\)
−0.945844 + 0.324623i \(0.894763\pi\)
\(492\) 0 0
\(493\) −4722.41 −0.431413
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 609.978 0.0550528
\(498\) 0 0
\(499\) −1204.64 −0.108071 −0.0540353 0.998539i \(-0.517208\pi\)
−0.0540353 + 0.998539i \(0.517208\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −1026.69 −0.0910099 −0.0455050 0.998964i \(-0.514490\pi\)
−0.0455050 + 0.998964i \(0.514490\pi\)
\(504\) 0 0
\(505\) −3612.14 −0.318293
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1921.88 0.167359 0.0836797 0.996493i \(-0.473333\pi\)
0.0836797 + 0.996493i \(0.473333\pi\)
\(510\) 0 0
\(511\) −515.842 −0.0446565
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3083.31 0.263819
\(516\) 0 0
\(517\) 13382.2 1.13839
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −10057.8 −0.845756 −0.422878 0.906187i \(-0.638980\pi\)
−0.422878 + 0.906187i \(0.638980\pi\)
\(522\) 0 0
\(523\) 4124.89 0.344874 0.172437 0.985021i \(-0.444836\pi\)
0.172437 + 0.985021i \(0.444836\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −4464.29 −0.369009
\(528\) 0 0
\(529\) −8961.00 −0.736500
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 521.231 0.0423584
\(534\) 0 0
\(535\) 11956.5 0.966217
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 8563.55 0.684338
\(540\) 0 0
\(541\) 4880.50 0.387854 0.193927 0.981016i \(-0.437878\pi\)
0.193927 + 0.981016i \(0.437878\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 4685.65 0.368278
\(546\) 0 0
\(547\) 9833.32 0.768633 0.384316 0.923201i \(-0.374437\pi\)
0.384316 + 0.923201i \(0.374437\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −10542.4 −0.815106
\(552\) 0 0
\(553\) −1275.32 −0.0980693
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −671.131 −0.0510534 −0.0255267 0.999674i \(-0.508126\pi\)
−0.0255267 + 0.999674i \(0.508126\pi\)
\(558\) 0 0
\(559\) 192.211 0.0145432
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 7438.83 0.556855 0.278428 0.960457i \(-0.410187\pi\)
0.278428 + 0.960457i \(0.410187\pi\)
\(564\) 0 0
\(565\) −13865.9 −1.03247
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −19242.7 −1.41774 −0.708870 0.705339i \(-0.750795\pi\)
−0.708870 + 0.705339i \(0.750795\pi\)
\(570\) 0 0
\(571\) 12917.3 0.946713 0.473357 0.880871i \(-0.343042\pi\)
0.473357 + 0.880871i \(0.343042\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2432.60 0.176429
\(576\) 0 0
\(577\) −13343.4 −0.962727 −0.481363 0.876521i \(-0.659858\pi\)
−0.481363 + 0.876521i \(0.659858\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −997.686 −0.0712409
\(582\) 0 0
\(583\) 9273.23 0.658761
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −20799.6 −1.46251 −0.731254 0.682105i \(-0.761065\pi\)
−0.731254 + 0.682105i \(0.761065\pi\)
\(588\) 0 0
\(589\) −9966.22 −0.697200
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −24109.9 −1.66960 −0.834801 0.550551i \(-0.814418\pi\)
−0.834801 + 0.550551i \(0.814418\pi\)
\(594\) 0 0
\(595\) −1432.17 −0.0986780
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −25368.9 −1.73046 −0.865228 0.501378i \(-0.832827\pi\)
−0.865228 + 0.501378i \(0.832827\pi\)
\(600\) 0 0
\(601\) 29275.8 1.98700 0.993498 0.113853i \(-0.0363192\pi\)
0.993498 + 0.113853i \(0.0363192\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 9022.70 0.606322
\(606\) 0 0
\(607\) −12370.9 −0.827218 −0.413609 0.910455i \(-0.635732\pi\)
−0.413609 + 0.910455i \(0.635732\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −6904.77 −0.457180
\(612\) 0 0
\(613\) 18862.5 1.24282 0.621411 0.783485i \(-0.286560\pi\)
0.621411 + 0.783485i \(0.286560\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 24546.7 1.60164 0.800822 0.598903i \(-0.204396\pi\)
0.800822 + 0.598903i \(0.204396\pi\)
\(618\) 0 0
\(619\) −19413.6 −1.26058 −0.630289 0.776361i \(-0.717064\pi\)
−0.630289 + 0.776361i \(0.717064\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 485.491 0.0312212
\(624\) 0 0
\(625\) −19149.5 −1.22557
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 3491.79 0.221346
\(630\) 0 0
\(631\) 18875.9 1.19087 0.595433 0.803405i \(-0.296980\pi\)
0.595433 + 0.803405i \(0.296980\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 22719.8 1.41985
\(636\) 0 0
\(637\) −4418.52 −0.274832
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −22270.4 −1.37228 −0.686138 0.727472i \(-0.740695\pi\)
−0.686138 + 0.727472i \(0.740695\pi\)
\(642\) 0 0
\(643\) −28426.7 −1.74345 −0.871726 0.489994i \(-0.836999\pi\)
−0.871726 + 0.489994i \(0.836999\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1087.22 −0.0660635 −0.0330317 0.999454i \(-0.510516\pi\)
−0.0330317 + 0.999454i \(0.510516\pi\)
\(648\) 0 0
\(649\) 4179.21 0.252771
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −26132.1 −1.56605 −0.783023 0.621992i \(-0.786323\pi\)
−0.783023 + 0.621992i \(0.786323\pi\)
\(654\) 0 0
\(655\) 22436.1 1.33840
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 11713.5 0.692403 0.346202 0.938160i \(-0.387471\pi\)
0.346202 + 0.938160i \(0.387471\pi\)
\(660\) 0 0
\(661\) −23074.5 −1.35778 −0.678892 0.734238i \(-0.737540\pi\)
−0.678892 + 0.734238i \(0.737540\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −3197.23 −0.186441
\(666\) 0 0
\(667\) −4269.94 −0.247875
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 3675.44 0.211459
\(672\) 0 0
\(673\) 32482.6 1.86049 0.930247 0.366934i \(-0.119592\pi\)
0.930247 + 0.366934i \(0.119592\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −3909.65 −0.221950 −0.110975 0.993823i \(-0.535397\pi\)
−0.110975 + 0.993823i \(0.535397\pi\)
\(678\) 0 0
\(679\) −3214.34 −0.181672
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −25361.0 −1.42081 −0.710405 0.703793i \(-0.751488\pi\)
−0.710405 + 0.703793i \(0.751488\pi\)
\(684\) 0 0
\(685\) 595.785 0.0332318
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −4784.69 −0.264561
\(690\) 0 0
\(691\) 24519.5 1.34988 0.674938 0.737874i \(-0.264170\pi\)
0.674938 + 0.737874i \(0.264170\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −3201.45 −0.174731
\(696\) 0 0
\(697\) 2510.79 0.136446
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 24859.3 1.33941 0.669703 0.742629i \(-0.266421\pi\)
0.669703 + 0.742629i \(0.266421\pi\)
\(702\) 0 0
\(703\) 7795.18 0.418209
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 491.840 0.0261634
\(708\) 0 0
\(709\) 9799.70 0.519091 0.259546 0.965731i \(-0.416427\pi\)
0.259546 + 0.965731i \(0.416427\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −4036.55 −0.212020
\(714\) 0 0
\(715\) 4244.93 0.222030
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 33260.6 1.72519 0.862595 0.505896i \(-0.168838\pi\)
0.862595 + 0.505896i \(0.168838\pi\)
\(720\) 0 0
\(721\) −419.833 −0.0216857
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −3239.89 −0.165967
\(726\) 0 0
\(727\) 7477.82 0.381482 0.190741 0.981640i \(-0.438911\pi\)
0.190741 + 0.981640i \(0.438911\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 925.887 0.0468470
\(732\) 0 0
\(733\) −759.810 −0.0382868 −0.0191434 0.999817i \(-0.506094\pi\)
−0.0191434 + 0.999817i \(0.506094\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −22710.4 −1.13507
\(738\) 0 0
\(739\) 7873.29 0.391913 0.195956 0.980613i \(-0.437219\pi\)
0.195956 + 0.980613i \(0.437219\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −26778.1 −1.32220 −0.661099 0.750299i \(-0.729910\pi\)
−0.661099 + 0.750299i \(0.729910\pi\)
\(744\) 0 0
\(745\) −43932.5 −2.16048
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1628.04 −0.0794222
\(750\) 0 0
\(751\) −17975.7 −0.873424 −0.436712 0.899601i \(-0.643857\pi\)
−0.436712 + 0.899601i \(0.643857\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 40476.3 1.95110
\(756\) 0 0
\(757\) −10835.1 −0.520223 −0.260112 0.965579i \(-0.583759\pi\)
−0.260112 + 0.965579i \(0.583759\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 15334.7 0.730463 0.365231 0.930917i \(-0.380990\pi\)
0.365231 + 0.930917i \(0.380990\pi\)
\(762\) 0 0
\(763\) −638.013 −0.0302721
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2156.34 −0.101514
\(768\) 0 0
\(769\) −23503.2 −1.10214 −0.551070 0.834459i \(-0.685780\pi\)
−0.551070 + 0.834459i \(0.685780\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −23536.4 −1.09514 −0.547570 0.836760i \(-0.684447\pi\)
−0.547570 + 0.836760i \(0.684447\pi\)
\(774\) 0 0
\(775\) −3062.80 −0.141960
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5605.16 0.257799
\(780\) 0 0
\(781\) −8709.02 −0.399018
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 24346.6 1.10697
\(786\) 0 0
\(787\) 23939.3 1.08430 0.542150 0.840282i \(-0.317610\pi\)
0.542150 + 0.840282i \(0.317610\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1888.03 0.0848679
\(792\) 0 0
\(793\) −1896.41 −0.0849224
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −13136.7 −0.583847 −0.291923 0.956442i \(-0.594295\pi\)
−0.291923 + 0.956442i \(0.594295\pi\)
\(798\) 0 0
\(799\) −33260.6 −1.47268
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 7364.98 0.323667
\(804\) 0 0
\(805\) −1294.95 −0.0566970
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −18751.0 −0.814896 −0.407448 0.913228i \(-0.633581\pi\)
−0.407448 + 0.913228i \(0.633581\pi\)
\(810\) 0 0
\(811\) −5391.15 −0.233426 −0.116713 0.993166i \(-0.537236\pi\)
−0.116713 + 0.993166i \(0.537236\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 28905.8 1.24236
\(816\) 0 0
\(817\) 2066.98 0.0885120
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −40576.7 −1.72489 −0.862446 0.506149i \(-0.831068\pi\)
−0.862446 + 0.506149i \(0.831068\pi\)
\(822\) 0 0
\(823\) −29261.2 −1.23934 −0.619672 0.784861i \(-0.712735\pi\)
−0.619672 + 0.784861i \(0.712735\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 30518.5 1.28323 0.641617 0.767026i \(-0.278264\pi\)
0.641617 + 0.767026i \(0.278264\pi\)
\(828\) 0 0
\(829\) −28135.3 −1.17875 −0.589373 0.807861i \(-0.700625\pi\)
−0.589373 + 0.807861i \(0.700625\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −21284.2 −0.885298
\(834\) 0 0
\(835\) −12341.2 −0.511481
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −20520.4 −0.844388 −0.422194 0.906506i \(-0.638740\pi\)
−0.422194 + 0.906506i \(0.638740\pi\)
\(840\) 0 0
\(841\) −18702.0 −0.766823
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −2190.25 −0.0891678
\(846\) 0 0
\(847\) −1228.56 −0.0498392
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 3157.23 0.127178
\(852\) 0 0
\(853\) 34721.4 1.39371 0.696857 0.717210i \(-0.254581\pi\)
0.696857 + 0.717210i \(0.254581\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −40484.5 −1.61368 −0.806841 0.590769i \(-0.798825\pi\)
−0.806841 + 0.590769i \(0.798825\pi\)
\(858\) 0 0
\(859\) −7347.38 −0.291839 −0.145919 0.989296i \(-0.546614\pi\)
−0.145919 + 0.989296i \(0.546614\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 43530.1 1.71701 0.858505 0.512804i \(-0.171393\pi\)
0.858505 + 0.512804i \(0.171393\pi\)
\(864\) 0 0
\(865\) −40493.9 −1.59172
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 18208.6 0.710798
\(870\) 0 0
\(871\) 11717.8 0.455848
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1876.22 0.0724890
\(876\) 0 0
\(877\) −24155.9 −0.930088 −0.465044 0.885287i \(-0.653962\pi\)
−0.465044 + 0.885287i \(0.653962\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 21971.9 0.840239 0.420120 0.907469i \(-0.361988\pi\)
0.420120 + 0.907469i \(0.361988\pi\)
\(882\) 0 0
\(883\) 5032.44 0.191795 0.0958976 0.995391i \(-0.469428\pi\)
0.0958976 + 0.995391i \(0.469428\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 5082.60 0.192398 0.0961990 0.995362i \(-0.469331\pi\)
0.0961990 + 0.995362i \(0.469331\pi\)
\(888\) 0 0
\(889\) −3093.60 −0.116711
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −74251.8 −2.78247
\(894\) 0 0
\(895\) −25144.0 −0.939075
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 5376.12 0.199448
\(900\) 0 0
\(901\) −23048.1 −0.852211
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 801.601 0.0294432
\(906\) 0 0
\(907\) 2515.37 0.0920853 0.0460427 0.998939i \(-0.485339\pi\)
0.0460427 + 0.998939i \(0.485339\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −22288.3 −0.810588 −0.405294 0.914186i \(-0.632831\pi\)
−0.405294 + 0.914186i \(0.632831\pi\)
\(912\) 0 0
\(913\) 14244.6 0.516348
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −3054.97 −0.110015
\(918\) 0 0
\(919\) −49002.3 −1.75891 −0.879454 0.475985i \(-0.842092\pi\)
−0.879454 + 0.475985i \(0.842092\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 4493.58 0.160247
\(924\) 0 0
\(925\) 2395.60 0.0851533
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −9791.91 −0.345815 −0.172907 0.984938i \(-0.555316\pi\)
−0.172907 + 0.984938i \(0.555316\pi\)
\(930\) 0 0
\(931\) −47515.4 −1.67267
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 20448.0 0.715209
\(936\) 0 0
\(937\) 44528.6 1.55249 0.776246 0.630430i \(-0.217122\pi\)
0.776246 + 0.630430i \(0.217122\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −31492.9 −1.09101 −0.545505 0.838108i \(-0.683662\pi\)
−0.545505 + 0.838108i \(0.683662\pi\)
\(942\) 0 0
\(943\) 2270.22 0.0783973
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 9774.64 0.335410 0.167705 0.985837i \(-0.446364\pi\)
0.167705 + 0.985837i \(0.446364\pi\)
\(948\) 0 0
\(949\) −3800.09 −0.129985
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 52688.0 1.79090 0.895451 0.445159i \(-0.146853\pi\)
0.895451 + 0.445159i \(0.146853\pi\)
\(954\) 0 0
\(955\) 17282.9 0.585614
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −81.1240 −0.00273163
\(960\) 0 0
\(961\) −24708.7 −0.829403
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −52240.4 −1.74267
\(966\) 0 0
\(967\) 25246.9 0.839591 0.419796 0.907619i \(-0.362102\pi\)
0.419796 + 0.907619i \(0.362102\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 11021.4 0.364257 0.182129 0.983275i \(-0.441701\pi\)
0.182129 + 0.983275i \(0.441701\pi\)
\(972\) 0 0
\(973\) 435.919 0.0143627
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 50522.8 1.65442 0.827209 0.561894i \(-0.189927\pi\)
0.827209 + 0.561894i \(0.189927\pi\)
\(978\) 0 0
\(979\) −6931.64 −0.226288
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −30291.7 −0.982865 −0.491433 0.870916i \(-0.663527\pi\)
−0.491433 + 0.870916i \(0.663527\pi\)
\(984\) 0 0
\(985\) 30322.5 0.980868
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 837.174 0.0269167
\(990\) 0 0
\(991\) −59053.5 −1.89293 −0.946466 0.322805i \(-0.895374\pi\)
−0.946466 + 0.322805i \(0.895374\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 43191.7 1.37615
\(996\) 0 0
\(997\) −6231.88 −0.197960 −0.0989798 0.995089i \(-0.531558\pi\)
−0.0989798 + 0.995089i \(0.531558\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.4.a.l.1.1 3
3.2 odd 2 312.4.a.h.1.3 3
4.3 odd 2 1872.4.a.bl.1.1 3
12.11 even 2 624.4.a.s.1.3 3
24.5 odd 2 2496.4.a.bm.1.1 3
24.11 even 2 2496.4.a.bq.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.4.a.h.1.3 3 3.2 odd 2
624.4.a.s.1.3 3 12.11 even 2
936.4.a.l.1.1 3 1.1 even 1 trivial
1872.4.a.bl.1.1 3 4.3 odd 2
2496.4.a.bm.1.1 3 24.5 odd 2
2496.4.a.bq.1.1 3 24.11 even 2