Properties

Label 936.2.w.k.307.3
Level $936$
Weight $2$
Character 936.307
Analytic conductor $7.474$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(307,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.w (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 307.3
Character \(\chi\) \(=\) 936.307
Dual form 936.2.w.k.811.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.20976 - 0.732456i) q^{2} +(0.927017 + 1.77218i) q^{4} +(-0.232047 + 0.232047i) q^{5} +(-1.32779 - 1.32779i) q^{7} +(0.176583 - 2.82291i) q^{8} +(0.450684 - 0.110756i) q^{10} +(-0.693922 + 0.693922i) q^{11} +(3.60100 - 0.181078i) q^{13} +(0.633752 + 2.57884i) q^{14} +(-2.28128 + 3.28569i) q^{16} -6.65027i q^{17} +(3.67982 + 3.67982i) q^{19} +(-0.626342 - 0.196119i) q^{20} +(1.34774 - 0.331209i) q^{22} -8.15485 q^{23} +4.89231i q^{25} +(-4.48896 - 2.41851i) q^{26} +(1.12220 - 3.58396i) q^{28} -5.34245i q^{29} +(2.87096 - 2.87096i) q^{31} +(5.16641 - 2.30395i) q^{32} +(-4.87103 + 8.04520i) q^{34} +0.616217 q^{35} +(-7.85762 - 7.85762i) q^{37} +(-1.75638 - 7.14700i) q^{38} +(0.614072 + 0.696023i) q^{40} +(5.49860 + 5.49860i) q^{41} -6.91010i q^{43} +(-1.87303 - 0.586480i) q^{44} +(9.86538 + 5.97307i) q^{46} +(4.22794 + 4.22794i) q^{47} -3.47397i q^{49} +(3.58340 - 5.91850i) q^{50} +(3.65909 + 6.21378i) q^{52} -10.9391i q^{53} -0.322045i q^{55} +(-3.98268 + 3.51375i) q^{56} +(-3.91311 + 6.46306i) q^{58} +(7.51705 - 7.51705i) q^{59} -6.47155i q^{61} +(-5.57601 + 1.37031i) q^{62} +(-7.93764 - 0.996957i) q^{64} +(-0.793583 + 0.877620i) q^{65} +(3.34449 + 3.34449i) q^{67} +(11.7855 - 6.16491i) q^{68} +(-0.745472 - 0.451352i) q^{70} +(-7.22680 + 7.22680i) q^{71} +(9.22075 - 9.22075i) q^{73} +(3.75044 + 15.2612i) q^{74} +(-3.11007 + 9.93259i) q^{76} +1.84276 q^{77} -13.9125i q^{79} +(-0.233071 - 1.29180i) q^{80} +(-2.62448 - 10.6794i) q^{82} +(-4.01110 - 4.01110i) q^{83} +(1.54318 + 1.54318i) q^{85} +(-5.06135 + 8.35954i) q^{86} +(1.83634 + 2.08141i) q^{88} +(1.32098 - 1.32098i) q^{89} +(-5.02179 - 4.54092i) q^{91} +(-7.55969 - 14.4519i) q^{92} +(-2.01799 - 8.21154i) q^{94} -1.70778 q^{95} +(-4.77810 - 4.77810i) q^{97} +(-2.54453 + 4.20266i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 40 q^{16} - 8 q^{19} - 32 q^{22} + 24 q^{28} + 8 q^{34} + 16 q^{40} - 8 q^{46} + 24 q^{52} - 24 q^{58} + 40 q^{67} - 24 q^{70} + 56 q^{76} + 104 q^{91} - 64 q^{94} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.20976 0.732456i −0.855426 0.517924i
\(3\) 0 0
\(4\) 0.927017 + 1.77218i 0.463508 + 0.886092i
\(5\) −0.232047 + 0.232047i −0.103775 + 0.103775i −0.757088 0.653313i \(-0.773378\pi\)
0.653313 + 0.757088i \(0.273378\pi\)
\(6\) 0 0
\(7\) −1.32779 1.32779i −0.501856 0.501856i 0.410159 0.912014i \(-0.365473\pi\)
−0.912014 + 0.410159i \(0.865473\pi\)
\(8\) 0.176583 2.82291i 0.0624316 0.998049i
\(9\) 0 0
\(10\) 0.450684 0.110756i 0.142519 0.0350241i
\(11\) −0.693922 + 0.693922i −0.209225 + 0.209225i −0.803938 0.594713i \(-0.797266\pi\)
0.594713 + 0.803938i \(0.297266\pi\)
\(12\) 0 0
\(13\) 3.60100 0.181078i 0.998738 0.0502220i
\(14\) 0.633752 + 2.57884i 0.169377 + 0.689224i
\(15\) 0 0
\(16\) −2.28128 + 3.28569i −0.570320 + 0.821423i
\(17\) 6.65027i 1.61293i −0.591283 0.806464i \(-0.701378\pi\)
0.591283 0.806464i \(-0.298622\pi\)
\(18\) 0 0
\(19\) 3.67982 + 3.67982i 0.844210 + 0.844210i 0.989403 0.145194i \(-0.0463805\pi\)
−0.145194 + 0.989403i \(0.546380\pi\)
\(20\) −0.626342 0.196119i −0.140054 0.0438535i
\(21\) 0 0
\(22\) 1.34774 0.331209i 0.287340 0.0706139i
\(23\) −8.15485 −1.70040 −0.850202 0.526457i \(-0.823520\pi\)
−0.850202 + 0.526457i \(0.823520\pi\)
\(24\) 0 0
\(25\) 4.89231i 0.978462i
\(26\) −4.48896 2.41851i −0.880358 0.474310i
\(27\) 0 0
\(28\) 1.12220 3.58396i 0.212076 0.677305i
\(29\) 5.34245i 0.992069i −0.868303 0.496034i \(-0.834789\pi\)
0.868303 0.496034i \(-0.165211\pi\)
\(30\) 0 0
\(31\) 2.87096 2.87096i 0.515640 0.515640i −0.400609 0.916249i \(-0.631202\pi\)
0.916249 + 0.400609i \(0.131202\pi\)
\(32\) 5.16641 2.30395i 0.913302 0.407284i
\(33\) 0 0
\(34\) −4.87103 + 8.04520i −0.835375 + 1.37974i
\(35\) 0.616217 0.104160
\(36\) 0 0
\(37\) −7.85762 7.85762i −1.29178 1.29178i −0.933682 0.358103i \(-0.883424\pi\)
−0.358103 0.933682i \(-0.616576\pi\)
\(38\) −1.75638 7.14700i −0.284922 1.15940i
\(39\) 0 0
\(40\) 0.614072 + 0.696023i 0.0970933 + 0.110051i
\(41\) 5.49860 + 5.49860i 0.858737 + 0.858737i 0.991189 0.132452i \(-0.0422852\pi\)
−0.132452 + 0.991189i \(0.542285\pi\)
\(42\) 0 0
\(43\) 6.91010i 1.05378i −0.849933 0.526891i \(-0.823358\pi\)
0.849933 0.526891i \(-0.176642\pi\)
\(44\) −1.87303 0.586480i −0.282371 0.0884152i
\(45\) 0 0
\(46\) 9.86538 + 5.97307i 1.45457 + 0.880681i
\(47\) 4.22794 + 4.22794i 0.616708 + 0.616708i 0.944685 0.327978i \(-0.106367\pi\)
−0.327978 + 0.944685i \(0.606367\pi\)
\(48\) 0 0
\(49\) 3.47397i 0.496282i
\(50\) 3.58340 5.91850i 0.506769 0.837002i
\(51\) 0 0
\(52\) 3.65909 + 6.21378i 0.507425 + 0.861696i
\(53\) 10.9391i 1.50261i −0.659957 0.751304i \(-0.729425\pi\)
0.659957 0.751304i \(-0.270575\pi\)
\(54\) 0 0
\(55\) 0.322045i 0.0434245i
\(56\) −3.98268 + 3.51375i −0.532208 + 0.469545i
\(57\) 0 0
\(58\) −3.91311 + 6.46306i −0.513817 + 0.848642i
\(59\) 7.51705 7.51705i 0.978637 0.978637i −0.0211400 0.999777i \(-0.506730\pi\)
0.999777 + 0.0211400i \(0.00672956\pi\)
\(60\) 0 0
\(61\) 6.47155i 0.828597i −0.910141 0.414299i \(-0.864027\pi\)
0.910141 0.414299i \(-0.135973\pi\)
\(62\) −5.57601 + 1.37031i −0.708154 + 0.174029i
\(63\) 0 0
\(64\) −7.93764 0.996957i −0.992205 0.124620i
\(65\) −0.793583 + 0.877620i −0.0984318 + 0.108855i
\(66\) 0 0
\(67\) 3.34449 + 3.34449i 0.408595 + 0.408595i 0.881248 0.472654i \(-0.156704\pi\)
−0.472654 + 0.881248i \(0.656704\pi\)
\(68\) 11.7855 6.16491i 1.42920 0.747606i
\(69\) 0 0
\(70\) −0.745472 0.451352i −0.0891009 0.0539469i
\(71\) −7.22680 + 7.22680i −0.857663 + 0.857663i −0.991062 0.133399i \(-0.957411\pi\)
0.133399 + 0.991062i \(0.457411\pi\)
\(72\) 0 0
\(73\) 9.22075 9.22075i 1.07921 1.07921i 0.0826264 0.996581i \(-0.473669\pi\)
0.996581 0.0826264i \(-0.0263308\pi\)
\(74\) 3.75044 + 15.2612i 0.435980 + 1.77407i
\(75\) 0 0
\(76\) −3.11007 + 9.93259i −0.356750 + 1.13935i
\(77\) 1.84276 0.210002
\(78\) 0 0
\(79\) 13.9125i 1.56528i −0.622475 0.782640i \(-0.713873\pi\)
0.622475 0.782640i \(-0.286127\pi\)
\(80\) −0.233071 1.29180i −0.0260581 0.144427i
\(81\) 0 0
\(82\) −2.62448 10.6794i −0.289825 1.17935i
\(83\) −4.01110 4.01110i −0.440275 0.440275i 0.451829 0.892104i \(-0.350772\pi\)
−0.892104 + 0.451829i \(0.850772\pi\)
\(84\) 0 0
\(85\) 1.54318 + 1.54318i 0.167381 + 0.167381i
\(86\) −5.06135 + 8.35954i −0.545779 + 0.901432i
\(87\) 0 0
\(88\) 1.83634 + 2.08141i 0.195755 + 0.221879i
\(89\) 1.32098 1.32098i 0.140024 0.140024i −0.633620 0.773644i \(-0.718432\pi\)
0.773644 + 0.633620i \(0.218432\pi\)
\(90\) 0 0
\(91\) −5.02179 4.54092i −0.526427 0.476018i
\(92\) −7.55969 14.4519i −0.788152 1.50672i
\(93\) 0 0
\(94\) −2.01799 8.21154i −0.208140 0.846956i
\(95\) −1.70778 −0.175215
\(96\) 0 0
\(97\) −4.77810 4.77810i −0.485142 0.485142i 0.421627 0.906769i \(-0.361459\pi\)
−0.906769 + 0.421627i \(0.861459\pi\)
\(98\) −2.54453 + 4.20266i −0.257037 + 0.424533i
\(99\) 0 0
\(100\) −8.67008 + 4.53525i −0.867008 + 0.453525i
\(101\) 4.90646 0.488211 0.244106 0.969749i \(-0.421506\pi\)
0.244106 + 0.969749i \(0.421506\pi\)
\(102\) 0 0
\(103\) −9.68894 −0.954680 −0.477340 0.878719i \(-0.658399\pi\)
−0.477340 + 0.878719i \(0.658399\pi\)
\(104\) 0.124710 10.1973i 0.0122289 0.999925i
\(105\) 0 0
\(106\) −8.01244 + 13.2337i −0.778237 + 1.28537i
\(107\) −7.23790 −0.699714 −0.349857 0.936803i \(-0.613770\pi\)
−0.349857 + 0.936803i \(0.613770\pi\)
\(108\) 0 0
\(109\) −3.80269 + 3.80269i −0.364232 + 0.364232i −0.865368 0.501137i \(-0.832915\pi\)
0.501137 + 0.865368i \(0.332915\pi\)
\(110\) −0.235884 + 0.389595i −0.0224906 + 0.0371465i
\(111\) 0 0
\(112\) 7.39174 1.33364i 0.698454 0.126017i
\(113\) 1.22553 0.115288 0.0576440 0.998337i \(-0.481641\pi\)
0.0576440 + 0.998337i \(0.481641\pi\)
\(114\) 0 0
\(115\) 1.89231 1.89231i 0.176459 0.176459i
\(116\) 9.46782 4.95255i 0.879065 0.459832i
\(117\) 0 0
\(118\) −14.5997 + 3.58789i −1.34401 + 0.330292i
\(119\) −8.83013 + 8.83013i −0.809457 + 0.809457i
\(120\) 0 0
\(121\) 10.0369i 0.912450i
\(122\) −4.74012 + 7.82899i −0.429151 + 0.708804i
\(123\) 0 0
\(124\) 7.74930 + 2.42644i 0.695908 + 0.217901i
\(125\) −2.29548 2.29548i −0.205314 0.205314i
\(126\) 0 0
\(127\) −11.2982 −1.00255 −0.501275 0.865288i \(-0.667135\pi\)
−0.501275 + 0.865288i \(0.667135\pi\)
\(128\) 8.87237 + 7.02004i 0.784214 + 0.620490i
\(129\) 0 0
\(130\) 1.60286 0.480441i 0.140580 0.0421375i
\(131\) −11.6351 −1.01656 −0.508282 0.861191i \(-0.669719\pi\)
−0.508282 + 0.861191i \(0.669719\pi\)
\(132\) 0 0
\(133\) 9.77203i 0.847343i
\(134\) −1.59633 6.49571i −0.137902 0.561144i
\(135\) 0 0
\(136\) −18.7731 1.17433i −1.60978 0.100698i
\(137\) −6.64576 + 6.64576i −0.567786 + 0.567786i −0.931508 0.363722i \(-0.881506\pi\)
0.363722 + 0.931508i \(0.381506\pi\)
\(138\) 0 0
\(139\) 12.0057 1.01831 0.509157 0.860674i \(-0.329957\pi\)
0.509157 + 0.860674i \(0.329957\pi\)
\(140\) 0.571244 + 1.09205i 0.0482789 + 0.0922951i
\(141\) 0 0
\(142\) 14.0360 3.44935i 1.17787 0.289463i
\(143\) −2.37316 + 2.62447i −0.198454 + 0.219469i
\(144\) 0 0
\(145\) 1.23970 + 1.23970i 0.102952 + 0.102952i
\(146\) −17.9086 + 4.40106i −1.48213 + 0.364234i
\(147\) 0 0
\(148\) 6.64101 21.2093i 0.545888 1.74339i
\(149\) 15.0395 15.0395i 1.23208 1.23208i 0.268920 0.963162i \(-0.413333\pi\)
0.963162 0.268920i \(-0.0866668\pi\)
\(150\) 0 0
\(151\) 2.14133 + 2.14133i 0.174259 + 0.174259i 0.788848 0.614589i \(-0.210678\pi\)
−0.614589 + 0.788848i \(0.710678\pi\)
\(152\) 11.0376 9.73802i 0.895268 0.789857i
\(153\) 0 0
\(154\) −2.22929 1.34974i −0.179641 0.108765i
\(155\) 1.33240i 0.107021i
\(156\) 0 0
\(157\) 1.56379i 0.124804i −0.998051 0.0624018i \(-0.980124\pi\)
0.998051 0.0624018i \(-0.0198760\pi\)
\(158\) −10.1903 + 16.8307i −0.810696 + 1.33898i
\(159\) 0 0
\(160\) −0.664227 + 1.73347i −0.0525117 + 0.137043i
\(161\) 10.8279 + 10.8279i 0.853357 + 0.853357i
\(162\) 0 0
\(163\) 3.34449 3.34449i 0.261961 0.261961i −0.563889 0.825850i \(-0.690696\pi\)
0.825850 + 0.563889i \(0.190696\pi\)
\(164\) −4.64724 + 14.8418i −0.362889 + 1.15895i
\(165\) 0 0
\(166\) 1.91449 + 7.79040i 0.148594 + 0.604652i
\(167\) 12.1201 + 12.1201i 0.937882 + 0.937882i 0.998180 0.0602983i \(-0.0192052\pi\)
−0.0602983 + 0.998180i \(0.519205\pi\)
\(168\) 0 0
\(169\) 12.9344 1.30412i 0.994956 0.100317i
\(170\) −0.736557 2.99717i −0.0564914 0.229873i
\(171\) 0 0
\(172\) 12.2460 6.40578i 0.933747 0.488436i
\(173\) 17.4010 1.32297 0.661485 0.749958i \(-0.269926\pi\)
0.661485 + 0.749958i \(0.269926\pi\)
\(174\) 0 0
\(175\) 6.49593 6.49593i 0.491047 0.491047i
\(176\) −0.696983 3.86304i −0.0525371 0.291188i
\(177\) 0 0
\(178\) −2.56562 + 0.630503i −0.192302 + 0.0472582i
\(179\) 3.61291i 0.270041i 0.990843 + 0.135021i \(0.0431101\pi\)
−0.990843 + 0.135021i \(0.956890\pi\)
\(180\) 0 0
\(181\) −1.37454 −0.102169 −0.0510845 0.998694i \(-0.516268\pi\)
−0.0510845 + 0.998694i \(0.516268\pi\)
\(182\) 2.74911 + 9.17165i 0.203778 + 0.679848i
\(183\) 0 0
\(184\) −1.44001 + 23.0204i −0.106159 + 1.69709i
\(185\) 3.64667 0.268109
\(186\) 0 0
\(187\) 4.61477 + 4.61477i 0.337465 + 0.337465i
\(188\) −3.57332 + 11.4121i −0.260611 + 0.832309i
\(189\) 0 0
\(190\) 2.06600 + 1.25088i 0.149883 + 0.0907481i
\(191\) 15.9525i 1.15428i 0.816645 + 0.577140i \(0.195832\pi\)
−0.816645 + 0.577140i \(0.804168\pi\)
\(192\) 0 0
\(193\) −2.65778 + 2.65778i −0.191311 + 0.191311i −0.796262 0.604951i \(-0.793193\pi\)
0.604951 + 0.796262i \(0.293193\pi\)
\(194\) 2.28058 + 9.28007i 0.163736 + 0.666270i
\(195\) 0 0
\(196\) 6.15652 3.22043i 0.439752 0.230031i
\(197\) −0.232047 + 0.232047i −0.0165327 + 0.0165327i −0.715325 0.698792i \(-0.753721\pi\)
0.698792 + 0.715325i \(0.253721\pi\)
\(198\) 0 0
\(199\) 18.9301 1.34192 0.670960 0.741493i \(-0.265882\pi\)
0.670960 + 0.741493i \(0.265882\pi\)
\(200\) 13.8105 + 0.863900i 0.976553 + 0.0610870i
\(201\) 0 0
\(202\) −5.93562 3.59377i −0.417629 0.252857i
\(203\) −7.09363 + 7.09363i −0.497875 + 0.497875i
\(204\) 0 0
\(205\) −2.55187 −0.178230
\(206\) 11.7212 + 7.09672i 0.816658 + 0.494452i
\(207\) 0 0
\(208\) −7.61992 + 12.2449i −0.528347 + 0.849029i
\(209\) −5.10702 −0.353260
\(210\) 0 0
\(211\) −28.2261 −1.94317 −0.971583 0.236699i \(-0.923934\pi\)
−0.971583 + 0.236699i \(0.923934\pi\)
\(212\) 19.3862 10.1408i 1.33145 0.696471i
\(213\) 0 0
\(214\) 8.75609 + 5.30144i 0.598554 + 0.362399i
\(215\) 1.60347 + 1.60347i 0.109356 + 0.109356i
\(216\) 0 0
\(217\) −7.62404 −0.517553
\(218\) 7.38563 1.81502i 0.500218 0.122929i
\(219\) 0 0
\(220\) 0.570723 0.298541i 0.0384781 0.0201276i
\(221\) −1.20422 23.9476i −0.0810044 1.61089i
\(222\) 0 0
\(223\) −8.36647 + 8.36647i −0.560260 + 0.560260i −0.929381 0.369121i \(-0.879659\pi\)
0.369121 + 0.929381i \(0.379659\pi\)
\(224\) −9.91903 3.80074i −0.662743 0.253948i
\(225\) 0 0
\(226\) −1.48259 0.897645i −0.0986204 0.0597105i
\(227\) 15.1395 + 15.1395i 1.00484 + 1.00484i 0.999988 + 0.00485599i \(0.00154572\pi\)
0.00485599 + 0.999988i \(0.498454\pi\)
\(228\) 0 0
\(229\) 7.68899 + 7.68899i 0.508103 + 0.508103i 0.913944 0.405841i \(-0.133021\pi\)
−0.405841 + 0.913944i \(0.633021\pi\)
\(230\) −3.67526 + 0.903198i −0.242340 + 0.0595551i
\(231\) 0 0
\(232\) −15.0813 0.943388i −0.990134 0.0619365i
\(233\) 14.6667i 0.960848i −0.877036 0.480424i \(-0.840483\pi\)
0.877036 0.480424i \(-0.159517\pi\)
\(234\) 0 0
\(235\) −1.96216 −0.127997
\(236\) 20.2900 + 6.35317i 1.32077 + 0.413556i
\(237\) 0 0
\(238\) 17.1500 4.21462i 1.11167 0.273193i
\(239\) −14.6118 + 14.6118i −0.945160 + 0.945160i −0.998573 0.0534121i \(-0.982990\pi\)
0.0534121 + 0.998573i \(0.482990\pi\)
\(240\) 0 0
\(241\) 4.71367 4.71367i 0.303634 0.303634i −0.538800 0.842434i \(-0.681122\pi\)
0.842434 + 0.538800i \(0.181122\pi\)
\(242\) 7.35162 12.1423i 0.472580 0.780533i
\(243\) 0 0
\(244\) 11.4688 5.99924i 0.734214 0.384062i
\(245\) 0.806125 + 0.806125i 0.0515014 + 0.0515014i
\(246\) 0 0
\(247\) 13.9174 + 12.5847i 0.885542 + 0.800746i
\(248\) −7.59750 8.61143i −0.482442 0.546826i
\(249\) 0 0
\(250\) 1.09563 + 4.45831i 0.0692938 + 0.281968i
\(251\) 2.84128i 0.179340i −0.995972 0.0896701i \(-0.971419\pi\)
0.995972 0.0896701i \(-0.0285813\pi\)
\(252\) 0 0
\(253\) 5.65883 5.65883i 0.355767 0.355767i
\(254\) 13.6680 + 8.27540i 0.857607 + 0.519245i
\(255\) 0 0
\(256\) −5.59153 14.9912i −0.349471 0.936947i
\(257\) 18.5254i 1.15558i 0.816185 + 0.577790i \(0.196085\pi\)
−0.816185 + 0.577790i \(0.803915\pi\)
\(258\) 0 0
\(259\) 20.8665i 1.29658i
\(260\) −2.29097 0.592807i −0.142080 0.0367643i
\(261\) 0 0
\(262\) 14.0756 + 8.52220i 0.869595 + 0.526503i
\(263\) 3.70928i 0.228724i 0.993439 + 0.114362i \(0.0364824\pi\)
−0.993439 + 0.114362i \(0.963518\pi\)
\(264\) 0 0
\(265\) 2.53840 + 2.53840i 0.155932 + 0.155932i
\(266\) −7.15758 + 11.8218i −0.438860 + 0.724839i
\(267\) 0 0
\(268\) −2.82666 + 9.02746i −0.172666 + 0.551440i
\(269\) 15.5582i 0.948601i 0.880363 + 0.474300i \(0.157299\pi\)
−0.880363 + 0.474300i \(0.842701\pi\)
\(270\) 0 0
\(271\) −7.90807 7.90807i −0.480381 0.480381i 0.424872 0.905253i \(-0.360319\pi\)
−0.905253 + 0.424872i \(0.860319\pi\)
\(272\) 21.8507 + 15.1711i 1.32490 + 0.919885i
\(273\) 0 0
\(274\) 12.9075 3.17202i 0.779769 0.191629i
\(275\) −3.39488 3.39488i −0.204719 0.204719i
\(276\) 0 0
\(277\) 10.4041 0.625122 0.312561 0.949898i \(-0.398813\pi\)
0.312561 + 0.949898i \(0.398813\pi\)
\(278\) −14.5240 8.79367i −0.871092 0.527409i
\(279\) 0 0
\(280\) 0.108814 1.73952i 0.00650286 0.103956i
\(281\) −9.28915 + 9.28915i −0.554144 + 0.554144i −0.927634 0.373490i \(-0.878161\pi\)
0.373490 + 0.927634i \(0.378161\pi\)
\(282\) 0 0
\(283\) 14.0298i 0.833985i 0.908910 + 0.416992i \(0.136916\pi\)
−0.908910 + 0.416992i \(0.863084\pi\)
\(284\) −19.5066 6.10786i −1.15750 0.362435i
\(285\) 0 0
\(286\) 4.79325 1.43673i 0.283431 0.0849556i
\(287\) 14.6019i 0.861924i
\(288\) 0 0
\(289\) −27.2261 −1.60154
\(290\) −0.591709 2.40776i −0.0347463 0.141389i
\(291\) 0 0
\(292\) 24.8887 + 7.79308i 1.45650 + 0.456056i
\(293\) 5.13851 + 5.13851i 0.300195 + 0.300195i 0.841090 0.540895i \(-0.181914\pi\)
−0.540895 + 0.841090i \(0.681914\pi\)
\(294\) 0 0
\(295\) 3.48862i 0.203115i
\(296\) −23.5689 + 20.7938i −1.36991 + 1.20862i
\(297\) 0 0
\(298\) −29.2099 + 7.17834i −1.69208 + 0.415830i
\(299\) −29.3656 + 1.47666i −1.69826 + 0.0853976i
\(300\) 0 0
\(301\) −9.17513 + 9.17513i −0.528846 + 0.528846i
\(302\) −1.02206 4.15892i −0.0588128 0.239319i
\(303\) 0 0
\(304\) −20.4855 + 3.69606i −1.17492 + 0.211984i
\(305\) 1.50170 + 1.50170i 0.0859873 + 0.0859873i
\(306\) 0 0
\(307\) 15.9650 15.9650i 0.911170 0.911170i −0.0851939 0.996364i \(-0.527151\pi\)
0.996364 + 0.0851939i \(0.0271510\pi\)
\(308\) 1.70827 + 3.26571i 0.0973376 + 0.186081i
\(309\) 0 0
\(310\) 0.975921 1.61187i 0.0554286 0.0915482i
\(311\) 11.8644 0.672769 0.336384 0.941725i \(-0.390796\pi\)
0.336384 + 0.941725i \(0.390796\pi\)
\(312\) 0 0
\(313\) 2.08900 0.118077 0.0590386 0.998256i \(-0.481196\pi\)
0.0590386 + 0.998256i \(0.481196\pi\)
\(314\) −1.14540 + 1.89180i −0.0646389 + 0.106760i
\(315\) 0 0
\(316\) 24.6555 12.8971i 1.38698 0.725520i
\(317\) 17.2819 17.2819i 0.970647 0.970647i −0.0289346 0.999581i \(-0.509211\pi\)
0.999581 + 0.0289346i \(0.00921146\pi\)
\(318\) 0 0
\(319\) 3.70724 + 3.70724i 0.207566 + 0.207566i
\(320\) 2.07325 1.61056i 0.115898 0.0900332i
\(321\) 0 0
\(322\) −5.16815 21.0301i −0.288010 1.17196i
\(323\) 24.4718 24.4718i 1.36165 1.36165i
\(324\) 0 0
\(325\) 0.885889 + 17.6172i 0.0491403 + 0.977227i
\(326\) −6.49571 + 1.59633i −0.359764 + 0.0884123i
\(327\) 0 0
\(328\) 16.4930 14.5511i 0.910674 0.803449i
\(329\) 11.2276i 0.618996i
\(330\) 0 0
\(331\) −5.85157 5.85157i −0.321631 0.321631i 0.527761 0.849393i \(-0.323032\pi\)
−0.849393 + 0.527761i \(0.823032\pi\)
\(332\) 3.39005 10.8268i 0.186053 0.594195i
\(333\) 0 0
\(334\) −5.78492 23.5398i −0.316537 1.28804i
\(335\) −1.55216 −0.0848035
\(336\) 0 0
\(337\) 19.6314i 1.06939i 0.845045 + 0.534695i \(0.179574\pi\)
−0.845045 + 0.534695i \(0.820426\pi\)
\(338\) −16.6027 7.89622i −0.903068 0.429498i
\(339\) 0 0
\(340\) −1.30424 + 4.16534i −0.0707325 + 0.225897i
\(341\) 3.98444i 0.215770i
\(342\) 0 0
\(343\) −13.9072 + 13.9072i −0.750917 + 0.750917i
\(344\) −19.5066 1.22021i −1.05173 0.0657893i
\(345\) 0 0
\(346\) −21.0509 12.7454i −1.13170 0.685199i
\(347\) 18.5916 0.998047 0.499024 0.866588i \(-0.333692\pi\)
0.499024 + 0.866588i \(0.333692\pi\)
\(348\) 0 0
\(349\) 4.63491 + 4.63491i 0.248101 + 0.248101i 0.820191 0.572090i \(-0.193867\pi\)
−0.572090 + 0.820191i \(0.693867\pi\)
\(350\) −12.6165 + 3.10051i −0.674379 + 0.165729i
\(351\) 0 0
\(352\) −1.98633 + 5.18384i −0.105872 + 0.276300i
\(353\) −9.42145 9.42145i −0.501453 0.501453i 0.410436 0.911889i \(-0.365376\pi\)
−0.911889 + 0.410436i \(0.865376\pi\)
\(354\) 0 0
\(355\) 3.35391i 0.178007i
\(356\) 3.56559 + 1.11645i 0.188976 + 0.0591717i
\(357\) 0 0
\(358\) 2.64630 4.37074i 0.139861 0.231001i
\(359\) −14.5075 14.5075i −0.765677 0.765677i 0.211665 0.977342i \(-0.432111\pi\)
−0.977342 + 0.211665i \(0.932111\pi\)
\(360\) 0 0
\(361\) 8.08222i 0.425380i
\(362\) 1.66286 + 1.00679i 0.0873980 + 0.0529158i
\(363\) 0 0
\(364\) 3.39207 13.1091i 0.177793 0.687101i
\(365\) 4.27929i 0.223988i
\(366\) 0 0
\(367\) 28.8535i 1.50614i −0.657940 0.753070i \(-0.728572\pi\)
0.657940 0.753070i \(-0.271428\pi\)
\(368\) 18.6035 26.7943i 0.969774 1.39675i
\(369\) 0 0
\(370\) −4.41158 2.67103i −0.229347 0.138860i
\(371\) −14.5248 + 14.5248i −0.754092 + 0.754092i
\(372\) 0 0
\(373\) 29.6380i 1.53460i 0.641290 + 0.767299i \(0.278400\pi\)
−0.641290 + 0.767299i \(0.721600\pi\)
\(374\) −2.20263 8.96285i −0.113895 0.463458i
\(375\) 0 0
\(376\) 12.6817 11.1885i 0.654007 0.577003i
\(377\) −0.967400 19.2382i −0.0498236 0.990817i
\(378\) 0 0
\(379\) −13.5358 13.5358i −0.695285 0.695285i 0.268105 0.963390i \(-0.413603\pi\)
−0.963390 + 0.268105i \(0.913603\pi\)
\(380\) −1.58314 3.02651i −0.0812136 0.155257i
\(381\) 0 0
\(382\) 11.6845 19.2986i 0.597830 0.987402i
\(383\) −25.6471 + 25.6471i −1.31051 + 1.31051i −0.389465 + 0.921041i \(0.627340\pi\)
−0.921041 + 0.389465i \(0.872660\pi\)
\(384\) 0 0
\(385\) −0.427606 + 0.427606i −0.0217928 + 0.0217928i
\(386\) 5.16196 1.26856i 0.262737 0.0645678i
\(387\) 0 0
\(388\) 4.03829 12.8970i 0.205013 0.654748i
\(389\) −2.59961 −0.131806 −0.0659028 0.997826i \(-0.520993\pi\)
−0.0659028 + 0.997826i \(0.520993\pi\)
\(390\) 0 0
\(391\) 54.2320i 2.74263i
\(392\) −9.80671 0.613446i −0.495314 0.0309837i
\(393\) 0 0
\(394\) 0.450684 0.110756i 0.0227051 0.00557980i
\(395\) 3.22835 + 3.22835i 0.162436 + 0.162436i
\(396\) 0 0
\(397\) −0.396880 0.396880i −0.0199188 0.0199188i 0.697077 0.716996i \(-0.254483\pi\)
−0.716996 + 0.697077i \(0.754483\pi\)
\(398\) −22.9008 13.8655i −1.14791 0.695013i
\(399\) 0 0
\(400\) −16.0746 11.1607i −0.803731 0.558036i
\(401\) −1.18544 + 1.18544i −0.0591979 + 0.0591979i −0.736086 0.676888i \(-0.763328\pi\)
0.676888 + 0.736086i \(0.263328\pi\)
\(402\) 0 0
\(403\) 9.81847 10.8582i 0.489093 0.540885i
\(404\) 4.54837 + 8.69516i 0.226290 + 0.432600i
\(405\) 0 0
\(406\) 13.7773 3.38579i 0.683758 0.168034i
\(407\) 10.9051 0.540548
\(408\) 0 0
\(409\) −3.20321 3.20321i −0.158389 0.158389i 0.623464 0.781852i \(-0.285725\pi\)
−0.781852 + 0.623464i \(0.785725\pi\)
\(410\) 3.08713 + 1.86913i 0.152463 + 0.0923097i
\(411\) 0 0
\(412\) −8.98181 17.1706i −0.442502 0.845934i
\(413\) −19.9621 −0.982269
\(414\) 0 0
\(415\) 1.86152 0.0913787
\(416\) 18.1871 9.23204i 0.891694 0.452638i
\(417\) 0 0
\(418\) 6.17825 + 3.74067i 0.302188 + 0.182962i
\(419\) −26.8342 −1.31094 −0.655468 0.755223i \(-0.727528\pi\)
−0.655468 + 0.755223i \(0.727528\pi\)
\(420\) 0 0
\(421\) 1.67708 1.67708i 0.0817361 0.0817361i −0.665057 0.746793i \(-0.731593\pi\)
0.746793 + 0.665057i \(0.231593\pi\)
\(422\) 34.1467 + 20.6744i 1.66224 + 1.00641i
\(423\) 0 0
\(424\) −30.8802 1.93167i −1.49968 0.0938102i
\(425\) 32.5352 1.57819
\(426\) 0 0
\(427\) −8.59283 + 8.59283i −0.415836 + 0.415836i
\(428\) −6.70966 12.8269i −0.324323 0.620011i
\(429\) 0 0
\(430\) −0.765335 3.11428i −0.0369077 0.150184i
\(431\) 12.1299 12.1299i 0.584276 0.584276i −0.351800 0.936075i \(-0.614430\pi\)
0.936075 + 0.351800i \(0.114430\pi\)
\(432\) 0 0
\(433\) 22.8756i 1.09933i −0.835384 0.549666i \(-0.814755\pi\)
0.835384 0.549666i \(-0.185245\pi\)
\(434\) 9.22322 + 5.58427i 0.442729 + 0.268054i
\(435\) 0 0
\(436\) −10.2642 3.21391i −0.491567 0.153918i
\(437\) −30.0084 30.0084i −1.43550 1.43550i
\(438\) 0 0
\(439\) 17.4118 0.831018 0.415509 0.909589i \(-0.363604\pi\)
0.415509 + 0.909589i \(0.363604\pi\)
\(440\) −0.909103 0.0568677i −0.0433398 0.00271106i
\(441\) 0 0
\(442\) −16.0838 + 29.8528i −0.765027 + 1.41995i
\(443\) 23.8279 1.13210 0.566049 0.824371i \(-0.308471\pi\)
0.566049 + 0.824371i \(0.308471\pi\)
\(444\) 0 0
\(445\) 0.613059i 0.0290618i
\(446\) 16.2495 3.99332i 0.769434 0.189089i
\(447\) 0 0
\(448\) 9.21573 + 11.8632i 0.435402 + 0.560485i
\(449\) 8.40224 8.40224i 0.396526 0.396526i −0.480480 0.877006i \(-0.659537\pi\)
0.877006 + 0.480480i \(0.159537\pi\)
\(450\) 0 0
\(451\) −7.63119 −0.359339
\(452\) 1.13609 + 2.17186i 0.0534370 + 0.102156i
\(453\) 0 0
\(454\) −7.22608 29.4041i −0.339137 1.38000i
\(455\) 2.21900 0.111583i 0.104028 0.00523110i
\(456\) 0 0
\(457\) −7.98105 7.98105i −0.373338 0.373338i 0.495354 0.868691i \(-0.335038\pi\)
−0.868691 + 0.495354i \(0.835038\pi\)
\(458\) −3.66995 14.9336i −0.171486 0.697803i
\(459\) 0 0
\(460\) 5.10772 + 1.59932i 0.238149 + 0.0745686i
\(461\) −17.2976 + 17.2976i −0.805629 + 0.805629i −0.983969 0.178340i \(-0.942927\pi\)
0.178340 + 0.983969i \(0.442927\pi\)
\(462\) 0 0
\(463\) 17.9414 + 17.9414i 0.833806 + 0.833806i 0.988035 0.154229i \(-0.0492895\pi\)
−0.154229 + 0.988035i \(0.549289\pi\)
\(464\) 17.5537 + 12.1876i 0.814908 + 0.565797i
\(465\) 0 0
\(466\) −10.7427 + 17.7431i −0.497647 + 0.821934i
\(467\) 4.30932i 0.199412i 0.995017 + 0.0997058i \(0.0317902\pi\)
−0.995017 + 0.0997058i \(0.968210\pi\)
\(468\) 0 0
\(469\) 8.88154i 0.410111i
\(470\) 2.37373 + 1.43719i 0.109492 + 0.0662928i
\(471\) 0 0
\(472\) −19.8926 22.5473i −0.915630 1.03783i
\(473\) 4.79507 + 4.79507i 0.220478 + 0.220478i
\(474\) 0 0
\(475\) −18.0028 + 18.0028i −0.826027 + 0.826027i
\(476\) −23.8343 7.46295i −1.09244 0.342064i
\(477\) 0 0
\(478\) 28.3793 6.97422i 1.29804 0.318993i
\(479\) 4.44410 + 4.44410i 0.203056 + 0.203056i 0.801308 0.598252i \(-0.204138\pi\)
−0.598252 + 0.801308i \(0.704138\pi\)
\(480\) 0 0
\(481\) −29.7181 26.8725i −1.35503 1.22528i
\(482\) −9.15495 + 2.24983i −0.416997 + 0.102477i
\(483\) 0 0
\(484\) −17.7873 + 9.30442i −0.808515 + 0.422928i
\(485\) 2.21749 0.100691
\(486\) 0 0
\(487\) −14.5302 + 14.5302i −0.658424 + 0.658424i −0.955007 0.296583i \(-0.904153\pi\)
0.296583 + 0.955007i \(0.404153\pi\)
\(488\) −18.2686 1.14277i −0.826981 0.0517307i
\(489\) 0 0
\(490\) −0.384763 1.56566i −0.0173818 0.0707295i
\(491\) 43.8723i 1.97993i −0.141310 0.989965i \(-0.545131\pi\)
0.141310 0.989965i \(-0.454869\pi\)
\(492\) 0 0
\(493\) −35.5288 −1.60014
\(494\) −7.61889 25.4183i −0.342790 1.14362i
\(495\) 0 0
\(496\) 2.88363 + 15.9826i 0.129479 + 0.717638i
\(497\) 19.1913 0.860846
\(498\) 0 0
\(499\) −0.806097 0.806097i −0.0360858 0.0360858i 0.688834 0.724919i \(-0.258123\pi\)
−0.724919 + 0.688834i \(0.758123\pi\)
\(500\) 1.94007 6.19596i 0.0867624 0.277092i
\(501\) 0 0
\(502\) −2.08111 + 3.43726i −0.0928847 + 0.153412i
\(503\) 24.9180i 1.11104i −0.831504 0.555519i \(-0.812519\pi\)
0.831504 0.555519i \(-0.187481\pi\)
\(504\) 0 0
\(505\) −1.13853 + 1.13853i −0.0506639 + 0.0506639i
\(506\) −10.9906 + 2.70096i −0.488593 + 0.120072i
\(507\) 0 0
\(508\) −10.4736 20.0224i −0.464690 0.888351i
\(509\) −2.52753 + 2.52753i −0.112031 + 0.112031i −0.760900 0.648869i \(-0.775242\pi\)
0.648869 + 0.760900i \(0.275242\pi\)
\(510\) 0 0
\(511\) −24.4863 −1.08321
\(512\) −4.21597 + 22.2312i −0.186322 + 0.982489i
\(513\) 0 0
\(514\) 13.5690 22.4112i 0.598503 0.988514i
\(515\) 2.24829 2.24829i 0.0990714 0.0990714i
\(516\) 0 0
\(517\) −5.86771 −0.258062
\(518\) 15.2838 25.2433i 0.671530 1.10913i
\(519\) 0 0
\(520\) 2.33731 + 2.39519i 0.102498 + 0.105036i
\(521\) −29.1489 −1.27703 −0.638517 0.769607i \(-0.720452\pi\)
−0.638517 + 0.769607i \(0.720452\pi\)
\(522\) 0 0
\(523\) 3.00463 0.131383 0.0656916 0.997840i \(-0.479075\pi\)
0.0656916 + 0.997840i \(0.479075\pi\)
\(524\) −10.7859 20.6195i −0.471186 0.900769i
\(525\) 0 0
\(526\) 2.71689 4.48733i 0.118462 0.195657i
\(527\) −19.0927 19.0927i −0.831690 0.831690i
\(528\) 0 0
\(529\) 43.5016 1.89137
\(530\) −1.21158 4.93010i −0.0526275 0.214150i
\(531\) 0 0
\(532\) 17.3179 9.05884i 0.750824 0.392751i
\(533\) 20.7961 + 18.8048i 0.900781 + 0.814526i
\(534\) 0 0
\(535\) 1.67953 1.67953i 0.0726125 0.0726125i
\(536\) 10.0318 8.85062i 0.433307 0.382288i
\(537\) 0 0
\(538\) 11.3957 18.8216i 0.491304 0.811458i
\(539\) 2.41066 + 2.41066i 0.103835 + 0.103835i
\(540\) 0 0
\(541\) 24.7845 + 24.7845i 1.06557 + 1.06557i 0.997694 + 0.0678735i \(0.0216214\pi\)
0.0678735 + 0.997694i \(0.478379\pi\)
\(542\) 3.77452 + 15.3591i 0.162130 + 0.659732i
\(543\) 0 0
\(544\) −15.3219 34.3581i −0.656920 1.47309i
\(545\) 1.76481i 0.0755959i
\(546\) 0 0
\(547\) −1.61287 −0.0689615 −0.0344807 0.999405i \(-0.510978\pi\)
−0.0344807 + 0.999405i \(0.510978\pi\)
\(548\) −17.9383 5.61679i −0.766284 0.239937i
\(549\) 0 0
\(550\) 1.62037 + 6.59357i 0.0690930 + 0.281151i
\(551\) 19.6593 19.6593i 0.837514 0.837514i
\(552\) 0 0
\(553\) −18.4728 + 18.4728i −0.785544 + 0.785544i
\(554\) −12.5864 7.62054i −0.534746 0.323766i
\(555\) 0 0
\(556\) 11.1295 + 21.2764i 0.471997 + 0.902320i
\(557\) −1.31897 1.31897i −0.0558867 0.0558867i 0.678611 0.734498i \(-0.262582\pi\)
−0.734498 + 0.678611i \(0.762582\pi\)
\(558\) 0 0
\(559\) −1.25127 24.8833i −0.0529229 1.05245i
\(560\) −1.40576 + 2.02470i −0.0594043 + 0.0855591i
\(561\) 0 0
\(562\) 18.0415 4.43371i 0.761034 0.187025i
\(563\) 18.4845i 0.779029i −0.921020 0.389514i \(-0.872643\pi\)
0.921020 0.389514i \(-0.127357\pi\)
\(564\) 0 0
\(565\) −0.284380 + 0.284380i −0.0119640 + 0.0119640i
\(566\) 10.2762 16.9726i 0.431941 0.713412i
\(567\) 0 0
\(568\) 19.1245 + 21.6767i 0.802445 + 0.909535i
\(569\) 29.8587i 1.25174i 0.779927 + 0.625871i \(0.215256\pi\)
−0.779927 + 0.625871i \(0.784744\pi\)
\(570\) 0 0
\(571\) 11.4747i 0.480202i 0.970748 + 0.240101i \(0.0771805\pi\)
−0.970748 + 0.240101i \(0.922819\pi\)
\(572\) −6.85100 1.77275i −0.286455 0.0741225i
\(573\) 0 0
\(574\) −10.6953 + 17.6648i −0.446412 + 0.737313i
\(575\) 39.8960i 1.66378i
\(576\) 0 0
\(577\) 25.9864 + 25.9864i 1.08183 + 1.08183i 0.996339 + 0.0854895i \(0.0272454\pi\)
0.0854895 + 0.996339i \(0.472755\pi\)
\(578\) 32.9369 + 19.9419i 1.37000 + 0.829475i
\(579\) 0 0
\(580\) −1.04775 + 3.34620i −0.0435057 + 0.138943i
\(581\) 10.6517i 0.441909i
\(582\) 0 0
\(583\) 7.59091 + 7.59091i 0.314383 + 0.314383i
\(584\) −24.4011 27.6576i −1.00973 1.14448i
\(585\) 0 0
\(586\) −2.45261 9.98007i −0.101316 0.412273i
\(587\) 25.5226 + 25.5226i 1.05343 + 1.05343i 0.998490 + 0.0549413i \(0.0174972\pi\)
0.0549413 + 0.998490i \(0.482503\pi\)
\(588\) 0 0
\(589\) 21.1293 0.870616
\(590\) 2.55526 4.22037i 0.105198 0.173750i
\(591\) 0 0
\(592\) 43.7431 7.89229i 1.79783 0.324371i
\(593\) −22.7163 + 22.7163i −0.932847 + 0.932847i −0.997883 0.0650355i \(-0.979284\pi\)
0.0650355 + 0.997883i \(0.479284\pi\)
\(594\) 0 0
\(595\) 4.09801i 0.168002i
\(596\) 40.5946 + 12.7109i 1.66282 + 0.520658i
\(597\) 0 0
\(598\) 36.6068 + 19.7226i 1.49696 + 0.806518i
\(599\) 8.61150i 0.351856i 0.984403 + 0.175928i \(0.0562926\pi\)
−0.984403 + 0.175928i \(0.943707\pi\)
\(600\) 0 0
\(601\) −28.8742 −1.17780 −0.588902 0.808205i \(-0.700439\pi\)
−0.588902 + 0.808205i \(0.700439\pi\)
\(602\) 17.8201 4.37929i 0.726291 0.178487i
\(603\) 0 0
\(604\) −1.80978 + 5.77989i −0.0736391 + 0.235180i
\(605\) −2.32904 2.32904i −0.0946890 0.0946890i
\(606\) 0 0
\(607\) 13.3771i 0.542962i −0.962444 0.271481i \(-0.912487\pi\)
0.962444 0.271481i \(-0.0875134\pi\)
\(608\) 27.4896 + 10.5334i 1.11485 + 0.427185i
\(609\) 0 0
\(610\) −0.716763 2.91663i −0.0290209 0.118091i
\(611\) 15.9904 + 14.4592i 0.646902 + 0.584957i
\(612\) 0 0
\(613\) 7.77290 7.77290i 0.313945 0.313945i −0.532491 0.846436i \(-0.678744\pi\)
0.846436 + 0.532491i \(0.178744\pi\)
\(614\) −31.0074 + 7.62009i −1.25136 + 0.307522i
\(615\) 0 0
\(616\) 0.325400 5.20194i 0.0131107 0.209592i
\(617\) −2.02065 2.02065i −0.0813483 0.0813483i 0.665262 0.746610i \(-0.268320\pi\)
−0.746610 + 0.665262i \(0.768320\pi\)
\(618\) 0 0
\(619\) 31.3058 31.3058i 1.25829 1.25829i 0.306376 0.951911i \(-0.400884\pi\)
0.951911 0.306376i \(-0.0991165\pi\)
\(620\) −2.36125 + 1.23515i −0.0948301 + 0.0496049i
\(621\) 0 0
\(622\) −14.3530 8.69015i −0.575504 0.348443i
\(623\) −3.50796 −0.140543
\(624\) 0 0
\(625\) −23.3962 −0.935849
\(626\) −2.52718 1.53010i −0.101006 0.0611551i
\(627\) 0 0
\(628\) 2.77132 1.44966i 0.110588 0.0578476i
\(629\) −52.2553 + 52.2553i −2.08356 + 2.08356i
\(630\) 0 0
\(631\) 16.2286 + 16.2286i 0.646051 + 0.646051i 0.952036 0.305985i \(-0.0989859\pi\)
−0.305985 + 0.952036i \(0.598986\pi\)
\(632\) −39.2737 2.45672i −1.56223 0.0977229i
\(633\) 0 0
\(634\) −33.5651 + 8.24863i −1.33304 + 0.327595i
\(635\) 2.62170 2.62170i 0.104039 0.104039i
\(636\) 0 0
\(637\) −0.629059 12.5098i −0.0249242 0.495656i
\(638\) −1.76947 7.20025i −0.0700539 0.285061i
\(639\) 0 0
\(640\) −3.68779 + 0.429828i −0.145773 + 0.0169904i
\(641\) 42.7819i 1.68978i −0.534939 0.844891i \(-0.679665\pi\)
0.534939 0.844891i \(-0.320335\pi\)
\(642\) 0 0
\(643\) −26.4945 26.4945i −1.04484 1.04484i −0.998946 0.0458946i \(-0.985386\pi\)
−0.0458946 0.998946i \(-0.514614\pi\)
\(644\) −9.15139 + 29.2267i −0.360615 + 1.15169i
\(645\) 0 0
\(646\) −47.5295 + 11.6804i −1.87002 + 0.459559i
\(647\) 4.44940 0.174924 0.0874620 0.996168i \(-0.472124\pi\)
0.0874620 + 0.996168i \(0.472124\pi\)
\(648\) 0 0
\(649\) 10.4325i 0.409511i
\(650\) 11.8321 21.9614i 0.464094 0.861397i
\(651\) 0 0
\(652\) 9.02746 + 2.82666i 0.353543 + 0.110700i
\(653\) 14.3860i 0.562968i 0.959566 + 0.281484i \(0.0908267\pi\)
−0.959566 + 0.281484i \(0.909173\pi\)
\(654\) 0 0
\(655\) 2.69989 2.69989i 0.105493 0.105493i
\(656\) −30.6105 + 5.52286i −1.19514 + 0.215631i
\(657\) 0 0
\(658\) −8.22371 + 13.5826i −0.320593 + 0.529506i
\(659\) −14.3624 −0.559481 −0.279741 0.960076i \(-0.590248\pi\)
−0.279741 + 0.960076i \(0.590248\pi\)
\(660\) 0 0
\(661\) 13.4958 + 13.4958i 0.524927 + 0.524927i 0.919055 0.394128i \(-0.128953\pi\)
−0.394128 + 0.919055i \(0.628953\pi\)
\(662\) 2.79295 + 11.3650i 0.108551 + 0.441713i
\(663\) 0 0
\(664\) −12.0313 + 10.6147i −0.466903 + 0.411929i
\(665\) 2.26757 + 2.26757i 0.0879326 + 0.0879326i
\(666\) 0 0
\(667\) 43.5669i 1.68692i
\(668\) −10.2435 + 32.7146i −0.396334 + 1.26577i
\(669\) 0 0
\(670\) 1.87773 + 1.13689i 0.0725431 + 0.0439218i
\(671\) 4.49075 + 4.49075i 0.173363 + 0.173363i
\(672\) 0 0
\(673\) 27.3845i 1.05560i 0.849370 + 0.527798i \(0.176982\pi\)
−0.849370 + 0.527798i \(0.823018\pi\)
\(674\) 14.3791 23.7492i 0.553864 0.914785i
\(675\) 0 0
\(676\) 14.3016 + 21.7132i 0.550061 + 0.835125i
\(677\) 13.2247i 0.508265i −0.967169 0.254132i \(-0.918210\pi\)
0.967169 0.254132i \(-0.0817899\pi\)
\(678\) 0 0
\(679\) 12.6886i 0.486943i
\(680\) 4.62874 4.08375i 0.177504 0.156604i
\(681\) 0 0
\(682\) 2.91843 4.82020i 0.111752 0.184575i
\(683\) 22.8160 22.8160i 0.873029 0.873029i −0.119772 0.992801i \(-0.538216\pi\)
0.992801 + 0.119772i \(0.0382164\pi\)
\(684\) 0 0
\(685\) 3.08426i 0.117843i
\(686\) 27.0107 6.63790i 1.03127 0.253436i
\(687\) 0 0
\(688\) 22.7045 + 15.7639i 0.865600 + 0.600992i
\(689\) −1.98084 39.3919i −0.0754639 1.50071i
\(690\) 0 0
\(691\) 7.60424 + 7.60424i 0.289279 + 0.289279i 0.836795 0.547516i \(-0.184427\pi\)
−0.547516 + 0.836795i \(0.684427\pi\)
\(692\) 16.1310 + 30.8377i 0.613208 + 1.17227i
\(693\) 0 0
\(694\) −22.4912 13.6175i −0.853756 0.516913i
\(695\) −2.78589 + 2.78589i −0.105675 + 0.105675i
\(696\) 0 0
\(697\) 36.5672 36.5672i 1.38508 1.38508i
\(698\) −2.21224 9.00198i −0.0837346 0.340730i
\(699\) 0 0
\(700\) 17.5338 + 5.49016i 0.662717 + 0.207508i
\(701\) −23.0640 −0.871115 −0.435557 0.900161i \(-0.643449\pi\)
−0.435557 + 0.900161i \(0.643449\pi\)
\(702\) 0 0
\(703\) 57.8293i 2.18107i
\(704\) 6.19991 4.81629i 0.233668 0.181521i
\(705\) 0 0
\(706\) 4.49686 + 18.2984i 0.169241 + 0.688671i
\(707\) −6.51473 6.51473i −0.245012 0.245012i
\(708\) 0 0
\(709\) −6.22100 6.22100i −0.233635 0.233635i 0.580573 0.814208i \(-0.302828\pi\)
−0.814208 + 0.580573i \(0.802828\pi\)
\(710\) −2.45659 + 4.05741i −0.0921943 + 0.152272i
\(711\) 0 0
\(712\) −3.49574 3.96227i −0.131009 0.148492i
\(713\) −23.4123 + 23.4123i −0.876796 + 0.876796i
\(714\) 0 0
\(715\) −0.0583152 1.15968i −0.00218086 0.0433697i
\(716\) −6.40274 + 3.34923i −0.239282 + 0.125167i
\(717\) 0 0
\(718\) 6.92443 + 28.1767i 0.258417 + 1.05154i
\(719\) 45.2323 1.68688 0.843441 0.537222i \(-0.180526\pi\)
0.843441 + 0.537222i \(0.180526\pi\)
\(720\) 0 0
\(721\) 12.8648 + 12.8648i 0.479111 + 0.479111i
\(722\) 5.91987 9.77751i 0.220315 0.363881i
\(723\) 0 0
\(724\) −1.27422 2.43594i −0.0473562 0.0905311i
\(725\) 26.1369 0.970701
\(726\) 0 0
\(727\) −17.5545 −0.651059 −0.325530 0.945532i \(-0.605543\pi\)
−0.325530 + 0.945532i \(0.605543\pi\)
\(728\) −13.7054 + 13.3742i −0.507955 + 0.495681i
\(729\) 0 0
\(730\) 3.13439 5.17690i 0.116009 0.191606i
\(731\) −45.9541 −1.69967
\(732\) 0 0
\(733\) −7.39588 + 7.39588i −0.273173 + 0.273173i −0.830376 0.557203i \(-0.811874\pi\)
0.557203 + 0.830376i \(0.311874\pi\)
\(734\) −21.1339 + 34.9057i −0.780067 + 1.28839i
\(735\) 0 0
\(736\) −42.1313 + 18.7883i −1.55298 + 0.692548i
\(737\) −4.64163 −0.170977
\(738\) 0 0
\(739\) −8.24932 + 8.24932i −0.303456 + 0.303456i −0.842364 0.538908i \(-0.818837\pi\)
0.538908 + 0.842364i \(0.318837\pi\)
\(740\) 3.38053 + 6.46258i 0.124271 + 0.237569i
\(741\) 0 0
\(742\) 28.2103 6.93270i 1.03563 0.254507i
\(743\) 5.93732 5.93732i 0.217819 0.217819i −0.589760 0.807579i \(-0.700778\pi\)
0.807579 + 0.589760i \(0.200778\pi\)
\(744\) 0 0
\(745\) 6.97973i 0.255718i
\(746\) 21.7085 35.8547i 0.794806 1.31274i
\(747\) 0 0
\(748\) −3.90025 + 12.4562i −0.142607 + 0.455443i
\(749\) 9.61038 + 9.61038i 0.351155 + 0.351155i
\(750\) 0 0
\(751\) −18.4552 −0.673439 −0.336719 0.941605i \(-0.609317\pi\)
−0.336719 + 0.941605i \(0.609317\pi\)
\(752\) −23.5368 + 4.24659i −0.858298 + 0.154857i
\(753\) 0 0
\(754\) −12.9208 + 23.9821i −0.470548 + 0.873376i
\(755\) −0.993779 −0.0361673
\(756\) 0 0
\(757\) 34.1220i 1.24018i −0.784529 0.620092i \(-0.787095\pi\)
0.784529 0.620092i \(-0.212905\pi\)
\(758\) 6.46061 + 26.2893i 0.234660 + 0.954870i
\(759\) 0 0
\(760\) −0.301566 + 4.82092i −0.0109390 + 0.174873i
\(761\) −0.883636 + 0.883636i −0.0320318 + 0.0320318i −0.722941 0.690909i \(-0.757210\pi\)
0.690909 + 0.722941i \(0.257210\pi\)
\(762\) 0 0
\(763\) 10.0983 0.365583
\(764\) −28.2707 + 14.7882i −1.02280 + 0.535019i
\(765\) 0 0
\(766\) 49.8121 12.2414i 1.79978 0.442298i
\(767\) 25.7077 28.4301i 0.928253 1.02655i
\(768\) 0 0
\(769\) 0.187906 + 0.187906i 0.00677607 + 0.00677607i 0.710487 0.703711i \(-0.248475\pi\)
−0.703711 + 0.710487i \(0.748475\pi\)
\(770\) 0.830502 0.204096i 0.0299292 0.00735512i
\(771\) 0 0
\(772\) −7.17387 2.24627i −0.258193 0.0808449i
\(773\) −20.8118 + 20.8118i −0.748547 + 0.748547i −0.974206 0.225659i \(-0.927546\pi\)
0.225659 + 0.974206i \(0.427546\pi\)
\(774\) 0 0
\(775\) 14.0456 + 14.0456i 0.504534 + 0.504534i
\(776\) −14.3319 + 12.6444i −0.514484 + 0.453908i
\(777\) 0 0
\(778\) 3.14489 + 1.90410i 0.112750 + 0.0682653i
\(779\) 40.4678i 1.44991i
\(780\) 0 0
\(781\) 10.0297i 0.358890i
\(782\) 39.7225 65.6074i 1.42047 2.34612i
\(783\) 0 0
\(784\) 11.4144 + 7.92510i 0.407657 + 0.283039i
\(785\) 0.362872 + 0.362872i 0.0129514 + 0.0129514i
\(786\) 0 0
\(787\) 4.16069 4.16069i 0.148313 0.148313i −0.629051 0.777364i \(-0.716556\pi\)
0.777364 + 0.629051i \(0.216556\pi\)
\(788\) −0.626342 0.196119i −0.0223125 0.00698644i
\(789\) 0 0
\(790\) −1.54089 6.27015i −0.0548225 0.223082i
\(791\) −1.62724 1.62724i −0.0578579 0.0578579i
\(792\) 0 0
\(793\) −1.17185 23.3041i −0.0416138 0.827551i
\(794\) 0.189431 + 0.770824i 0.00672264 + 0.0273555i
\(795\) 0 0
\(796\) 17.5485 + 33.5477i 0.621991 + 1.18907i
\(797\) 29.4944 1.04475 0.522373 0.852717i \(-0.325047\pi\)
0.522373 + 0.852717i \(0.325047\pi\)
\(798\) 0 0
\(799\) 28.1169 28.1169i 0.994705 0.994705i
\(800\) 11.2716 + 25.2757i 0.398512 + 0.893631i
\(801\) 0 0
\(802\) 2.30237 0.565809i 0.0812995 0.0199794i
\(803\) 12.7970i 0.451595i
\(804\) 0 0
\(805\) −5.02516 −0.177114
\(806\) −19.8311 + 5.94418i −0.698521 + 0.209375i
\(807\) 0 0
\(808\) 0.866399 13.8505i 0.0304798 0.487259i
\(809\) 19.5531 0.687450 0.343725 0.939070i \(-0.388311\pi\)
0.343725 + 0.939070i \(0.388311\pi\)
\(810\) 0 0
\(811\) 27.4702 + 27.4702i 0.964608 + 0.964608i 0.999395 0.0347864i \(-0.0110751\pi\)
−0.0347864 + 0.999395i \(0.511075\pi\)
\(812\) −19.1471 5.99531i −0.671933 0.210394i
\(813\) 0 0
\(814\) −13.1926 7.98754i −0.462399 0.279963i
\(815\) 1.55216i 0.0543697i
\(816\) 0 0
\(817\) 25.4280 25.4280i 0.889612 0.889612i
\(818\) 1.52889 + 6.22132i 0.0534565 + 0.217523i
\(819\) 0 0
\(820\) −2.36562 4.52238i −0.0826112 0.157928i
\(821\) −17.4449 + 17.4449i −0.608833 + 0.608833i −0.942641 0.333808i \(-0.891666\pi\)
0.333808 + 0.942641i \(0.391666\pi\)
\(822\) 0 0
\(823\) −18.8107 −0.655701 −0.327851 0.944730i \(-0.606324\pi\)
−0.327851 + 0.944730i \(0.606324\pi\)
\(824\) −1.71090 + 27.3510i −0.0596022 + 0.952817i
\(825\) 0 0
\(826\) 24.1492 + 14.6213i 0.840258 + 0.508741i
\(827\) −23.3884 + 23.3884i −0.813293 + 0.813293i −0.985126 0.171833i \(-0.945031\pi\)
0.171833 + 0.985126i \(0.445031\pi\)
\(828\) 0 0
\(829\) 19.2767 0.669507 0.334754 0.942306i \(-0.391347\pi\)
0.334754 + 0.942306i \(0.391347\pi\)
\(830\) −2.25199 1.36348i −0.0781677 0.0473272i
\(831\) 0 0
\(832\) −28.7640 2.15271i −0.997211 0.0746320i
\(833\) −23.1029 −0.800467
\(834\) 0 0
\(835\) −5.62487 −0.194657
\(836\) −4.73429 9.05058i −0.163739 0.313021i
\(837\) 0 0
\(838\) 32.4628 + 19.6548i 1.12141 + 0.678965i
\(839\) 6.55312 + 6.55312i 0.226239 + 0.226239i 0.811119 0.584881i \(-0.198859\pi\)
−0.584881 + 0.811119i \(0.698859\pi\)
\(840\) 0 0
\(841\) 0.458181 0.0157994
\(842\) −3.25725 + 0.800472i −0.112252 + 0.0275861i
\(843\) 0 0
\(844\) −26.1661 50.0219i −0.900674 1.72182i
\(845\) −2.69878 + 3.30401i −0.0928407 + 0.113661i
\(846\) 0 0
\(847\) 13.3269 13.3269i 0.457918 0.457918i
\(848\) 35.9427 + 24.9552i 1.23428 + 0.856967i
\(849\) 0 0
\(850\) −39.3596 23.8306i −1.35002 0.817382i
\(851\) 64.0777 + 64.0777i 2.19656 + 2.19656i
\(852\) 0 0
\(853\) −21.8978 21.8978i −0.749767 0.749767i 0.224668 0.974435i \(-0.427870\pi\)
−0.974435 + 0.224668i \(0.927870\pi\)
\(854\) 16.6891 4.10135i 0.571089 0.140345i
\(855\) 0 0
\(856\) −1.27809 + 20.4319i −0.0436843 + 0.698349i
\(857\) 7.82287i 0.267224i −0.991034 0.133612i \(-0.957342\pi\)
0.991034 0.133612i \(-0.0426576\pi\)
\(858\) 0 0
\(859\) 16.6431 0.567855 0.283928 0.958846i \(-0.408362\pi\)
0.283928 + 0.958846i \(0.408362\pi\)
\(860\) −1.35520 + 4.32809i −0.0462120 + 0.147586i
\(861\) 0 0
\(862\) −23.5588 + 5.78959i −0.802416 + 0.197194i
\(863\) 19.6786 19.6786i 0.669868 0.669868i −0.287817 0.957685i \(-0.592930\pi\)
0.957685 + 0.287817i \(0.0929295\pi\)
\(864\) 0 0
\(865\) −4.03784 + 4.03784i −0.137291 + 0.137291i
\(866\) −16.7554 + 27.6739i −0.569371 + 0.940398i
\(867\) 0 0
\(868\) −7.06761 13.5112i −0.239890 0.458600i
\(869\) 9.65419 + 9.65419i 0.327496 + 0.327496i
\(870\) 0 0
\(871\) 12.6491 + 11.4379i 0.428600 + 0.387559i
\(872\) 10.0632 + 11.4061i 0.340782 + 0.386261i
\(873\) 0 0
\(874\) 14.3230 + 58.2827i 0.484483 + 1.97144i
\(875\) 6.09581i 0.206076i
\(876\) 0 0
\(877\) −26.1436 + 26.1436i −0.882808 + 0.882808i −0.993819 0.111011i \(-0.964591\pi\)
0.111011 + 0.993819i \(0.464591\pi\)
\(878\) −21.0640 12.7533i −0.710875 0.430404i
\(879\) 0 0
\(880\) 1.05814 + 0.734674i 0.0356699 + 0.0247659i
\(881\) 11.7759i 0.396739i 0.980127 + 0.198370i \(0.0635646\pi\)
−0.980127 + 0.198370i \(0.936435\pi\)
\(882\) 0 0
\(883\) 31.7284i 1.06775i 0.845565 + 0.533873i \(0.179264\pi\)
−0.845565 + 0.533873i \(0.820736\pi\)
\(884\) 41.3233 24.3340i 1.38985 0.818440i
\(885\) 0 0
\(886\) −28.8260 17.4529i −0.968427 0.586342i
\(887\) 19.6370i 0.659346i −0.944095 0.329673i \(-0.893061\pi\)
0.944095 0.329673i \(-0.106939\pi\)
\(888\) 0 0
\(889\) 15.0015 + 15.0015i 0.503135 + 0.503135i
\(890\) 0.449039 0.741651i 0.0150518 0.0248602i
\(891\) 0 0
\(892\) −22.5828 7.07108i −0.756128 0.236757i
\(893\) 31.1161i 1.04126i
\(894\) 0 0
\(895\) −0.838364 0.838364i −0.0280234 0.0280234i
\(896\) −2.45950 21.1017i −0.0821660 0.704959i
\(897\) 0 0
\(898\) −16.3189 + 4.01039i −0.544569 + 0.133828i
\(899\) −15.3380 15.3380i −0.511550 0.511550i
\(900\) 0 0
\(901\) −72.7483 −2.42360
\(902\) 9.23188 + 5.58951i 0.307388 + 0.186110i
\(903\) 0 0
\(904\) 0.216408 3.45955i 0.00719762 0.115063i
\(905\) 0.318958 0.318958i 0.0106025 0.0106025i
\(906\) 0 0
\(907\) 28.2808i 0.939048i −0.882920 0.469524i \(-0.844426\pi\)
0.882920 0.469524i \(-0.155574\pi\)
\(908\) −12.7954 + 40.8646i −0.424631 + 1.35614i
\(909\) 0 0
\(910\) −2.76618 1.49033i −0.0916978 0.0494040i
\(911\) 9.69423i 0.321184i 0.987021 + 0.160592i \(0.0513404\pi\)
−0.987021 + 0.160592i \(0.948660\pi\)
\(912\) 0 0
\(913\) 5.56677 0.184233
\(914\) 3.80935 + 15.5009i 0.126002 + 0.512724i
\(915\) 0 0
\(916\) −6.49849 + 20.7541i −0.214716 + 0.685736i
\(917\) 15.4489 + 15.4489i 0.510168 + 0.510168i
\(918\) 0 0
\(919\) 40.5263i 1.33684i 0.743784 + 0.668420i \(0.233029\pi\)
−0.743784 + 0.668420i \(0.766971\pi\)
\(920\) −5.00767 5.67597i −0.165098 0.187131i
\(921\) 0 0
\(922\) 33.5956 8.25613i 1.10641 0.271901i
\(923\) −24.7151 + 27.3323i −0.813507 + 0.899654i
\(924\) 0 0
\(925\) 38.4419 38.4419i 1.26396 1.26396i
\(926\) −8.56341 34.8459i −0.281411 1.14511i
\(927\) 0 0
\(928\) −12.3087 27.6013i −0.404054 0.906058i
\(929\) −9.85386 9.85386i −0.323295 0.323295i 0.526735 0.850030i \(-0.323416\pi\)
−0.850030 + 0.526735i \(0.823416\pi\)
\(930\) 0 0
\(931\) 12.7836 12.7836i 0.418966 0.418966i
\(932\) 25.9921 13.5963i 0.851400 0.445361i
\(933\) 0 0
\(934\) 3.15639 5.21322i 0.103280 0.170582i
\(935\) −2.14169 −0.0700406
\(936\) 0 0
\(937\) 17.3821 0.567848 0.283924 0.958847i \(-0.408364\pi\)
0.283924 + 0.958847i \(0.408364\pi\)
\(938\) −6.50533 + 10.7445i −0.212407 + 0.350820i
\(939\) 0 0
\(940\) −1.81895 3.47731i −0.0593278 0.113417i
\(941\) 3.62696 3.62696i 0.118236 0.118236i −0.645513 0.763749i \(-0.723357\pi\)
0.763749 + 0.645513i \(0.223357\pi\)
\(942\) 0 0
\(943\) −44.8403 44.8403i −1.46020 1.46020i
\(944\) 7.55021 + 41.8472i 0.245739 + 1.36201i
\(945\) 0 0
\(946\) −2.28869 9.31304i −0.0744116 0.302793i
\(947\) 39.0436 39.0436i 1.26875 1.26875i 0.322009 0.946737i \(-0.395642\pi\)
0.946737 0.322009i \(-0.104358\pi\)
\(948\) 0 0
\(949\) 31.5343 34.8736i 1.02365 1.13205i
\(950\) 34.9653 8.59275i 1.13442 0.278786i
\(951\) 0 0
\(952\) 23.3674 + 26.4859i 0.757342 + 0.858414i
\(953\) 37.7512i 1.22288i −0.791291 0.611440i \(-0.790590\pi\)
0.791291 0.611440i \(-0.209410\pi\)
\(954\) 0 0
\(955\) −3.70172 3.70172i −0.119785 0.119785i
\(956\) −39.4403 12.3494i −1.27559 0.399410i
\(957\) 0 0
\(958\) −2.12117 8.63139i −0.0685318 0.278867i
\(959\) 17.6483 0.569893
\(960\) 0 0
\(961\) 14.5152i 0.468231i
\(962\) 16.2688 + 54.2763i 0.524527 + 1.74994i
\(963\) 0 0
\(964\) 12.7232 + 3.98385i 0.409785 + 0.128311i
\(965\) 1.23346i 0.0397064i
\(966\) 0 0
\(967\) 3.95277 3.95277i 0.127113 0.127113i −0.640688 0.767801i \(-0.721351\pi\)
0.767801 + 0.640688i \(0.221351\pi\)
\(968\) 28.3334 + 1.77236i 0.910670 + 0.0569657i
\(969\) 0 0
\(970\) −2.68261 1.62421i −0.0861336 0.0521502i
\(971\) 34.4354 1.10509 0.552543 0.833484i \(-0.313658\pi\)
0.552543 + 0.833484i \(0.313658\pi\)
\(972\) 0 0
\(973\) −15.9410 15.9410i −0.511046 0.511046i
\(974\) 28.2206 6.93524i 0.904248 0.222219i
\(975\) 0 0
\(976\) 21.2635 + 14.7634i 0.680629 + 0.472565i
\(977\) 23.7209 + 23.7209i 0.758900 + 0.758900i 0.976122 0.217222i \(-0.0696997\pi\)
−0.217222 + 0.976122i \(0.569700\pi\)
\(978\) 0 0
\(979\) 1.83331i 0.0585929i
\(980\) −0.681311 + 2.17589i −0.0217637 + 0.0695064i
\(981\) 0 0
\(982\) −32.1345 + 53.0748i −1.02545 + 1.69368i
\(983\) −25.5496 25.5496i −0.814907 0.814907i 0.170458 0.985365i \(-0.445475\pi\)
−0.985365 + 0.170458i \(0.945475\pi\)
\(984\) 0 0
\(985\) 0.107692i 0.00343134i
\(986\) 42.9811 + 26.0233i 1.36880 + 0.828749i
\(987\) 0 0
\(988\) −9.40079 + 36.3304i −0.299079 + 1.15583i
\(989\) 56.3509i 1.79185i
\(990\) 0 0
\(991\) 46.5439i 1.47852i −0.673423 0.739258i \(-0.735177\pi\)
0.673423 0.739258i \(-0.264823\pi\)
\(992\) 8.21803 21.4471i 0.260923 0.680946i
\(993\) 0 0
\(994\) −23.2167 14.0568i −0.736390 0.445853i
\(995\) −4.39268 + 4.39268i −0.139257 + 0.139257i
\(996\) 0 0
\(997\) 4.95335i 0.156874i −0.996919 0.0784371i \(-0.975007\pi\)
0.996919 0.0784371i \(-0.0249930\pi\)
\(998\) 0.384750 + 1.56561i 0.0121790 + 0.0495585i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.w.k.307.3 48
3.2 odd 2 inner 936.2.w.k.307.22 yes 48
8.3 odd 2 inner 936.2.w.k.307.10 yes 48
13.5 odd 4 inner 936.2.w.k.811.10 yes 48
24.11 even 2 inner 936.2.w.k.307.15 yes 48
39.5 even 4 inner 936.2.w.k.811.15 yes 48
104.83 even 4 inner 936.2.w.k.811.3 yes 48
312.83 odd 4 inner 936.2.w.k.811.22 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.w.k.307.3 48 1.1 even 1 trivial
936.2.w.k.307.10 yes 48 8.3 odd 2 inner
936.2.w.k.307.15 yes 48 24.11 even 2 inner
936.2.w.k.307.22 yes 48 3.2 odd 2 inner
936.2.w.k.811.3 yes 48 104.83 even 4 inner
936.2.w.k.811.10 yes 48 13.5 odd 4 inner
936.2.w.k.811.15 yes 48 39.5 even 4 inner
936.2.w.k.811.22 yes 48 312.83 odd 4 inner