Properties

Label 936.4.a.f.1.1
Level $936$
Weight $4$
Character 936.1
Self dual yes
Analytic conductor $55.226$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,4,Mod(1,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 936.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.2257877654\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{7}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 312)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.64575\) of defining polynomial
Character \(\chi\) \(=\) 936.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.29150 q^{5} -25.8745 q^{7} +O(q^{10})\) \(q-3.29150 q^{5} -25.8745 q^{7} +8.83399 q^{11} -13.0000 q^{13} +10.2510 q^{17} -119.956 q^{19} +141.830 q^{23} -114.166 q^{25} -170.826 q^{29} +226.450 q^{31} +85.1660 q^{35} -225.409 q^{37} +274.701 q^{41} -111.247 q^{43} -156.405 q^{47} +326.490 q^{49} +85.1581 q^{53} -29.0771 q^{55} +889.911 q^{59} +463.668 q^{61} +42.7895 q^{65} -459.041 q^{67} +560.996 q^{71} +784.891 q^{73} -228.575 q^{77} +241.830 q^{79} +1271.56 q^{83} -33.7411 q^{85} -1085.02 q^{89} +336.369 q^{91} +394.834 q^{95} -79.9032 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{5} - 20 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 4 q^{5} - 20 q^{7} + 60 q^{11} - 26 q^{13} + 84 q^{17} - 60 q^{19} + 72 q^{23} - 186 q^{25} + 124 q^{29} - 108 q^{31} + 128 q^{35} + 36 q^{37} + 52 q^{41} - 32 q^{43} + 428 q^{47} + 18 q^{49} - 380 q^{53} + 344 q^{55} + 1420 q^{59} + 1012 q^{61} - 52 q^{65} - 844 q^{67} + 868 q^{71} - 60 q^{73} + 72 q^{77} + 272 q^{79} + 1252 q^{83} + 504 q^{85} - 572 q^{89} + 260 q^{91} + 832 q^{95} + 708 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.29150 −0.294401 −0.147200 0.989107i \(-0.547026\pi\)
−0.147200 + 0.989107i \(0.547026\pi\)
\(6\) 0 0
\(7\) −25.8745 −1.39709 −0.698546 0.715565i \(-0.746169\pi\)
−0.698546 + 0.715565i \(0.746169\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 8.83399 0.242141 0.121070 0.992644i \(-0.461367\pi\)
0.121070 + 0.992644i \(0.461367\pi\)
\(12\) 0 0
\(13\) −13.0000 −0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 10.2510 0.146249 0.0731244 0.997323i \(-0.476703\pi\)
0.0731244 + 0.997323i \(0.476703\pi\)
\(18\) 0 0
\(19\) −119.956 −1.44840 −0.724202 0.689588i \(-0.757792\pi\)
−0.724202 + 0.689588i \(0.757792\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 141.830 1.28581 0.642905 0.765946i \(-0.277729\pi\)
0.642905 + 0.765946i \(0.277729\pi\)
\(24\) 0 0
\(25\) −114.166 −0.913328
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −170.826 −1.09385 −0.546924 0.837182i \(-0.684201\pi\)
−0.546924 + 0.837182i \(0.684201\pi\)
\(30\) 0 0
\(31\) 226.450 1.31199 0.655993 0.754767i \(-0.272250\pi\)
0.655993 + 0.754767i \(0.272250\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 85.1660 0.411305
\(36\) 0 0
\(37\) −225.409 −1.00154 −0.500771 0.865580i \(-0.666950\pi\)
−0.500771 + 0.865580i \(0.666950\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 274.701 1.04637 0.523183 0.852220i \(-0.324744\pi\)
0.523183 + 0.852220i \(0.324744\pi\)
\(42\) 0 0
\(43\) −111.247 −0.394535 −0.197268 0.980350i \(-0.563207\pi\)
−0.197268 + 0.980350i \(0.563207\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −156.405 −0.485405 −0.242703 0.970101i \(-0.578034\pi\)
−0.242703 + 0.970101i \(0.578034\pi\)
\(48\) 0 0
\(49\) 326.490 0.951866
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 85.1581 0.220705 0.110353 0.993893i \(-0.464802\pi\)
0.110353 + 0.993893i \(0.464802\pi\)
\(54\) 0 0
\(55\) −29.0771 −0.0712865
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 889.911 1.96367 0.981835 0.189736i \(-0.0607631\pi\)
0.981835 + 0.189736i \(0.0607631\pi\)
\(60\) 0 0
\(61\) 463.668 0.973223 0.486611 0.873618i \(-0.338233\pi\)
0.486611 + 0.873618i \(0.338233\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 42.7895 0.0816521
\(66\) 0 0
\(67\) −459.041 −0.837026 −0.418513 0.908211i \(-0.637449\pi\)
−0.418513 + 0.908211i \(0.637449\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 560.996 0.937718 0.468859 0.883273i \(-0.344665\pi\)
0.468859 + 0.883273i \(0.344665\pi\)
\(72\) 0 0
\(73\) 784.891 1.25842 0.629210 0.777236i \(-0.283379\pi\)
0.629210 + 0.777236i \(0.283379\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −228.575 −0.338293
\(78\) 0 0
\(79\) 241.830 0.344405 0.172203 0.985062i \(-0.444912\pi\)
0.172203 + 0.985062i \(0.444912\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1271.56 1.68159 0.840796 0.541351i \(-0.182087\pi\)
0.840796 + 0.541351i \(0.182087\pi\)
\(84\) 0 0
\(85\) −33.7411 −0.0430558
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1085.02 −1.29226 −0.646132 0.763225i \(-0.723615\pi\)
−0.646132 + 0.763225i \(0.723615\pi\)
\(90\) 0 0
\(91\) 336.369 0.387484
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 394.834 0.426412
\(96\) 0 0
\(97\) −79.9032 −0.0836386 −0.0418193 0.999125i \(-0.513315\pi\)
−0.0418193 + 0.999125i \(0.513315\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 195.725 0.192826 0.0964129 0.995341i \(-0.469263\pi\)
0.0964129 + 0.995341i \(0.469263\pi\)
\(102\) 0 0
\(103\) 899.425 0.860417 0.430209 0.902730i \(-0.358440\pi\)
0.430209 + 0.902730i \(0.358440\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −499.304 −0.451118 −0.225559 0.974230i \(-0.572421\pi\)
−0.225559 + 0.974230i \(0.572421\pi\)
\(108\) 0 0
\(109\) 1952.82 1.71602 0.858009 0.513634i \(-0.171701\pi\)
0.858009 + 0.513634i \(0.171701\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1284.17 −1.06907 −0.534533 0.845147i \(-0.679513\pi\)
−0.534533 + 0.845147i \(0.679513\pi\)
\(114\) 0 0
\(115\) −466.834 −0.378543
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −265.239 −0.204323
\(120\) 0 0
\(121\) −1252.96 −0.941368
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 787.216 0.563286
\(126\) 0 0
\(127\) −1397.69 −0.976577 −0.488288 0.872682i \(-0.662379\pi\)
−0.488288 + 0.872682i \(0.662379\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −942.138 −0.628359 −0.314179 0.949364i \(-0.601729\pi\)
−0.314179 + 0.949364i \(0.601729\pi\)
\(132\) 0 0
\(133\) 3103.79 2.02355
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 827.380 0.515970 0.257985 0.966149i \(-0.416941\pi\)
0.257985 + 0.966149i \(0.416941\pi\)
\(138\) 0 0
\(139\) 1248.49 0.761836 0.380918 0.924609i \(-0.375608\pi\)
0.380918 + 0.924609i \(0.375608\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −114.842 −0.0671578
\(144\) 0 0
\(145\) 562.275 0.322030
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 222.936 0.122575 0.0612873 0.998120i \(-0.480479\pi\)
0.0612873 + 0.998120i \(0.480479\pi\)
\(150\) 0 0
\(151\) 2077.67 1.11972 0.559861 0.828587i \(-0.310855\pi\)
0.559861 + 0.828587i \(0.310855\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −745.360 −0.386250
\(156\) 0 0
\(157\) 276.201 0.140403 0.0702015 0.997533i \(-0.477636\pi\)
0.0702015 + 0.997533i \(0.477636\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −3669.78 −1.79639
\(162\) 0 0
\(163\) 3094.60 1.48704 0.743520 0.668714i \(-0.233155\pi\)
0.743520 + 0.668714i \(0.233155\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3239.52 1.50109 0.750543 0.660822i \(-0.229792\pi\)
0.750543 + 0.660822i \(0.229792\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 314.607 0.138261 0.0691303 0.997608i \(-0.477978\pi\)
0.0691303 + 0.997608i \(0.477978\pi\)
\(174\) 0 0
\(175\) 2953.99 1.27600
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −2745.22 −1.14630 −0.573149 0.819451i \(-0.694278\pi\)
−0.573149 + 0.819451i \(0.694278\pi\)
\(180\) 0 0
\(181\) 3261.14 1.33922 0.669610 0.742713i \(-0.266461\pi\)
0.669610 + 0.742713i \(0.266461\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 741.935 0.294855
\(186\) 0 0
\(187\) 90.5571 0.0354128
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2432.32 0.921449 0.460725 0.887543i \(-0.347590\pi\)
0.460725 + 0.887543i \(0.347590\pi\)
\(192\) 0 0
\(193\) −971.846 −0.362461 −0.181231 0.983441i \(-0.558008\pi\)
−0.181231 + 0.983441i \(0.558008\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1881.11 −0.680321 −0.340161 0.940367i \(-0.610481\pi\)
−0.340161 + 0.940367i \(0.610481\pi\)
\(198\) 0 0
\(199\) 1558.88 0.555305 0.277653 0.960682i \(-0.410444\pi\)
0.277653 + 0.960682i \(0.410444\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 4420.04 1.52821
\(204\) 0 0
\(205\) −904.178 −0.308051
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1059.69 −0.350718
\(210\) 0 0
\(211\) −2227.58 −0.726792 −0.363396 0.931635i \(-0.618383\pi\)
−0.363396 + 0.931635i \(0.618383\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 366.170 0.116152
\(216\) 0 0
\(217\) −5859.27 −1.83296
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −133.263 −0.0405621
\(222\) 0 0
\(223\) 4031.20 1.21053 0.605267 0.796023i \(-0.293066\pi\)
0.605267 + 0.796023i \(0.293066\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 5877.53 1.71853 0.859264 0.511533i \(-0.170922\pi\)
0.859264 + 0.511533i \(0.170922\pi\)
\(228\) 0 0
\(229\) −3802.10 −1.09716 −0.548580 0.836098i \(-0.684832\pi\)
−0.548580 + 0.836098i \(0.684832\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3552.99 0.998988 0.499494 0.866317i \(-0.333519\pi\)
0.499494 + 0.866317i \(0.333519\pi\)
\(234\) 0 0
\(235\) 514.808 0.142904
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1307.33 0.353824 0.176912 0.984227i \(-0.443389\pi\)
0.176912 + 0.984227i \(0.443389\pi\)
\(240\) 0 0
\(241\) −2787.48 −0.745051 −0.372526 0.928022i \(-0.621508\pi\)
−0.372526 + 0.928022i \(0.621508\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1074.64 −0.280230
\(246\) 0 0
\(247\) 1559.42 0.401715
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 727.383 0.182916 0.0914582 0.995809i \(-0.470847\pi\)
0.0914582 + 0.995809i \(0.470847\pi\)
\(252\) 0 0
\(253\) 1252.93 0.311347
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2055.13 0.498815 0.249407 0.968399i \(-0.419764\pi\)
0.249407 + 0.968399i \(0.419764\pi\)
\(258\) 0 0
\(259\) 5832.35 1.39925
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 851.320 0.199599 0.0997997 0.995008i \(-0.468180\pi\)
0.0997997 + 0.995008i \(0.468180\pi\)
\(264\) 0 0
\(265\) −280.298 −0.0649758
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −5598.13 −1.26886 −0.634431 0.772979i \(-0.718766\pi\)
−0.634431 + 0.772979i \(0.718766\pi\)
\(270\) 0 0
\(271\) −6243.82 −1.39958 −0.699788 0.714351i \(-0.746722\pi\)
−0.699788 + 0.714351i \(0.746722\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1008.54 −0.221154
\(276\) 0 0
\(277\) −5454.37 −1.18311 −0.591555 0.806265i \(-0.701486\pi\)
−0.591555 + 0.806265i \(0.701486\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 4747.09 1.00778 0.503892 0.863766i \(-0.331901\pi\)
0.503892 + 0.863766i \(0.331901\pi\)
\(282\) 0 0
\(283\) −1750.54 −0.367698 −0.183849 0.982954i \(-0.558856\pi\)
−0.183849 + 0.982954i \(0.558856\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −7107.74 −1.46187
\(288\) 0 0
\(289\) −4807.92 −0.978611
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −2850.77 −0.568408 −0.284204 0.958764i \(-0.591729\pi\)
−0.284204 + 0.958764i \(0.591729\pi\)
\(294\) 0 0
\(295\) −2929.14 −0.578106
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1843.79 −0.356619
\(300\) 0 0
\(301\) 2878.46 0.551202
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1526.16 −0.286518
\(306\) 0 0
\(307\) −5557.02 −1.03308 −0.516541 0.856263i \(-0.672781\pi\)
−0.516541 + 0.856263i \(0.672781\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4858.88 0.885922 0.442961 0.896541i \(-0.353928\pi\)
0.442961 + 0.896541i \(0.353928\pi\)
\(312\) 0 0
\(313\) −9615.77 −1.73647 −0.868236 0.496152i \(-0.834746\pi\)
−0.868236 + 0.496152i \(0.834746\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −782.094 −0.138570 −0.0692851 0.997597i \(-0.522072\pi\)
−0.0692851 + 0.997597i \(0.522072\pi\)
\(318\) 0 0
\(319\) −1509.08 −0.264865
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1229.66 −0.211827
\(324\) 0 0
\(325\) 1484.16 0.253312
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4046.91 0.678156
\(330\) 0 0
\(331\) −1707.67 −0.283571 −0.141785 0.989897i \(-0.545284\pi\)
−0.141785 + 0.989897i \(0.545284\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1510.93 0.246421
\(336\) 0 0
\(337\) 5652.60 0.913699 0.456850 0.889544i \(-0.348978\pi\)
0.456850 + 0.889544i \(0.348978\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2000.45 0.317685
\(342\) 0 0
\(343\) 427.184 0.0672471
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 235.759 0.0364732 0.0182366 0.999834i \(-0.494195\pi\)
0.0182366 + 0.999834i \(0.494195\pi\)
\(348\) 0 0
\(349\) −6805.12 −1.04375 −0.521876 0.853021i \(-0.674768\pi\)
−0.521876 + 0.853021i \(0.674768\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −4558.89 −0.687380 −0.343690 0.939083i \(-0.611677\pi\)
−0.343690 + 0.939083i \(0.611677\pi\)
\(354\) 0 0
\(355\) −1846.52 −0.276065
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 10738.4 1.57870 0.789349 0.613944i \(-0.210418\pi\)
0.789349 + 0.613944i \(0.210418\pi\)
\(360\) 0 0
\(361\) 7530.33 1.09788
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2583.47 −0.370480
\(366\) 0 0
\(367\) 11442.0 1.62743 0.813717 0.581261i \(-0.197440\pi\)
0.813717 + 0.581261i \(0.197440\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −2203.42 −0.308345
\(372\) 0 0
\(373\) −1374.29 −0.190773 −0.0953863 0.995440i \(-0.530409\pi\)
−0.0953863 + 0.995440i \(0.530409\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2220.74 0.303379
\(378\) 0 0
\(379\) 3572.95 0.484248 0.242124 0.970245i \(-0.422156\pi\)
0.242124 + 0.970245i \(0.422156\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −12109.5 −1.61557 −0.807787 0.589475i \(-0.799335\pi\)
−0.807787 + 0.589475i \(0.799335\pi\)
\(384\) 0 0
\(385\) 752.356 0.0995938
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −3096.24 −0.403562 −0.201781 0.979431i \(-0.564673\pi\)
−0.201781 + 0.979431i \(0.564673\pi\)
\(390\) 0 0
\(391\) 1453.90 0.188048
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −795.984 −0.101393
\(396\) 0 0
\(397\) 1768.38 0.223558 0.111779 0.993733i \(-0.464345\pi\)
0.111779 + 0.993733i \(0.464345\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 8948.75 1.11441 0.557206 0.830374i \(-0.311873\pi\)
0.557206 + 0.830374i \(0.311873\pi\)
\(402\) 0 0
\(403\) −2943.85 −0.363879
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1991.26 −0.242514
\(408\) 0 0
\(409\) −9195.18 −1.11167 −0.555834 0.831293i \(-0.687601\pi\)
−0.555834 + 0.831293i \(0.687601\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −23026.0 −2.74343
\(414\) 0 0
\(415\) −4185.35 −0.495063
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −13288.5 −1.54937 −0.774683 0.632350i \(-0.782091\pi\)
−0.774683 + 0.632350i \(0.782091\pi\)
\(420\) 0 0
\(421\) −3626.33 −0.419802 −0.209901 0.977723i \(-0.567314\pi\)
−0.209901 + 0.977723i \(0.567314\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1170.31 −0.133573
\(426\) 0 0
\(427\) −11997.2 −1.35968
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 10301.8 1.15133 0.575663 0.817687i \(-0.304744\pi\)
0.575663 + 0.817687i \(0.304744\pi\)
\(432\) 0 0
\(433\) −12941.0 −1.43627 −0.718135 0.695903i \(-0.755004\pi\)
−0.718135 + 0.695903i \(0.755004\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −17013.3 −1.86237
\(438\) 0 0
\(439\) 7529.77 0.818625 0.409313 0.912394i \(-0.365769\pi\)
0.409313 + 0.912394i \(0.365769\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2920.13 −0.313181 −0.156591 0.987664i \(-0.550050\pi\)
−0.156591 + 0.987664i \(0.550050\pi\)
\(444\) 0 0
\(445\) 3571.34 0.380444
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 11984.2 1.25962 0.629811 0.776749i \(-0.283133\pi\)
0.629811 + 0.776749i \(0.283133\pi\)
\(450\) 0 0
\(451\) 2426.70 0.253368
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1107.16 −0.114076
\(456\) 0 0
\(457\) −1603.39 −0.164121 −0.0820604 0.996627i \(-0.526150\pi\)
−0.0820604 + 0.996627i \(0.526150\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 14306.6 1.44539 0.722696 0.691166i \(-0.242903\pi\)
0.722696 + 0.691166i \(0.242903\pi\)
\(462\) 0 0
\(463\) −6957.94 −0.698408 −0.349204 0.937047i \(-0.613548\pi\)
−0.349204 + 0.937047i \(0.613548\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −12177.6 −1.20666 −0.603330 0.797492i \(-0.706160\pi\)
−0.603330 + 0.797492i \(0.706160\pi\)
\(468\) 0 0
\(469\) 11877.4 1.16940
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −982.755 −0.0955331
\(474\) 0 0
\(475\) 13694.8 1.32287
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 1999.79 0.190757 0.0953786 0.995441i \(-0.469594\pi\)
0.0953786 + 0.995441i \(0.469594\pi\)
\(480\) 0 0
\(481\) 2930.32 0.277778
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 263.002 0.0246233
\(486\) 0 0
\(487\) −10931.3 −1.01714 −0.508568 0.861022i \(-0.669825\pi\)
−0.508568 + 0.861022i \(0.669825\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −9264.78 −0.851556 −0.425778 0.904828i \(-0.639999\pi\)
−0.425778 + 0.904828i \(0.639999\pi\)
\(492\) 0 0
\(493\) −1751.14 −0.159974
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −14515.5 −1.31008
\(498\) 0 0
\(499\) 10145.8 0.910195 0.455098 0.890442i \(-0.349604\pi\)
0.455098 + 0.890442i \(0.349604\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 16397.7 1.45356 0.726778 0.686872i \(-0.241017\pi\)
0.726778 + 0.686872i \(0.241017\pi\)
\(504\) 0 0
\(505\) −644.231 −0.0567681
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −20153.5 −1.75499 −0.877494 0.479588i \(-0.840786\pi\)
−0.877494 + 0.479588i \(0.840786\pi\)
\(510\) 0 0
\(511\) −20308.7 −1.75813
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2960.46 −0.253308
\(516\) 0 0
\(517\) −1381.68 −0.117536
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −13607.3 −1.14423 −0.572116 0.820173i \(-0.693877\pi\)
−0.572116 + 0.820173i \(0.693877\pi\)
\(522\) 0 0
\(523\) −15066.8 −1.25970 −0.629852 0.776715i \(-0.716884\pi\)
−0.629852 + 0.776715i \(0.716884\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2321.33 0.191876
\(528\) 0 0
\(529\) 7948.76 0.653305
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −3571.11 −0.290210
\(534\) 0 0
\(535\) 1643.46 0.132809
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2884.21 0.230486
\(540\) 0 0
\(541\) 20964.6 1.66606 0.833029 0.553229i \(-0.186605\pi\)
0.833029 + 0.553229i \(0.186605\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −6427.71 −0.505198
\(546\) 0 0
\(547\) −4564.15 −0.356762 −0.178381 0.983961i \(-0.557086\pi\)
−0.178381 + 0.983961i \(0.557086\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 20491.5 1.58434
\(552\) 0 0
\(553\) −6257.23 −0.481166
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 21787.2 1.65737 0.828684 0.559716i \(-0.189090\pi\)
0.828684 + 0.559716i \(0.189090\pi\)
\(558\) 0 0
\(559\) 1446.21 0.109424
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 22930.9 1.71656 0.858279 0.513183i \(-0.171534\pi\)
0.858279 + 0.513183i \(0.171534\pi\)
\(564\) 0 0
\(565\) 4226.85 0.314734
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3375.90 −0.248726 −0.124363 0.992237i \(-0.539689\pi\)
−0.124363 + 0.992237i \(0.539689\pi\)
\(570\) 0 0
\(571\) 1027.69 0.0753196 0.0376598 0.999291i \(-0.488010\pi\)
0.0376598 + 0.999291i \(0.488010\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −16192.2 −1.17437
\(576\) 0 0
\(577\) −17617.5 −1.27110 −0.635551 0.772059i \(-0.719227\pi\)
−0.635551 + 0.772059i \(0.719227\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −32901.1 −2.34934
\(582\) 0 0
\(583\) 752.286 0.0534417
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −9481.32 −0.666671 −0.333336 0.942808i \(-0.608174\pi\)
−0.333336 + 0.942808i \(0.608174\pi\)
\(588\) 0 0
\(589\) −27163.9 −1.90029
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 14005.6 0.969882 0.484941 0.874547i \(-0.338841\pi\)
0.484941 + 0.874547i \(0.338841\pi\)
\(594\) 0 0
\(595\) 873.035 0.0601529
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 12057.8 0.822486 0.411243 0.911526i \(-0.365095\pi\)
0.411243 + 0.911526i \(0.365095\pi\)
\(600\) 0 0
\(601\) 1000.24 0.0678878 0.0339439 0.999424i \(-0.489193\pi\)
0.0339439 + 0.999424i \(0.489193\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 4124.12 0.277140
\(606\) 0 0
\(607\) 5254.38 0.351349 0.175674 0.984448i \(-0.443789\pi\)
0.175674 + 0.984448i \(0.443789\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2033.27 0.134627
\(612\) 0 0
\(613\) −3556.66 −0.234343 −0.117171 0.993112i \(-0.537383\pi\)
−0.117171 + 0.993112i \(0.537383\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 10897.9 0.711071 0.355536 0.934663i \(-0.384298\pi\)
0.355536 + 0.934663i \(0.384298\pi\)
\(618\) 0 0
\(619\) −27333.5 −1.77484 −0.887419 0.460965i \(-0.847504\pi\)
−0.887419 + 0.460965i \(0.847504\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 28074.3 1.80541
\(624\) 0 0
\(625\) 11679.6 0.747496
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −2310.67 −0.146474
\(630\) 0 0
\(631\) 13213.3 0.833617 0.416808 0.908994i \(-0.363149\pi\)
0.416808 + 0.908994i \(0.363149\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 4600.51 0.287505
\(636\) 0 0
\(637\) −4244.37 −0.264000
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 30291.7 1.86654 0.933268 0.359181i \(-0.116944\pi\)
0.933268 + 0.359181i \(0.116944\pi\)
\(642\) 0 0
\(643\) −9072.67 −0.556440 −0.278220 0.960517i \(-0.589744\pi\)
−0.278220 + 0.960517i \(0.589744\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −19487.9 −1.18416 −0.592078 0.805880i \(-0.701692\pi\)
−0.592078 + 0.805880i \(0.701692\pi\)
\(648\) 0 0
\(649\) 7861.47 0.475485
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 13423.9 0.804465 0.402233 0.915537i \(-0.368234\pi\)
0.402233 + 0.915537i \(0.368234\pi\)
\(654\) 0 0
\(655\) 3101.05 0.184989
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 32529.2 1.92285 0.961425 0.275067i \(-0.0886999\pi\)
0.961425 + 0.275067i \(0.0886999\pi\)
\(660\) 0 0
\(661\) 19133.6 1.12589 0.562944 0.826495i \(-0.309669\pi\)
0.562944 + 0.826495i \(0.309669\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −10216.1 −0.595736
\(666\) 0 0
\(667\) −24228.3 −1.40648
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 4096.04 0.235657
\(672\) 0 0
\(673\) 30936.5 1.77194 0.885970 0.463742i \(-0.153493\pi\)
0.885970 + 0.463742i \(0.153493\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 8960.22 0.508670 0.254335 0.967116i \(-0.418143\pi\)
0.254335 + 0.967116i \(0.418143\pi\)
\(678\) 0 0
\(679\) 2067.46 0.116851
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −25216.5 −1.41271 −0.706355 0.707858i \(-0.749662\pi\)
−0.706355 + 0.707858i \(0.749662\pi\)
\(684\) 0 0
\(685\) −2723.32 −0.151902
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1107.06 −0.0612126
\(690\) 0 0
\(691\) 28467.8 1.56725 0.783624 0.621236i \(-0.213369\pi\)
0.783624 + 0.621236i \(0.213369\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4109.40 −0.224285
\(696\) 0 0
\(697\) 2815.95 0.153030
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 12679.7 0.683175 0.341587 0.939850i \(-0.389035\pi\)
0.341587 + 0.939850i \(0.389035\pi\)
\(702\) 0 0
\(703\) 27039.1 1.45064
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5064.30 −0.269395
\(708\) 0 0
\(709\) 8986.61 0.476021 0.238011 0.971263i \(-0.423505\pi\)
0.238011 + 0.971263i \(0.423505\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 32117.4 1.68696
\(714\) 0 0
\(715\) 378.002 0.0197713
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −32611.8 −1.69154 −0.845769 0.533549i \(-0.820858\pi\)
−0.845769 + 0.533549i \(0.820858\pi\)
\(720\) 0 0
\(721\) −23272.2 −1.20208
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 19502.5 0.999043
\(726\) 0 0
\(727\) −25550.2 −1.30344 −0.651722 0.758458i \(-0.725953\pi\)
−0.651722 + 0.758458i \(0.725953\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1140.39 −0.0577003
\(732\) 0 0
\(733\) −2278.67 −0.114822 −0.0574111 0.998351i \(-0.518285\pi\)
−0.0574111 + 0.998351i \(0.518285\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4055.16 −0.202678
\(738\) 0 0
\(739\) 24392.5 1.21420 0.607099 0.794626i \(-0.292333\pi\)
0.607099 + 0.794626i \(0.292333\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −15792.0 −0.779750 −0.389875 0.920868i \(-0.627482\pi\)
−0.389875 + 0.920868i \(0.627482\pi\)
\(744\) 0 0
\(745\) −733.794 −0.0360861
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 12919.3 0.630253
\(750\) 0 0
\(751\) 10793.7 0.524457 0.262228 0.965006i \(-0.415543\pi\)
0.262228 + 0.965006i \(0.415543\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −6838.64 −0.329647
\(756\) 0 0
\(757\) 21486.3 1.03162 0.515809 0.856704i \(-0.327491\pi\)
0.515809 + 0.856704i \(0.327491\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −887.661 −0.0422834 −0.0211417 0.999776i \(-0.506730\pi\)
−0.0211417 + 0.999776i \(0.506730\pi\)
\(762\) 0 0
\(763\) −50528.2 −2.39744
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −11568.8 −0.544624
\(768\) 0 0
\(769\) 10875.7 0.509997 0.254998 0.966941i \(-0.417925\pi\)
0.254998 + 0.966941i \(0.417925\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 8068.68 0.375434 0.187717 0.982223i \(-0.439891\pi\)
0.187717 + 0.982223i \(0.439891\pi\)
\(774\) 0 0
\(775\) −25852.9 −1.19827
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −32951.9 −1.51556
\(780\) 0 0
\(781\) 4955.83 0.227060
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −909.118 −0.0413348
\(786\) 0 0
\(787\) 12769.9 0.578397 0.289198 0.957269i \(-0.406611\pi\)
0.289198 + 0.957269i \(0.406611\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 33227.3 1.49358
\(792\) 0 0
\(793\) −6027.68 −0.269923
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 17544.9 0.779763 0.389881 0.920865i \(-0.372516\pi\)
0.389881 + 0.920865i \(0.372516\pi\)
\(798\) 0 0
\(799\) −1603.31 −0.0709899
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 6933.72 0.304715
\(804\) 0 0
\(805\) 12079.1 0.528860
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −11082.8 −0.481643 −0.240822 0.970569i \(-0.577417\pi\)
−0.240822 + 0.970569i \(0.577417\pi\)
\(810\) 0 0
\(811\) −16057.5 −0.695259 −0.347629 0.937632i \(-0.613013\pi\)
−0.347629 + 0.937632i \(0.613013\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −10185.9 −0.437786
\(816\) 0 0
\(817\) 13344.7 0.571447
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 8634.49 0.367047 0.183524 0.983015i \(-0.441250\pi\)
0.183524 + 0.983015i \(0.441250\pi\)
\(822\) 0 0
\(823\) 38764.2 1.64184 0.820921 0.571041i \(-0.193460\pi\)
0.820921 + 0.571041i \(0.193460\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −5820.03 −0.244719 −0.122359 0.992486i \(-0.539046\pi\)
−0.122359 + 0.992486i \(0.539046\pi\)
\(828\) 0 0
\(829\) 30389.8 1.27320 0.636599 0.771195i \(-0.280341\pi\)
0.636599 + 0.771195i \(0.280341\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 3346.85 0.139209
\(834\) 0 0
\(835\) −10662.9 −0.441921
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −363.306 −0.0149496 −0.00747480 0.999972i \(-0.502379\pi\)
−0.00747480 + 0.999972i \(0.502379\pi\)
\(840\) 0 0
\(841\) 4792.56 0.196505
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −556.264 −0.0226462
\(846\) 0 0
\(847\) 32419.7 1.31518
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −31969.8 −1.28779
\(852\) 0 0
\(853\) −33784.6 −1.35611 −0.678055 0.735011i \(-0.737177\pi\)
−0.678055 + 0.735011i \(0.737177\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 30233.0 1.20506 0.602532 0.798095i \(-0.294159\pi\)
0.602532 + 0.798095i \(0.294159\pi\)
\(858\) 0 0
\(859\) 44459.3 1.76593 0.882963 0.469443i \(-0.155545\pi\)
0.882963 + 0.469443i \(0.155545\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −21795.6 −0.859710 −0.429855 0.902898i \(-0.641435\pi\)
−0.429855 + 0.902898i \(0.641435\pi\)
\(864\) 0 0
\(865\) −1035.53 −0.0407041
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 2136.32 0.0833945
\(870\) 0 0
\(871\) 5967.53 0.232149
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −20368.8 −0.786962
\(876\) 0 0
\(877\) −45759.9 −1.76192 −0.880959 0.473192i \(-0.843102\pi\)
−0.880959 + 0.473192i \(0.843102\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −8258.13 −0.315804 −0.157902 0.987455i \(-0.550473\pi\)
−0.157902 + 0.987455i \(0.550473\pi\)
\(882\) 0 0
\(883\) 48369.6 1.84345 0.921725 0.387844i \(-0.126780\pi\)
0.921725 + 0.387844i \(0.126780\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 31231.5 1.18225 0.591123 0.806582i \(-0.298685\pi\)
0.591123 + 0.806582i \(0.298685\pi\)
\(888\) 0 0
\(889\) 36164.6 1.36437
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 18761.7 0.703063
\(894\) 0 0
\(895\) 9035.89 0.337471
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −38683.5 −1.43511
\(900\) 0 0
\(901\) 872.955 0.0322778
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −10734.1 −0.394268
\(906\) 0 0
\(907\) 2275.92 0.0833194 0.0416597 0.999132i \(-0.486735\pi\)
0.0416597 + 0.999132i \(0.486735\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 5892.87 0.214314 0.107157 0.994242i \(-0.465825\pi\)
0.107157 + 0.994242i \(0.465825\pi\)
\(912\) 0 0
\(913\) 11233.0 0.407182
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 24377.4 0.877875
\(918\) 0 0
\(919\) 33385.3 1.19835 0.599174 0.800619i \(-0.295496\pi\)
0.599174 + 0.800619i \(0.295496\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −7292.95 −0.260076
\(924\) 0 0
\(925\) 25734.1 0.914736
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −41697.6 −1.47261 −0.736305 0.676650i \(-0.763431\pi\)
−0.736305 + 0.676650i \(0.763431\pi\)
\(930\) 0 0
\(931\) −39164.3 −1.37869
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −298.069 −0.0104256
\(936\) 0 0
\(937\) 5508.64 0.192059 0.0960296 0.995378i \(-0.469386\pi\)
0.0960296 + 0.995378i \(0.469386\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 45425.2 1.57367 0.786833 0.617166i \(-0.211719\pi\)
0.786833 + 0.617166i \(0.211719\pi\)
\(942\) 0 0
\(943\) 38960.8 1.34543
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −20693.6 −0.710086 −0.355043 0.934850i \(-0.615534\pi\)
−0.355043 + 0.934850i \(0.615534\pi\)
\(948\) 0 0
\(949\) −10203.6 −0.349023
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 2163.05 0.0735237 0.0367619 0.999324i \(-0.488296\pi\)
0.0367619 + 0.999324i \(0.488296\pi\)
\(954\) 0 0
\(955\) −8006.00 −0.271276
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −21408.1 −0.720858
\(960\) 0 0
\(961\) 21488.4 0.721306
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 3198.83 0.106709
\(966\) 0 0
\(967\) 3163.84 0.105214 0.0526072 0.998615i \(-0.483247\pi\)
0.0526072 + 0.998615i \(0.483247\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −7595.56 −0.251033 −0.125517 0.992092i \(-0.540059\pi\)
−0.125517 + 0.992092i \(0.540059\pi\)
\(972\) 0 0
\(973\) −32304.0 −1.06436
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 49857.6 1.63264 0.816318 0.577602i \(-0.196011\pi\)
0.816318 + 0.577602i \(0.196011\pi\)
\(978\) 0 0
\(979\) −9585.03 −0.312910
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 43762.5 1.41995 0.709973 0.704228i \(-0.248707\pi\)
0.709973 + 0.704228i \(0.248707\pi\)
\(984\) 0 0
\(985\) 6191.66 0.200287
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −15778.2 −0.507297
\(990\) 0 0
\(991\) −36147.8 −1.15870 −0.579350 0.815079i \(-0.696693\pi\)
−0.579350 + 0.815079i \(0.696693\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −5131.04 −0.163482
\(996\) 0 0
\(997\) 26713.1 0.848558 0.424279 0.905531i \(-0.360528\pi\)
0.424279 + 0.905531i \(0.360528\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.4.a.f.1.1 2
3.2 odd 2 312.4.a.e.1.2 2
4.3 odd 2 1872.4.a.bf.1.1 2
12.11 even 2 624.4.a.k.1.2 2
24.5 odd 2 2496.4.a.y.1.1 2
24.11 even 2 2496.4.a.bh.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.4.a.e.1.2 2 3.2 odd 2
624.4.a.k.1.2 2 12.11 even 2
936.4.a.f.1.1 2 1.1 even 1 trivial
1872.4.a.bf.1.1 2 4.3 odd 2
2496.4.a.y.1.1 2 24.5 odd 2
2496.4.a.bh.1.1 2 24.11 even 2