Properties

Label 936.2.w.j.307.7
Level $936$
Weight $2$
Character 936.307
Analytic conductor $7.474$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(307,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.w (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 307.7
Character \(\chi\) \(=\) 936.307
Dual form 936.2.w.j.811.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.140104 + 1.40726i) q^{2} +(-1.96074 + 0.394325i) q^{4} +(-3.08779 + 3.08779i) q^{5} +(2.85816 + 2.85816i) q^{7} +(-0.829624 - 2.70402i) q^{8} +(-4.77792 - 3.91270i) q^{10} +(-2.57668 + 2.57668i) q^{11} +(-3.51077 - 0.821294i) q^{13} +(-3.62173 + 4.42261i) q^{14} +(3.68902 - 1.54634i) q^{16} +1.07196i q^{17} +(1.46161 + 1.46161i) q^{19} +(4.83676 - 7.27194i) q^{20} +(-3.98706 - 3.26505i) q^{22} +5.52786 q^{23} -14.0688i q^{25} +(0.663899 - 5.05561i) q^{26} +(-6.73116 - 4.47707i) q^{28} +0.512377i q^{29} +(-2.85816 + 2.85816i) q^{31} +(2.69294 + 4.97474i) q^{32} +(-1.50852 + 0.150186i) q^{34} -17.6508 q^{35} +(1.97885 + 1.97885i) q^{37} +(-1.85209 + 2.26164i) q^{38} +(10.9111 + 5.78773i) q^{40} +(0.0336607 + 0.0336607i) q^{41} -3.49466i q^{43} +(4.03616 - 6.06826i) q^{44} +(0.774476 + 7.77911i) q^{46} +(-6.45565 - 6.45565i) q^{47} +9.33817i q^{49} +(19.7985 - 1.97110i) q^{50} +(7.20756 + 0.225963i) q^{52} -8.04121i q^{53} -15.9125i q^{55} +(5.35733 - 10.0997i) q^{56} +(-0.721046 + 0.0717861i) q^{58} +(-1.23075 + 1.23075i) q^{59} -4.66832i q^{61} +(-4.42261 - 3.62173i) q^{62} +(-6.62345 + 4.48664i) q^{64} +(13.3765 - 8.30451i) q^{65} +(2.03305 + 2.03305i) q^{67} +(-0.422701 - 2.10184i) q^{68} +(-2.47295 - 24.8392i) q^{70} +(5.60969 - 5.60969i) q^{71} +(-5.73067 + 5.73067i) q^{73} +(-2.50750 + 3.06199i) q^{74} +(-3.44220 - 2.28950i) q^{76} -14.7292 q^{77} +6.65963i q^{79} +(-6.61613 + 16.1657i) q^{80} +(-0.0426532 + 0.0520852i) q^{82} +(-0.153984 - 0.153984i) q^{83} +(-3.30998 - 3.30998i) q^{85} +(4.91788 - 0.489616i) q^{86} +(9.10509 + 4.82973i) q^{88} +(-11.3765 + 11.3765i) q^{89} +(-7.68694 - 12.3817i) q^{91} +(-10.8387 + 2.17977i) q^{92} +(8.18029 - 9.98921i) q^{94} -9.02631 q^{95} +(8.80263 + 8.80263i) q^{97} +(-13.1412 + 1.30832i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 6 q^{8} - 8 q^{11} - 36 q^{14} + 28 q^{16} + 20 q^{19} + 20 q^{20} + 20 q^{22} - 12 q^{26} - 16 q^{28} + 30 q^{32} + 16 q^{34} - 16 q^{35} + 36 q^{40} + 12 q^{41} + 32 q^{44} - 44 q^{46} + 36 q^{50}+ \cdots - 68 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.140104 + 1.40726i 0.0990686 + 0.995081i
\(3\) 0 0
\(4\) −1.96074 + 0.394325i −0.980371 + 0.197162i
\(5\) −3.08779 + 3.08779i −1.38090 + 1.38090i −0.537875 + 0.843024i \(0.680773\pi\)
−0.843024 + 0.537875i \(0.819227\pi\)
\(6\) 0 0
\(7\) 2.85816 + 2.85816i 1.08028 + 1.08028i 0.996483 + 0.0838010i \(0.0267060\pi\)
0.0838010 + 0.996483i \(0.473294\pi\)
\(8\) −0.829624 2.70402i −0.293316 0.956015i
\(9\) 0 0
\(10\) −4.77792 3.91270i −1.51091 1.23730i
\(11\) −2.57668 + 2.57668i −0.776900 + 0.776900i −0.979302 0.202403i \(-0.935125\pi\)
0.202403 + 0.979302i \(0.435125\pi\)
\(12\) 0 0
\(13\) −3.51077 0.821294i −0.973711 0.227786i
\(14\) −3.62173 + 4.42261i −0.967947 + 1.18199i
\(15\) 0 0
\(16\) 3.68902 1.54634i 0.922254 0.386585i
\(17\) 1.07196i 0.259989i 0.991515 + 0.129994i \(0.0414959\pi\)
−0.991515 + 0.129994i \(0.958504\pi\)
\(18\) 0 0
\(19\) 1.46161 + 1.46161i 0.335317 + 0.335317i 0.854602 0.519284i \(-0.173801\pi\)
−0.519284 + 0.854602i \(0.673801\pi\)
\(20\) 4.83676 7.27194i 1.08153 1.62606i
\(21\) 0 0
\(22\) −3.98706 3.26505i −0.850044 0.696111i
\(23\) 5.52786 1.15264 0.576319 0.817225i \(-0.304489\pi\)
0.576319 + 0.817225i \(0.304489\pi\)
\(24\) 0 0
\(25\) 14.0688i 2.81377i
\(26\) 0.663899 5.05561i 0.130201 0.991488i
\(27\) 0 0
\(28\) −6.73116 4.47707i −1.27207 0.846087i
\(29\) 0.512377i 0.0951460i 0.998868 + 0.0475730i \(0.0151487\pi\)
−0.998868 + 0.0475730i \(0.984851\pi\)
\(30\) 0 0
\(31\) −2.85816 + 2.85816i −0.513341 + 0.513341i −0.915549 0.402208i \(-0.868243\pi\)
0.402208 + 0.915549i \(0.368243\pi\)
\(32\) 2.69294 + 4.97474i 0.476049 + 0.879419i
\(33\) 0 0
\(34\) −1.50852 + 0.150186i −0.258710 + 0.0257567i
\(35\) −17.6508 −2.98353
\(36\) 0 0
\(37\) 1.97885 + 1.97885i 0.325321 + 0.325321i 0.850804 0.525483i \(-0.176115\pi\)
−0.525483 + 0.850804i \(0.676115\pi\)
\(38\) −1.85209 + 2.26164i −0.300448 + 0.366887i
\(39\) 0 0
\(40\) 10.9111 + 5.78773i 1.72520 + 0.915121i
\(41\) 0.0336607 + 0.0336607i 0.00525692 + 0.00525692i 0.709730 0.704473i \(-0.248817\pi\)
−0.704473 + 0.709730i \(0.748817\pi\)
\(42\) 0 0
\(43\) 3.49466i 0.532931i −0.963844 0.266465i \(-0.914144\pi\)
0.963844 0.266465i \(-0.0858558\pi\)
\(44\) 4.03616 6.06826i 0.608474 0.914825i
\(45\) 0 0
\(46\) 0.774476 + 7.77911i 0.114190 + 1.14697i
\(47\) −6.45565 6.45565i −0.941653 0.941653i 0.0567363 0.998389i \(-0.481931\pi\)
−0.998389 + 0.0567363i \(0.981931\pi\)
\(48\) 0 0
\(49\) 9.33817i 1.33402i
\(50\) 19.7985 1.97110i 2.79993 0.278756i
\(51\) 0 0
\(52\) 7.20756 + 0.225963i 0.999509 + 0.0313355i
\(53\) 8.04121i 1.10455i −0.833663 0.552273i \(-0.813761\pi\)
0.833663 0.552273i \(-0.186239\pi\)
\(54\) 0 0
\(55\) 15.9125i 2.14564i
\(56\) 5.35733 10.0997i 0.715903 1.34963i
\(57\) 0 0
\(58\) −0.721046 + 0.0717861i −0.0946779 + 0.00942598i
\(59\) −1.23075 + 1.23075i −0.160231 + 0.160231i −0.782669 0.622438i \(-0.786142\pi\)
0.622438 + 0.782669i \(0.286142\pi\)
\(60\) 0 0
\(61\) 4.66832i 0.597717i −0.954297 0.298859i \(-0.903394\pi\)
0.954297 0.298859i \(-0.0966059\pi\)
\(62\) −4.42261 3.62173i −0.561672 0.459960i
\(63\) 0 0
\(64\) −6.62345 + 4.48664i −0.827931 + 0.560830i
\(65\) 13.3765 8.30451i 1.65915 1.03005i
\(66\) 0 0
\(67\) 2.03305 + 2.03305i 0.248376 + 0.248376i 0.820304 0.571928i \(-0.193804\pi\)
−0.571928 + 0.820304i \(0.693804\pi\)
\(68\) −0.422701 2.10184i −0.0512600 0.254885i
\(69\) 0 0
\(70\) −2.47295 24.8392i −0.295574 2.96885i
\(71\) 5.60969 5.60969i 0.665747 0.665747i −0.290981 0.956729i \(-0.593982\pi\)
0.956729 + 0.290981i \(0.0939818\pi\)
\(72\) 0 0
\(73\) −5.73067 + 5.73067i −0.670724 + 0.670724i −0.957883 0.287159i \(-0.907289\pi\)
0.287159 + 0.957883i \(0.407289\pi\)
\(74\) −2.50750 + 3.06199i −0.291491 + 0.355949i
\(75\) 0 0
\(76\) −3.44220 2.28950i −0.394847 0.262623i
\(77\) −14.7292 −1.67854
\(78\) 0 0
\(79\) 6.65963i 0.749267i 0.927173 + 0.374633i \(0.122231\pi\)
−0.927173 + 0.374633i \(0.877769\pi\)
\(80\) −6.61613 + 16.1657i −0.739706 + 1.80737i
\(81\) 0 0
\(82\) −0.0426532 + 0.0520852i −0.00471026 + 0.00575185i
\(83\) −0.153984 0.153984i −0.0169020 0.0169020i 0.698605 0.715507i \(-0.253804\pi\)
−0.715507 + 0.698605i \(0.753804\pi\)
\(84\) 0 0
\(85\) −3.30998 3.30998i −0.359018 0.359018i
\(86\) 4.91788 0.489616i 0.530309 0.0527967i
\(87\) 0 0
\(88\) 9.10509 + 4.82973i 0.970606 + 0.514851i
\(89\) −11.3765 + 11.3765i −1.20590 + 1.20590i −0.233562 + 0.972342i \(0.575038\pi\)
−0.972342 + 0.233562i \(0.924962\pi\)
\(90\) 0 0
\(91\) −7.68694 12.3817i −0.805811 1.29796i
\(92\) −10.8387 + 2.17977i −1.13001 + 0.227257i
\(93\) 0 0
\(94\) 8.18029 9.98921i 0.843732 1.03031i
\(95\) −9.02631 −0.926079
\(96\) 0 0
\(97\) 8.80263 + 8.80263i 0.893772 + 0.893772i 0.994876 0.101104i \(-0.0322376\pi\)
−0.101104 + 0.994876i \(0.532238\pi\)
\(98\) −13.1412 + 1.30832i −1.32746 + 0.132160i
\(99\) 0 0
\(100\) 5.54769 + 27.5854i 0.554769 + 2.75854i
\(101\) 2.89040 0.287605 0.143803 0.989606i \(-0.454067\pi\)
0.143803 + 0.989606i \(0.454067\pi\)
\(102\) 0 0
\(103\) −7.15687 −0.705187 −0.352594 0.935777i \(-0.614700\pi\)
−0.352594 + 0.935777i \(0.614700\pi\)
\(104\) 0.691821 + 10.1745i 0.0678386 + 0.997696i
\(105\) 0 0
\(106\) 11.3160 1.12661i 1.09911 0.109426i
\(107\) 10.6510 1.02967 0.514833 0.857290i \(-0.327854\pi\)
0.514833 + 0.857290i \(0.327854\pi\)
\(108\) 0 0
\(109\) −1.78060 + 1.78060i −0.170551 + 0.170551i −0.787221 0.616671i \(-0.788481\pi\)
0.616671 + 0.787221i \(0.288481\pi\)
\(110\) 22.3930 2.22941i 2.13509 0.212566i
\(111\) 0 0
\(112\) 14.9635 + 6.12412i 1.41392 + 0.578675i
\(113\) −2.99536 −0.281780 −0.140890 0.990025i \(-0.544996\pi\)
−0.140890 + 0.990025i \(0.544996\pi\)
\(114\) 0 0
\(115\) −17.0688 + 17.0688i −1.59168 + 1.59168i
\(116\) −0.202043 1.00464i −0.0187592 0.0932784i
\(117\) 0 0
\(118\) −1.90442 1.55955i −0.175316 0.143569i
\(119\) −3.06383 + 3.06383i −0.280861 + 0.280861i
\(120\) 0 0
\(121\) 2.27861i 0.207146i
\(122\) 6.56952 0.654051i 0.594777 0.0592150i
\(123\) 0 0
\(124\) 4.47707 6.73116i 0.402053 0.604476i
\(125\) 28.0026 + 28.0026i 2.50463 + 2.50463i
\(126\) 0 0
\(127\) −16.1639 −1.43431 −0.717156 0.696913i \(-0.754557\pi\)
−0.717156 + 0.696913i \(0.754557\pi\)
\(128\) −7.24183 8.69229i −0.640093 0.768297i
\(129\) 0 0
\(130\) 13.5607 + 17.6606i 1.18935 + 1.54894i
\(131\) 0.118526 0.0103557 0.00517783 0.999987i \(-0.498352\pi\)
0.00517783 + 0.999987i \(0.498352\pi\)
\(132\) 0 0
\(133\) 8.35506i 0.724476i
\(134\) −2.57618 + 3.14586i −0.222548 + 0.271761i
\(135\) 0 0
\(136\) 2.89860 0.889324i 0.248553 0.0762589i
\(137\) −8.38715 + 8.38715i −0.716563 + 0.716563i −0.967900 0.251337i \(-0.919130\pi\)
0.251337 + 0.967900i \(0.419130\pi\)
\(138\) 0 0
\(139\) −9.73531 −0.825738 −0.412869 0.910790i \(-0.635473\pi\)
−0.412869 + 0.910790i \(0.635473\pi\)
\(140\) 34.6086 6.96014i 2.92496 0.588239i
\(141\) 0 0
\(142\) 8.68021 + 7.10833i 0.728427 + 0.596518i
\(143\) 11.1624 6.92992i 0.933443 0.579509i
\(144\) 0 0
\(145\) −1.58211 1.58211i −0.131387 0.131387i
\(146\) −8.86741 7.26163i −0.733872 0.600977i
\(147\) 0 0
\(148\) −4.66032 3.09970i −0.383076 0.254794i
\(149\) −6.39777 + 6.39777i −0.524126 + 0.524126i −0.918815 0.394689i \(-0.870852\pi\)
0.394689 + 0.918815i \(0.370852\pi\)
\(150\) 0 0
\(151\) 6.23105 + 6.23105i 0.507076 + 0.507076i 0.913628 0.406552i \(-0.133269\pi\)
−0.406552 + 0.913628i \(0.633269\pi\)
\(152\) 2.73964 5.16483i 0.222214 0.418923i
\(153\) 0 0
\(154\) −2.06362 20.7277i −0.166291 1.67029i
\(155\) 17.6508i 1.41774i
\(156\) 0 0
\(157\) 23.8222i 1.90122i 0.310393 + 0.950608i \(0.399539\pi\)
−0.310393 + 0.950608i \(0.600461\pi\)
\(158\) −9.37180 + 0.933041i −0.745581 + 0.0742288i
\(159\) 0 0
\(160\) −23.6762 7.04572i −1.87177 0.557013i
\(161\) 15.7995 + 15.7995i 1.24518 + 1.24518i
\(162\) 0 0
\(163\) 4.03428 4.03428i 0.315989 0.315989i −0.531235 0.847224i \(-0.678272\pi\)
0.847224 + 0.531235i \(0.178272\pi\)
\(164\) −0.0792732 0.0527267i −0.00619020 0.00411726i
\(165\) 0 0
\(166\) 0.195121 0.238269i 0.0151444 0.0184933i
\(167\) −4.78853 4.78853i −0.370548 0.370548i 0.497129 0.867677i \(-0.334388\pi\)
−0.867677 + 0.497129i \(0.834388\pi\)
\(168\) 0 0
\(169\) 11.6510 + 5.76674i 0.896227 + 0.443596i
\(170\) 4.19425 5.12174i 0.321685 0.392819i
\(171\) 0 0
\(172\) 1.37803 + 6.85213i 0.105074 + 0.522470i
\(173\) 1.81603 0.138070 0.0690350 0.997614i \(-0.478008\pi\)
0.0690350 + 0.997614i \(0.478008\pi\)
\(174\) 0 0
\(175\) 40.2110 40.2110i 3.03967 3.03967i
\(176\) −5.52100 + 13.4899i −0.416161 + 1.01684i
\(177\) 0 0
\(178\) −17.6035 14.4157i −1.31944 1.08050i
\(179\) 10.4962i 0.784521i 0.919854 + 0.392261i \(0.128307\pi\)
−0.919854 + 0.392261i \(0.871693\pi\)
\(180\) 0 0
\(181\) 14.0565 1.04481 0.522407 0.852696i \(-0.325034\pi\)
0.522407 + 0.852696i \(0.325034\pi\)
\(182\) 16.3473 12.5522i 1.21174 0.930433i
\(183\) 0 0
\(184\) −4.58605 14.9474i −0.338088 1.10194i
\(185\) −12.2205 −0.898470
\(186\) 0 0
\(187\) −2.76210 2.76210i −0.201985 0.201985i
\(188\) 15.2035 + 10.1122i 1.10883 + 0.737510i
\(189\) 0 0
\(190\) −1.26462 12.7023i −0.0917454 0.921524i
\(191\) 15.1540i 1.09650i −0.836313 0.548252i \(-0.815294\pi\)
0.836313 0.548252i \(-0.184706\pi\)
\(192\) 0 0
\(193\) −16.5694 + 16.5694i −1.19269 + 1.19269i −0.216380 + 0.976309i \(0.569425\pi\)
−0.976309 + 0.216380i \(0.930575\pi\)
\(194\) −11.1543 + 13.6208i −0.800830 + 0.977919i
\(195\) 0 0
\(196\) −3.68227 18.3097i −0.263020 1.30784i
\(197\) 6.24885 6.24885i 0.445212 0.445212i −0.448547 0.893759i \(-0.648058\pi\)
0.893759 + 0.448547i \(0.148058\pi\)
\(198\) 0 0
\(199\) 4.22848 0.299749 0.149875 0.988705i \(-0.452113\pi\)
0.149875 + 0.988705i \(0.452113\pi\)
\(200\) −38.0424 + 11.6719i −2.69001 + 0.825325i
\(201\) 0 0
\(202\) 0.404956 + 4.06753i 0.0284926 + 0.286190i
\(203\) −1.46446 + 1.46446i −0.102785 + 0.102785i
\(204\) 0 0
\(205\) −0.207874 −0.0145186
\(206\) −1.00271 10.0715i −0.0698619 0.701718i
\(207\) 0 0
\(208\) −14.2213 + 2.39907i −0.986068 + 0.166345i
\(209\) −7.53224 −0.521016
\(210\) 0 0
\(211\) −24.8295 −1.70934 −0.854668 0.519175i \(-0.826239\pi\)
−0.854668 + 0.519175i \(0.826239\pi\)
\(212\) 3.17085 + 15.7667i 0.217775 + 1.08286i
\(213\) 0 0
\(214\) 1.49224 + 14.9886i 0.102008 + 1.02460i
\(215\) 10.7908 + 10.7908i 0.735924 + 0.735924i
\(216\) 0 0
\(217\) −16.3382 −1.10911
\(218\) −2.75523 2.25629i −0.186608 0.152815i
\(219\) 0 0
\(220\) 6.27469 + 31.2003i 0.423040 + 2.10352i
\(221\) 0.880394 3.76340i 0.0592217 0.253154i
\(222\) 0 0
\(223\) −1.83341 + 1.83341i −0.122774 + 0.122774i −0.765824 0.643050i \(-0.777669\pi\)
0.643050 + 0.765824i \(0.277669\pi\)
\(224\) −6.52176 + 21.9155i −0.435753 + 1.46429i
\(225\) 0 0
\(226\) −0.419662 4.21524i −0.0279155 0.280394i
\(227\) −9.42020 9.42020i −0.625240 0.625240i 0.321626 0.946867i \(-0.395771\pi\)
−0.946867 + 0.321626i \(0.895771\pi\)
\(228\) 0 0
\(229\) 4.97977 + 4.97977i 0.329073 + 0.329073i 0.852234 0.523161i \(-0.175247\pi\)
−0.523161 + 0.852234i \(0.675247\pi\)
\(230\) −26.4117 21.6288i −1.74153 1.42616i
\(231\) 0 0
\(232\) 1.38548 0.425080i 0.0909610 0.0279079i
\(233\) 5.38474i 0.352766i −0.984322 0.176383i \(-0.943560\pi\)
0.984322 0.176383i \(-0.0564397\pi\)
\(234\) 0 0
\(235\) 39.8673 2.60066
\(236\) 1.92788 2.89851i 0.125494 0.188677i
\(237\) 0 0
\(238\) −4.74086 3.88235i −0.307304 0.251655i
\(239\) 6.48045 6.48045i 0.419186 0.419186i −0.465737 0.884923i \(-0.654211\pi\)
0.884923 + 0.465737i \(0.154211\pi\)
\(240\) 0 0
\(241\) 16.2281 16.2281i 1.04534 1.04534i 0.0464205 0.998922i \(-0.485219\pi\)
0.998922 0.0464205i \(-0.0147814\pi\)
\(242\) 3.20659 0.319242i 0.206127 0.0205217i
\(243\) 0 0
\(244\) 1.84083 + 9.15337i 0.117847 + 0.585984i
\(245\) −28.8343 28.8343i −1.84215 1.84215i
\(246\) 0 0
\(247\) −3.93097 6.33180i −0.250122 0.402883i
\(248\) 10.0997 + 5.35733i 0.641333 + 0.340191i
\(249\) 0 0
\(250\) −35.4836 + 43.3302i −2.24418 + 2.74044i
\(251\) 0.990551i 0.0625230i −0.999511 0.0312615i \(-0.990048\pi\)
0.999511 0.0312615i \(-0.00995247\pi\)
\(252\) 0 0
\(253\) −14.2435 + 14.2435i −0.895484 + 0.895484i
\(254\) −2.26463 22.7467i −0.142095 1.42726i
\(255\) 0 0
\(256\) 11.2177 11.4089i 0.701105 0.713058i
\(257\) 16.9182i 1.05533i −0.849453 0.527665i \(-0.823068\pi\)
0.849453 0.527665i \(-0.176932\pi\)
\(258\) 0 0
\(259\) 11.3117i 0.702877i
\(260\) −22.9531 + 21.5577i −1.42349 + 1.33695i
\(261\) 0 0
\(262\) 0.0166060 + 0.166796i 0.00102592 + 0.0103047i
\(263\) 28.7035i 1.76993i 0.465655 + 0.884966i \(0.345819\pi\)
−0.465655 + 0.884966i \(0.654181\pi\)
\(264\) 0 0
\(265\) 24.8295 + 24.8295i 1.52527 + 1.52527i
\(266\) −11.7577 + 1.17058i −0.720912 + 0.0717728i
\(267\) 0 0
\(268\) −4.78796 3.18460i −0.292471 0.194530i
\(269\) 25.8818i 1.57804i 0.614366 + 0.789021i \(0.289412\pi\)
−0.614366 + 0.789021i \(0.710588\pi\)
\(270\) 0 0
\(271\) −6.06113 6.06113i −0.368187 0.368187i 0.498628 0.866816i \(-0.333837\pi\)
−0.866816 + 0.498628i \(0.833837\pi\)
\(272\) 1.65761 + 3.95448i 0.100508 + 0.239775i
\(273\) 0 0
\(274\) −12.9779 10.6278i −0.784026 0.642049i
\(275\) 36.2510 + 36.2510i 2.18602 + 2.18602i
\(276\) 0 0
\(277\) −2.49785 −0.150081 −0.0750407 0.997180i \(-0.523909\pi\)
−0.0750407 + 0.997180i \(0.523909\pi\)
\(278\) −1.36396 13.7001i −0.0818047 0.821676i
\(279\) 0 0
\(280\) 14.6435 + 47.7281i 0.875117 + 2.85230i
\(281\) 6.26380 6.26380i 0.373667 0.373667i −0.495144 0.868811i \(-0.664885\pi\)
0.868811 + 0.495144i \(0.164885\pi\)
\(282\) 0 0
\(283\) 11.9847i 0.712416i −0.934407 0.356208i \(-0.884069\pi\)
0.934407 0.356208i \(-0.115931\pi\)
\(284\) −8.78711 + 13.2112i −0.521419 + 0.783940i
\(285\) 0 0
\(286\) 11.3161 + 14.7374i 0.669133 + 0.871440i
\(287\) 0.192415i 0.0113579i
\(288\) 0 0
\(289\) 15.8509 0.932406
\(290\) 2.00477 2.44809i 0.117724 0.143757i
\(291\) 0 0
\(292\) 8.97662 13.4961i 0.525317 0.789800i
\(293\) 3.26151 + 3.26151i 0.190539 + 0.190539i 0.795929 0.605390i \(-0.206983\pi\)
−0.605390 + 0.795929i \(0.706983\pi\)
\(294\) 0 0
\(295\) 7.60061i 0.442525i
\(296\) 3.70914 6.99255i 0.215590 0.406433i
\(297\) 0 0
\(298\) −9.89966 8.10695i −0.573472 0.469623i
\(299\) −19.4070 4.54000i −1.12234 0.262555i
\(300\) 0 0
\(301\) 9.98830 9.98830i 0.575716 0.575716i
\(302\) −7.89570 + 9.64169i −0.454346 + 0.554817i
\(303\) 0 0
\(304\) 7.65207 + 3.13177i 0.438876 + 0.179619i
\(305\) 14.4148 + 14.4148i 0.825387 + 0.825387i
\(306\) 0 0
\(307\) −7.00180 + 7.00180i −0.399614 + 0.399614i −0.878097 0.478483i \(-0.841187\pi\)
0.478483 + 0.878097i \(0.341187\pi\)
\(308\) 28.8801 5.80807i 1.64560 0.330946i
\(309\) 0 0
\(310\) 24.8392 2.47295i 1.41077 0.140454i
\(311\) −29.2550 −1.65890 −0.829450 0.558582i \(-0.811346\pi\)
−0.829450 + 0.558582i \(0.811346\pi\)
\(312\) 0 0
\(313\) 2.65852 0.150269 0.0751343 0.997173i \(-0.476061\pi\)
0.0751343 + 0.997173i \(0.476061\pi\)
\(314\) −33.5239 + 3.33758i −1.89186 + 0.188351i
\(315\) 0 0
\(316\) −2.62606 13.0578i −0.147727 0.734559i
\(317\) −5.19502 + 5.19502i −0.291781 + 0.291781i −0.837784 0.546002i \(-0.816149\pi\)
0.546002 + 0.837784i \(0.316149\pi\)
\(318\) 0 0
\(319\) −1.32023 1.32023i −0.0739189 0.0739189i
\(320\) 6.59800 34.3056i 0.368839 1.91774i
\(321\) 0 0
\(322\) −20.0204 + 24.4475i −1.11569 + 1.36241i
\(323\) −1.56679 + 1.56679i −0.0871787 + 0.0871787i
\(324\) 0 0
\(325\) −11.5547 + 49.3924i −0.640937 + 2.73980i
\(326\) 6.24248 + 5.11204i 0.345739 + 0.283130i
\(327\) 0 0
\(328\) 0.0630935 0.118945i 0.00348375 0.00656764i
\(329\) 36.9026i 2.03450i
\(330\) 0 0
\(331\) −14.6385 14.6385i −0.804603 0.804603i 0.179208 0.983811i \(-0.442647\pi\)
−0.983811 + 0.179208i \(0.942647\pi\)
\(332\) 0.362643 + 0.241203i 0.0199026 + 0.0132378i
\(333\) 0 0
\(334\) 6.06780 7.40959i 0.332015 0.405435i
\(335\) −12.5552 −0.685965
\(336\) 0 0
\(337\) 19.9550i 1.08702i −0.839404 0.543508i \(-0.817096\pi\)
0.839404 0.543508i \(-0.182904\pi\)
\(338\) −6.48294 + 17.2038i −0.352625 + 0.935765i
\(339\) 0 0
\(340\) 7.79523 + 5.18481i 0.422756 + 0.281186i
\(341\) 14.7292i 0.797629i
\(342\) 0 0
\(343\) −6.68288 + 6.68288i −0.360841 + 0.360841i
\(344\) −9.44963 + 2.89926i −0.509490 + 0.156317i
\(345\) 0 0
\(346\) 0.254433 + 2.55562i 0.0136784 + 0.137391i
\(347\) 13.2961 0.713770 0.356885 0.934148i \(-0.383839\pi\)
0.356885 + 0.934148i \(0.383839\pi\)
\(348\) 0 0
\(349\) −20.5685 20.5685i −1.10101 1.10101i −0.994290 0.106716i \(-0.965967\pi\)
−0.106716 0.994290i \(-0.534033\pi\)
\(350\) 62.2210 + 50.9535i 3.32585 + 2.72358i
\(351\) 0 0
\(352\) −19.7572 5.87948i −1.05306 0.313378i
\(353\) −3.37647 3.37647i −0.179712 0.179712i 0.611519 0.791230i \(-0.290559\pi\)
−0.791230 + 0.611519i \(0.790559\pi\)
\(354\) 0 0
\(355\) 34.6430i 1.83866i
\(356\) 17.8203 26.7924i 0.944474 1.41999i
\(357\) 0 0
\(358\) −14.7708 + 1.47056i −0.780662 + 0.0777214i
\(359\) 10.1733 + 10.1733i 0.536927 + 0.536927i 0.922625 0.385698i \(-0.126039\pi\)
−0.385698 + 0.922625i \(0.626039\pi\)
\(360\) 0 0
\(361\) 14.7274i 0.775124i
\(362\) 1.96938 + 19.7811i 0.103508 + 1.03967i
\(363\) 0 0
\(364\) 19.9545 + 21.2462i 1.04590 + 1.11360i
\(365\) 35.3902i 1.85241i
\(366\) 0 0
\(367\) 12.7553i 0.665820i 0.942959 + 0.332910i \(0.108030\pi\)
−0.942959 + 0.332910i \(0.891970\pi\)
\(368\) 20.3924 8.54794i 1.06303 0.445592i
\(369\) 0 0
\(370\) −1.71215 17.1974i −0.0890102 0.894050i
\(371\) 22.9831 22.9831i 1.19322 1.19322i
\(372\) 0 0
\(373\) 13.6959i 0.709147i 0.935028 + 0.354573i \(0.115374\pi\)
−0.935028 + 0.354573i \(0.884626\pi\)
\(374\) 3.50001 4.27397i 0.180981 0.221002i
\(375\) 0 0
\(376\) −12.1004 + 22.8120i −0.624032 + 1.17644i
\(377\) 0.420812 1.79884i 0.0216729 0.0926447i
\(378\) 0 0
\(379\) −16.8734 16.8734i −0.866730 0.866730i 0.125379 0.992109i \(-0.459985\pi\)
−0.992109 + 0.125379i \(0.959985\pi\)
\(380\) 17.6983 3.55930i 0.907901 0.182588i
\(381\) 0 0
\(382\) 21.3255 2.12313i 1.09111 0.108629i
\(383\) −2.81081 + 2.81081i −0.143625 + 0.143625i −0.775263 0.631638i \(-0.782383\pi\)
0.631638 + 0.775263i \(0.282383\pi\)
\(384\) 0 0
\(385\) 45.4805 45.4805i 2.31790 2.31790i
\(386\) −25.6388 20.9959i −1.30498 1.06866i
\(387\) 0 0
\(388\) −20.7308 13.7886i −1.05245 0.700009i
\(389\) 34.2597 1.73703 0.868517 0.495660i \(-0.165074\pi\)
0.868517 + 0.495660i \(0.165074\pi\)
\(390\) 0 0
\(391\) 5.92564i 0.299673i
\(392\) 25.2506 7.74717i 1.27535 0.391291i
\(393\) 0 0
\(394\) 9.66923 + 7.91825i 0.487129 + 0.398916i
\(395\) −20.5635 20.5635i −1.03466 1.03466i
\(396\) 0 0
\(397\) −16.1956 16.1956i −0.812836 0.812836i 0.172223 0.985058i \(-0.444905\pi\)
−0.985058 + 0.172223i \(0.944905\pi\)
\(398\) 0.592428 + 5.95056i 0.0296957 + 0.298274i
\(399\) 0 0
\(400\) −21.7552 51.9002i −1.08776 2.59501i
\(401\) −18.5045 + 18.5045i −0.924069 + 0.924069i −0.997314 0.0732452i \(-0.976664\pi\)
0.0732452 + 0.997314i \(0.476664\pi\)
\(402\) 0 0
\(403\) 12.3817 7.68694i 0.616778 0.382914i
\(404\) −5.66732 + 1.13975i −0.281960 + 0.0567049i
\(405\) 0 0
\(406\) −2.26604 1.85569i −0.112462 0.0920963i
\(407\) −10.1977 −0.505483
\(408\) 0 0
\(409\) −19.3758 19.3758i −0.958070 0.958070i 0.0410856 0.999156i \(-0.486918\pi\)
−0.999156 + 0.0410856i \(0.986918\pi\)
\(410\) −0.0291240 0.292532i −0.00143833 0.0144471i
\(411\) 0 0
\(412\) 14.0328 2.82213i 0.691345 0.139036i
\(413\) −7.03539 −0.346189
\(414\) 0 0
\(415\) 0.950941 0.0466798
\(416\) −5.36856 19.6769i −0.263215 0.964737i
\(417\) 0 0
\(418\) −1.05530 10.5998i −0.0516163 0.518453i
\(419\) −36.1631 −1.76668 −0.883341 0.468731i \(-0.844711\pi\)
−0.883341 + 0.468731i \(0.844711\pi\)
\(420\) 0 0
\(421\) 0.701961 0.701961i 0.0342115 0.0342115i −0.689794 0.724006i \(-0.742299\pi\)
0.724006 + 0.689794i \(0.242299\pi\)
\(422\) −3.47872 34.9415i −0.169342 1.70093i
\(423\) 0 0
\(424\) −21.7436 + 6.67119i −1.05596 + 0.323981i
\(425\) 15.0812 0.731547
\(426\) 0 0
\(427\) 13.3428 13.3428i 0.645704 0.645704i
\(428\) −20.8838 + 4.19994i −1.00945 + 0.203012i
\(429\) 0 0
\(430\) −13.6735 + 16.6972i −0.659397 + 0.805211i
\(431\) −2.65259 + 2.65259i −0.127771 + 0.127771i −0.768100 0.640330i \(-0.778798\pi\)
0.640330 + 0.768100i \(0.278798\pi\)
\(432\) 0 0
\(433\) 27.2434i 1.30923i 0.755961 + 0.654617i \(0.227170\pi\)
−0.755961 + 0.654617i \(0.772830\pi\)
\(434\) −2.28905 22.9920i −0.109878 1.10365i
\(435\) 0 0
\(436\) 2.78916 4.19344i 0.133577 0.200829i
\(437\) 8.07960 + 8.07960i 0.386500 + 0.386500i
\(438\) 0 0
\(439\) 28.4482 1.35776 0.678878 0.734251i \(-0.262466\pi\)
0.678878 + 0.734251i \(0.262466\pi\)
\(440\) −43.0277 + 13.2014i −2.05127 + 0.629352i
\(441\) 0 0
\(442\) 5.41942 + 0.711673i 0.257775 + 0.0338508i
\(443\) 26.2562 1.24747 0.623735 0.781636i \(-0.285614\pi\)
0.623735 + 0.781636i \(0.285614\pi\)
\(444\) 0 0
\(445\) 70.2562i 3.33046i
\(446\) −2.83694 2.32321i −0.134333 0.110007i
\(447\) 0 0
\(448\) −31.7544 6.10734i −1.50026 0.288545i
\(449\) 10.3557 10.3557i 0.488717 0.488717i −0.419185 0.907901i \(-0.637684\pi\)
0.907901 + 0.419185i \(0.137684\pi\)
\(450\) 0 0
\(451\) −0.173466 −0.00816820
\(452\) 5.87313 1.18115i 0.276249 0.0555564i
\(453\) 0 0
\(454\) 11.9368 14.5764i 0.560223 0.684106i
\(455\) 61.9678 + 14.4965i 2.90509 + 0.679605i
\(456\) 0 0
\(457\) 20.3069 + 20.3069i 0.949918 + 0.949918i 0.998804 0.0488865i \(-0.0155673\pi\)
−0.0488865 + 0.998804i \(0.515567\pi\)
\(458\) −6.31013 + 7.70550i −0.294853 + 0.360055i
\(459\) 0 0
\(460\) 26.7369 40.1983i 1.24662 1.87425i
\(461\) −13.3085 + 13.3085i −0.619838 + 0.619838i −0.945490 0.325652i \(-0.894416\pi\)
0.325652 + 0.945490i \(0.394416\pi\)
\(462\) 0 0
\(463\) −3.24915 3.24915i −0.151001 0.151001i 0.627564 0.778565i \(-0.284052\pi\)
−0.778565 + 0.627564i \(0.784052\pi\)
\(464\) 0.792308 + 1.89017i 0.0367820 + 0.0877488i
\(465\) 0 0
\(466\) 7.57771 0.754424i 0.351031 0.0349480i
\(467\) 40.2993i 1.86483i 0.361392 + 0.932414i \(0.382302\pi\)
−0.361392 + 0.932414i \(0.617698\pi\)
\(468\) 0 0
\(469\) 11.6215i 0.536633i
\(470\) 5.58557 + 56.1035i 0.257643 + 2.58786i
\(471\) 0 0
\(472\) 4.34905 + 2.30692i 0.200181 + 0.106185i
\(473\) 9.00464 + 9.00464i 0.414034 + 0.414034i
\(474\) 0 0
\(475\) 20.5632 20.5632i 0.943506 0.943506i
\(476\) 4.79924 7.21554i 0.219973 0.330724i
\(477\) 0 0
\(478\) 10.0276 + 8.21172i 0.458652 + 0.375595i
\(479\) 19.0201 + 19.0201i 0.869049 + 0.869049i 0.992367 0.123318i \(-0.0393536\pi\)
−0.123318 + 0.992367i \(0.539354\pi\)
\(480\) 0 0
\(481\) −5.32206 8.57249i −0.242665 0.390872i
\(482\) 25.1107 + 20.5634i 1.14376 + 0.936639i
\(483\) 0 0
\(484\) 0.898512 + 4.46776i 0.0408415 + 0.203080i
\(485\) −54.3613 −2.46842
\(486\) 0 0
\(487\) 8.43408 8.43408i 0.382184 0.382184i −0.489704 0.871889i \(-0.662895\pi\)
0.871889 + 0.489704i \(0.162895\pi\)
\(488\) −12.6232 + 3.87295i −0.571427 + 0.175320i
\(489\) 0 0
\(490\) 36.5374 44.6170i 1.65059 2.01559i
\(491\) 23.3787i 1.05507i 0.849534 + 0.527533i \(0.176883\pi\)
−0.849534 + 0.527533i \(0.823117\pi\)
\(492\) 0 0
\(493\) −0.549248 −0.0247369
\(494\) 8.35972 6.41900i 0.376122 0.288804i
\(495\) 0 0
\(496\) −6.12412 + 14.9635i −0.274981 + 0.671880i
\(497\) 32.0668 1.43839
\(498\) 0 0
\(499\) −18.6272 18.6272i −0.833867 0.833867i 0.154176 0.988043i \(-0.450728\pi\)
−0.988043 + 0.154176i \(0.950728\pi\)
\(500\) −65.9481 43.8638i −2.94929 1.96165i
\(501\) 0 0
\(502\) 1.39396 0.138780i 0.0622154 0.00619407i
\(503\) 12.2441i 0.545939i −0.962023 0.272969i \(-0.911994\pi\)
0.962023 0.272969i \(-0.0880058\pi\)
\(504\) 0 0
\(505\) −8.92492 + 8.92492i −0.397154 + 0.397154i
\(506\) −22.0399 18.0487i −0.979793 0.802365i
\(507\) 0 0
\(508\) 31.6932 6.37382i 1.40616 0.282792i
\(509\) 25.7075 25.7075i 1.13947 1.13947i 0.150920 0.988546i \(-0.451776\pi\)
0.988546 0.150920i \(-0.0482237\pi\)
\(510\) 0 0
\(511\) −32.7584 −1.44914
\(512\) 17.6269 + 14.1877i 0.779008 + 0.627014i
\(513\) 0 0
\(514\) 23.8083 2.37031i 1.05014 0.104550i
\(515\) 22.0989 22.0989i 0.973793 0.973793i
\(516\) 0 0
\(517\) 33.2683 1.46314
\(518\) −15.9185 + 1.58482i −0.699419 + 0.0696330i
\(519\) 0 0
\(520\) −33.5530 29.2806i −1.47140 1.28404i
\(521\) 41.6747 1.82580 0.912902 0.408179i \(-0.133836\pi\)
0.912902 + 0.408179i \(0.133836\pi\)
\(522\) 0 0
\(523\) 16.6394 0.727591 0.363796 0.931479i \(-0.381481\pi\)
0.363796 + 0.931479i \(0.381481\pi\)
\(524\) −0.232399 + 0.0467377i −0.0101524 + 0.00204175i
\(525\) 0 0
\(526\) −40.3932 + 4.02148i −1.76123 + 0.175345i
\(527\) −3.06383 3.06383i −0.133463 0.133463i
\(528\) 0 0
\(529\) 7.55722 0.328575
\(530\) −31.4628 + 38.4203i −1.36666 + 1.66887i
\(531\) 0 0
\(532\) −3.29461 16.3821i −0.142839 0.710255i
\(533\) −0.0905295 0.145820i −0.00392127 0.00631617i
\(534\) 0 0
\(535\) −32.8879 + 32.8879i −1.42187 + 1.42187i
\(536\) 3.81073 7.18406i 0.164599 0.310304i
\(537\) 0 0
\(538\) −36.4224 + 3.62615i −1.57028 + 0.156334i
\(539\) −24.0615 24.0615i −1.03640 1.03640i
\(540\) 0 0
\(541\) 23.7679 + 23.7679i 1.02186 + 1.02186i 0.999756 + 0.0221074i \(0.00703757\pi\)
0.0221074 + 0.999756i \(0.492962\pi\)
\(542\) 7.68037 9.37875i 0.329900 0.402852i
\(543\) 0 0
\(544\) −5.33273 + 2.88673i −0.228639 + 0.123767i
\(545\) 10.9962i 0.471027i
\(546\) 0 0
\(547\) 20.4838 0.875824 0.437912 0.899018i \(-0.355718\pi\)
0.437912 + 0.899018i \(0.355718\pi\)
\(548\) 13.1378 19.7523i 0.561218 0.843776i
\(549\) 0 0
\(550\) −45.9355 + 56.0933i −1.95870 + 2.39183i
\(551\) −0.748898 + 0.748898i −0.0319041 + 0.0319041i
\(552\) 0 0
\(553\) −19.0343 + 19.0343i −0.809420 + 0.809420i
\(554\) −0.349960 3.51512i −0.0148684 0.149343i
\(555\) 0 0
\(556\) 19.0884 3.83887i 0.809529 0.162805i
\(557\) 30.8045 + 30.8045i 1.30523 + 1.30523i 0.924819 + 0.380408i \(0.124217\pi\)
0.380408 + 0.924819i \(0.375783\pi\)
\(558\) 0 0
\(559\) −2.87014 + 12.2689i −0.121394 + 0.518921i
\(560\) −65.1140 + 27.2941i −2.75157 + 1.15339i
\(561\) 0 0
\(562\) 9.69236 + 7.93719i 0.408847 + 0.334810i
\(563\) 33.7226i 1.42124i −0.703578 0.710618i \(-0.748415\pi\)
0.703578 0.710618i \(-0.251585\pi\)
\(564\) 0 0
\(565\) 9.24903 9.24903i 0.389110 0.389110i
\(566\) 16.8655 1.67911i 0.708912 0.0705781i
\(567\) 0 0
\(568\) −19.8226 10.5148i −0.831739 0.441190i
\(569\) 37.5317i 1.57341i −0.617329 0.786705i \(-0.711785\pi\)
0.617329 0.786705i \(-0.288215\pi\)
\(570\) 0 0
\(571\) 10.4261i 0.436318i 0.975913 + 0.218159i \(0.0700051\pi\)
−0.975913 + 0.218159i \(0.929995\pi\)
\(572\) −19.1538 + 17.9894i −0.800863 + 0.752174i
\(573\) 0 0
\(574\) −0.270778 + 0.0269582i −0.0113021 + 0.00112521i
\(575\) 77.7706i 3.24326i
\(576\) 0 0
\(577\) −5.95723 5.95723i −0.248003 0.248003i 0.572148 0.820150i \(-0.306110\pi\)
−0.820150 + 0.572148i \(0.806110\pi\)
\(578\) 2.22078 + 22.3063i 0.0923721 + 0.927819i
\(579\) 0 0
\(580\) 3.72597 + 2.47824i 0.154713 + 0.102903i
\(581\) 0.880223i 0.0365178i
\(582\) 0 0
\(583\) 20.7197 + 20.7197i 0.858121 + 0.858121i
\(584\) 20.2501 + 10.7415i 0.837957 + 0.444488i
\(585\) 0 0
\(586\) −4.13283 + 5.04673i −0.170726 + 0.208478i
\(587\) −1.72078 1.72078i −0.0710241 0.0710241i 0.670702 0.741727i \(-0.265993\pi\)
−0.741727 + 0.670702i \(0.765993\pi\)
\(588\) 0 0
\(589\) −8.35506 −0.344264
\(590\) 10.6960 1.06488i 0.440348 0.0438403i
\(591\) 0 0
\(592\) 10.3600 + 4.24003i 0.425792 + 0.174264i
\(593\) −13.4905 + 13.4905i −0.553990 + 0.553990i −0.927590 0.373600i \(-0.878123\pi\)
0.373600 + 0.927590i \(0.378123\pi\)
\(594\) 0 0
\(595\) 18.9209i 0.775683i
\(596\) 10.0216 15.0672i 0.410500 0.617175i
\(597\) 0 0
\(598\) 3.66994 27.9467i 0.150075 1.14283i
\(599\) 37.0916i 1.51552i 0.652533 + 0.757760i \(0.273706\pi\)
−0.652533 + 0.757760i \(0.726294\pi\)
\(600\) 0 0
\(601\) −17.3441 −0.707483 −0.353741 0.935343i \(-0.615091\pi\)
−0.353741 + 0.935343i \(0.615091\pi\)
\(602\) 15.4555 + 12.6567i 0.629919 + 0.515849i
\(603\) 0 0
\(604\) −14.6745 9.76043i −0.597099 0.397146i
\(605\) 7.03585 + 7.03585i 0.286048 + 0.286048i
\(606\) 0 0
\(607\) 0.0268909i 0.00109147i 1.00000 0.000545735i \(0.000173713\pi\)
−1.00000 0.000545735i \(0.999826\pi\)
\(608\) −3.33512 + 11.2072i −0.135257 + 0.454512i
\(609\) 0 0
\(610\) −18.2657 + 22.3049i −0.739557 + 0.903097i
\(611\) 17.3623 + 27.9662i 0.702403 + 1.13139i
\(612\) 0 0
\(613\) 21.4415 21.4415i 0.866013 0.866013i −0.126015 0.992028i \(-0.540219\pi\)
0.992028 + 0.126015i \(0.0402188\pi\)
\(614\) −10.8343 8.87234i −0.437237 0.358059i
\(615\) 0 0
\(616\) 12.2197 + 39.8279i 0.492345 + 1.60471i
\(617\) 10.1510 + 10.1510i 0.408663 + 0.408663i 0.881272 0.472609i \(-0.156688\pi\)
−0.472609 + 0.881272i \(0.656688\pi\)
\(618\) 0 0
\(619\) −10.4442 + 10.4442i −0.419789 + 0.419789i −0.885131 0.465342i \(-0.845931\pi\)
0.465342 + 0.885131i \(0.345931\pi\)
\(620\) 6.96014 + 34.6086i 0.279526 + 1.38992i
\(621\) 0 0
\(622\) −4.09875 41.1693i −0.164345 1.65074i
\(623\) −65.0316 −2.60544
\(624\) 0 0
\(625\) −102.588 −4.10352
\(626\) 0.372470 + 3.74122i 0.0148869 + 0.149529i
\(627\) 0 0
\(628\) −9.39368 46.7091i −0.374848 1.86390i
\(629\) −2.12125 + 2.12125i −0.0845796 + 0.0845796i
\(630\) 0 0
\(631\) −21.3320 21.3320i −0.849215 0.849215i 0.140820 0.990035i \(-0.455026\pi\)
−0.990035 + 0.140820i \(0.955026\pi\)
\(632\) 18.0078 5.52499i 0.716310 0.219772i
\(633\) 0 0
\(634\) −8.03857 6.58288i −0.319252 0.261440i
\(635\) 49.9106 49.9106i 1.98064 1.98064i
\(636\) 0 0
\(637\) 7.66939 32.7841i 0.303872 1.29895i
\(638\) 1.67294 2.04288i 0.0662322 0.0808783i
\(639\) 0 0
\(640\) 49.2011 + 4.47873i 1.94485 + 0.177037i
\(641\) 28.5426i 1.12736i 0.825992 + 0.563682i \(0.190616\pi\)
−0.825992 + 0.563682i \(0.809384\pi\)
\(642\) 0 0
\(643\) 18.1283 + 18.1283i 0.714912 + 0.714912i 0.967559 0.252647i \(-0.0813010\pi\)
−0.252647 + 0.967559i \(0.581301\pi\)
\(644\) −37.2089 24.7486i −1.46624 0.975232i
\(645\) 0 0
\(646\) −2.42439 1.98536i −0.0953865 0.0781131i
\(647\) −23.0407 −0.905824 −0.452912 0.891555i \(-0.649615\pi\)
−0.452912 + 0.891555i \(0.649615\pi\)
\(648\) 0 0
\(649\) 6.34253i 0.248966i
\(650\) −71.1266 9.34028i −2.78982 0.366356i
\(651\) 0 0
\(652\) −6.31936 + 9.50099i −0.247485 + 0.372087i
\(653\) 14.8261i 0.580191i 0.956998 + 0.290095i \(0.0936870\pi\)
−0.956998 + 0.290095i \(0.906313\pi\)
\(654\) 0 0
\(655\) −0.365983 + 0.365983i −0.0143001 + 0.0143001i
\(656\) 0.176226 + 0.0721240i 0.00688046 + 0.00281597i
\(657\) 0 0
\(658\) 51.9314 5.17020i 2.02450 0.201555i
\(659\) −14.8920 −0.580112 −0.290056 0.957010i \(-0.593674\pi\)
−0.290056 + 0.957010i \(0.593674\pi\)
\(660\) 0 0
\(661\) 21.6359 + 21.6359i 0.841538 + 0.841538i 0.989059 0.147521i \(-0.0471293\pi\)
−0.147521 + 0.989059i \(0.547129\pi\)
\(662\) 18.5492 22.6510i 0.720934 0.880356i
\(663\) 0 0
\(664\) −0.288627 + 0.544125i −0.0112009 + 0.0211162i
\(665\) −25.7986 25.7986i −1.00043 1.00043i
\(666\) 0 0
\(667\) 2.83235i 0.109669i
\(668\) 11.2773 + 7.50084i 0.436332 + 0.290216i
\(669\) 0 0
\(670\) −1.75904 17.6684i −0.0679576 0.682590i
\(671\) 12.0288 + 12.0288i 0.464366 + 0.464366i
\(672\) 0 0
\(673\) 35.0331i 1.35043i 0.737623 + 0.675213i \(0.235948\pi\)
−0.737623 + 0.675213i \(0.764052\pi\)
\(674\) 28.0817 2.79577i 1.08167 0.107689i
\(675\) 0 0
\(676\) −25.1185 6.71283i −0.966095 0.258186i
\(677\) 7.24823i 0.278572i 0.990252 + 0.139286i \(0.0444807\pi\)
−0.990252 + 0.139286i \(0.955519\pi\)
\(678\) 0 0
\(679\) 50.3187i 1.93105i
\(680\) −6.20422 + 11.6963i −0.237921 + 0.448533i
\(681\) 0 0
\(682\) 20.7277 2.06362i 0.793705 0.0790200i
\(683\) 7.11346 7.11346i 0.272189 0.272189i −0.557792 0.829981i \(-0.688351\pi\)
0.829981 + 0.557792i \(0.188351\pi\)
\(684\) 0 0
\(685\) 51.7955i 1.97900i
\(686\) −10.3408 8.46822i −0.394814 0.323318i
\(687\) 0 0
\(688\) −5.40393 12.8919i −0.206023 0.491497i
\(689\) −6.60420 + 28.2308i −0.251600 + 1.07551i
\(690\) 0 0
\(691\) 32.6940 + 32.6940i 1.24374 + 1.24374i 0.958439 + 0.285298i \(0.0920924\pi\)
0.285298 + 0.958439i \(0.407908\pi\)
\(692\) −3.56076 + 0.716105i −0.135360 + 0.0272222i
\(693\) 0 0
\(694\) 1.86283 + 18.7110i 0.0707122 + 0.710259i
\(695\) 30.0605 30.0605i 1.14026 1.14026i
\(696\) 0 0
\(697\) −0.0360829 + 0.0360829i −0.00136674 + 0.00136674i
\(698\) 26.0634 31.8268i 0.986514 1.20466i
\(699\) 0 0
\(700\) −62.9872 + 94.6996i −2.38069 + 3.57931i
\(701\) −29.6221 −1.11881 −0.559406 0.828894i \(-0.688971\pi\)
−0.559406 + 0.828894i \(0.688971\pi\)
\(702\) 0 0
\(703\) 5.78463i 0.218171i
\(704\) 5.50588 28.6272i 0.207511 1.07893i
\(705\) 0 0
\(706\) 4.27851 5.22462i 0.161024 0.196631i
\(707\) 8.26122 + 8.26122i 0.310695 + 0.310695i
\(708\) 0 0
\(709\) −25.8554 25.8554i −0.971021 0.971021i 0.0285709 0.999592i \(-0.490904\pi\)
−0.999592 + 0.0285709i \(0.990904\pi\)
\(710\) −48.7516 + 4.85363i −1.82962 + 0.182154i
\(711\) 0 0
\(712\) 40.2004 + 21.3240i 1.50657 + 0.799151i
\(713\) −15.7995 + 15.7995i −0.591696 + 0.591696i
\(714\) 0 0
\(715\) −13.0688 + 55.8651i −0.488747 + 2.08923i
\(716\) −4.13891 20.5803i −0.154678 0.769122i
\(717\) 0 0
\(718\) −12.8911 + 15.7418i −0.481093 + 0.587478i
\(719\) −31.2277 −1.16460 −0.582299 0.812975i \(-0.697847\pi\)
−0.582299 + 0.812975i \(0.697847\pi\)
\(720\) 0 0
\(721\) −20.4555 20.4555i −0.761802 0.761802i
\(722\) 20.7252 2.06336i 0.771311 0.0767905i
\(723\) 0 0
\(724\) −27.5612 + 5.54284i −1.02430 + 0.205998i
\(725\) 7.20855 0.267719
\(726\) 0 0
\(727\) 21.2172 0.786902 0.393451 0.919346i \(-0.371281\pi\)
0.393451 + 0.919346i \(0.371281\pi\)
\(728\) −27.1032 + 31.0578i −1.00451 + 1.15108i
\(729\) 0 0
\(730\) 49.8030 4.95831i 1.84329 0.183515i
\(731\) 3.74614 0.138556
\(732\) 0 0
\(733\) −23.8649 + 23.8649i −0.881469 + 0.881469i −0.993684 0.112215i \(-0.964206\pi\)
0.112215 + 0.993684i \(0.464206\pi\)
\(734\) −17.9499 + 1.78707i −0.662544 + 0.0659618i
\(735\) 0 0
\(736\) 14.8862 + 27.4997i 0.548712 + 1.01365i
\(737\) −10.4770 −0.385927
\(738\) 0 0
\(739\) 28.5318 28.5318i 1.04956 1.04956i 0.0508533 0.998706i \(-0.483806\pi\)
0.998706 0.0508533i \(-0.0161941\pi\)
\(740\) 23.9613 4.81885i 0.880834 0.177145i
\(741\) 0 0
\(742\) 35.5631 + 29.1231i 1.30556 + 1.06914i
\(743\) 14.7470 14.7470i 0.541013 0.541013i −0.382813 0.923826i \(-0.625044\pi\)
0.923826 + 0.382813i \(0.125044\pi\)
\(744\) 0 0
\(745\) 39.5099i 1.44753i
\(746\) −19.2736 + 1.91885i −0.705658 + 0.0702542i
\(747\) 0 0
\(748\) 6.50494 + 4.32660i 0.237844 + 0.158196i
\(749\) 30.4421 + 30.4421i 1.11233 + 1.11233i
\(750\) 0 0
\(751\) −44.2644 −1.61523 −0.807615 0.589710i \(-0.799242\pi\)
−0.807615 + 0.589710i \(0.799242\pi\)
\(752\) −33.7976 13.8324i −1.23247 0.504415i
\(753\) 0 0
\(754\) 2.59038 + 0.340166i 0.0943361 + 0.0123881i
\(755\) −38.4803 −1.40044
\(756\) 0 0
\(757\) 15.4803i 0.562641i −0.959614 0.281320i \(-0.909228\pi\)
0.959614 0.281320i \(-0.0907724\pi\)
\(758\) 21.3812 26.1093i 0.776601 0.948332i
\(759\) 0 0
\(760\) 7.48844 + 24.4073i 0.271634 + 0.885346i
\(761\) −15.3450 + 15.3450i −0.556257 + 0.556257i −0.928240 0.371983i \(-0.878678\pi\)
0.371983 + 0.928240i \(0.378678\pi\)
\(762\) 0 0
\(763\) −10.1785 −0.368486
\(764\) 5.97559 + 29.7130i 0.216189 + 1.07498i
\(765\) 0 0
\(766\) −4.34933 3.56172i −0.157148 0.128690i
\(767\) 5.33170 3.31008i 0.192517 0.119520i
\(768\) 0 0
\(769\) 0.693724 + 0.693724i 0.0250163 + 0.0250163i 0.719504 0.694488i \(-0.244369\pi\)
−0.694488 + 0.719504i \(0.744369\pi\)
\(770\) 70.3747 + 57.6307i 2.53613 + 2.07687i
\(771\) 0 0
\(772\) 25.9545 39.0220i 0.934124 1.40443i
\(773\) 2.77394 2.77394i 0.0997716 0.0997716i −0.655459 0.755231i \(-0.727525\pi\)
0.755231 + 0.655459i \(0.227525\pi\)
\(774\) 0 0
\(775\) 40.2110 + 40.2110i 1.44442 + 1.44442i
\(776\) 16.4996 31.1054i 0.592301 1.11662i
\(777\) 0 0
\(778\) 4.79992 + 48.2121i 0.172085 + 1.72849i
\(779\) 0.0983980i 0.00352547i
\(780\) 0 0
\(781\) 28.9088i 1.03444i
\(782\) −8.33890 + 0.830207i −0.298198 + 0.0296881i
\(783\) 0 0
\(784\) 14.4400 + 34.4487i 0.515713 + 1.23031i
\(785\) −73.5578 73.5578i −2.62539 2.62539i
\(786\) 0 0
\(787\) 9.16585 9.16585i 0.326727 0.326727i −0.524613 0.851341i \(-0.675790\pi\)
0.851341 + 0.524613i \(0.175790\pi\)
\(788\) −9.78831 + 14.7165i −0.348694 + 0.524252i
\(789\) 0 0
\(790\) 26.0571 31.8192i 0.927070 1.13207i
\(791\) −8.56123 8.56123i −0.304402 0.304402i
\(792\) 0 0
\(793\) −3.83406 + 16.3894i −0.136152 + 0.582004i
\(794\) 20.5223 25.0605i 0.728310 0.889363i
\(795\) 0 0
\(796\) −8.29096 + 1.66740i −0.293865 + 0.0590993i
\(797\) 21.6299 0.766172 0.383086 0.923713i \(-0.374861\pi\)
0.383086 + 0.923713i \(0.374861\pi\)
\(798\) 0 0
\(799\) 6.92020 6.92020i 0.244819 0.244819i
\(800\) 69.9889 37.8866i 2.47448 1.33949i
\(801\) 0 0
\(802\) −28.6331 23.4480i −1.01107 0.827977i
\(803\) 29.5323i 1.04217i
\(804\) 0 0
\(805\) −97.5710 −3.43893
\(806\) 12.5522 + 16.3473i 0.442134 + 0.575809i
\(807\) 0 0
\(808\) −2.39794 7.81569i −0.0843593 0.274955i
\(809\) 12.8260 0.450937 0.225468 0.974250i \(-0.427609\pi\)
0.225468 + 0.974250i \(0.427609\pi\)
\(810\) 0 0
\(811\) 5.35046 + 5.35046i 0.187880 + 0.187880i 0.794779 0.606899i \(-0.207587\pi\)
−0.606899 + 0.794779i \(0.707587\pi\)
\(812\) 2.29395 3.44889i 0.0805018 0.121032i
\(813\) 0 0
\(814\) −1.42874 14.3508i −0.0500775 0.502996i
\(815\) 24.9140i 0.872698i
\(816\) 0 0
\(817\) 5.10785 5.10785i 0.178701 0.178701i
\(818\) 24.5520 29.9813i 0.858442 1.04827i
\(819\) 0 0
\(820\) 0.407587 0.0819699i 0.0142336 0.00286251i
\(821\) −11.7654 + 11.7654i −0.410614 + 0.410614i −0.881953 0.471338i \(-0.843771\pi\)
0.471338 + 0.881953i \(0.343771\pi\)
\(822\) 0 0
\(823\) −9.95031 −0.346846 −0.173423 0.984847i \(-0.555483\pi\)
−0.173423 + 0.984847i \(0.555483\pi\)
\(824\) 5.93751 + 19.3523i 0.206843 + 0.674170i
\(825\) 0 0
\(826\) −0.985687 9.90060i −0.0342965 0.344486i
\(827\) 0.583398 0.583398i 0.0202867 0.0202867i −0.696891 0.717177i \(-0.745434\pi\)
0.717177 + 0.696891i \(0.245434\pi\)
\(828\) 0 0
\(829\) 43.6976 1.51768 0.758840 0.651277i \(-0.225766\pi\)
0.758840 + 0.651277i \(0.225766\pi\)
\(830\) 0.133231 + 1.33822i 0.00462450 + 0.0464502i
\(831\) 0 0
\(832\) 26.9382 10.3117i 0.933915 0.357496i
\(833\) −10.0101 −0.346831
\(834\) 0 0
\(835\) 29.5719 1.02338
\(836\) 14.7688 2.97015i 0.510789 0.102725i
\(837\) 0 0
\(838\) −5.06660 50.8907i −0.175023 1.75799i
\(839\) −25.4022 25.4022i −0.876982 0.876982i 0.116239 0.993221i \(-0.462916\pi\)
−0.993221 + 0.116239i \(0.962916\pi\)
\(840\) 0 0
\(841\) 28.7375 0.990947
\(842\) 1.08619 + 0.889491i 0.0374325 + 0.0306539i
\(843\) 0 0
\(844\) 48.6843 9.79091i 1.67578 0.337017i
\(845\) −53.7821 + 18.1692i −1.85016 + 0.625039i
\(846\) 0 0
\(847\) 6.51263 6.51263i 0.223777 0.223777i
\(848\) −12.4344 29.6642i −0.427000 1.01867i
\(849\) 0 0
\(850\) 2.11294 + 21.2232i 0.0724734 + 0.727949i
\(851\) 10.9388 + 10.9388i 0.374977 + 0.374977i
\(852\) 0 0
\(853\) 15.3474 + 15.3474i 0.525486 + 0.525486i 0.919223 0.393737i \(-0.128818\pi\)
−0.393737 + 0.919223i \(0.628818\pi\)
\(854\) 20.6461 + 16.9074i 0.706496 + 0.578558i
\(855\) 0 0
\(856\) −8.83629 28.8004i −0.302018 0.984377i
\(857\) 45.0479i 1.53881i 0.638762 + 0.769404i \(0.279447\pi\)
−0.638762 + 0.769404i \(0.720553\pi\)
\(858\) 0 0
\(859\) −24.0655 −0.821106 −0.410553 0.911837i \(-0.634664\pi\)
−0.410553 + 0.911837i \(0.634664\pi\)
\(860\) −25.4130 16.9028i −0.866575 0.576382i
\(861\) 0 0
\(862\) −4.10451 3.36123i −0.139800 0.114484i
\(863\) 7.38306 7.38306i 0.251322 0.251322i −0.570190 0.821513i \(-0.693131\pi\)
0.821513 + 0.570190i \(0.193131\pi\)
\(864\) 0 0
\(865\) −5.60750 + 5.60750i −0.190661 + 0.190661i
\(866\) −38.3384 + 3.81691i −1.30279 + 0.129704i
\(867\) 0 0
\(868\) 32.0349 6.44255i 1.08734 0.218674i
\(869\) −17.1598 17.1598i −0.582105 0.582105i
\(870\) 0 0
\(871\) −5.46782 8.80728i −0.185270 0.298423i
\(872\) 6.29201 + 3.33755i 0.213074 + 0.113024i
\(873\) 0 0
\(874\) −10.2381 + 12.5021i −0.346308 + 0.422888i
\(875\) 160.072i 5.41143i
\(876\) 0 0
\(877\) −0.141964 + 0.141964i −0.00479380 + 0.00479380i −0.709500 0.704706i \(-0.751079\pi\)
0.704706 + 0.709500i \(0.251079\pi\)
\(878\) 3.98570 + 40.0339i 0.134511 + 1.35108i
\(879\) 0 0
\(880\) −24.6061 58.7015i −0.829472 1.97883i
\(881\) 15.3692i 0.517802i 0.965904 + 0.258901i \(0.0833604\pi\)
−0.965904 + 0.258901i \(0.916640\pi\)
\(882\) 0 0
\(883\) 47.6748i 1.60438i 0.597066 + 0.802192i \(0.296333\pi\)
−0.597066 + 0.802192i \(0.703667\pi\)
\(884\) −0.242224 + 7.72622i −0.00814686 + 0.259861i
\(885\) 0 0
\(886\) 3.67860 + 36.9492i 0.123585 + 1.24133i
\(887\) 50.4271i 1.69317i 0.532250 + 0.846587i \(0.321347\pi\)
−0.532250 + 0.846587i \(0.678653\pi\)
\(888\) 0 0
\(889\) −46.1990 46.1990i −1.54946 1.54946i
\(890\) 98.8685 9.84319i 3.31408 0.329944i
\(891\) 0 0
\(892\) 2.87188 4.31780i 0.0961577 0.144571i
\(893\) 18.8713i 0.631505i
\(894\) 0 0
\(895\) −32.4100 32.4100i −1.08335 1.08335i
\(896\) 4.14567 45.5423i 0.138497 1.52146i
\(897\) 0 0
\(898\) 16.0240 + 13.1223i 0.534729 + 0.437896i
\(899\) −1.46446 1.46446i −0.0488423 0.0488423i
\(900\) 0 0
\(901\) 8.61986 0.287169
\(902\) −0.0243033 0.244111i −0.000809212 0.00812801i
\(903\) 0 0
\(904\) 2.48502 + 8.09952i 0.0826507 + 0.269386i
\(905\) −43.4036 + 43.4036i −1.44278 + 1.44278i
\(906\) 0 0
\(907\) 31.3735i 1.04174i −0.853636 0.520870i \(-0.825608\pi\)
0.853636 0.520870i \(-0.174392\pi\)
\(908\) 22.1852 + 14.7560i 0.736241 + 0.489694i
\(909\) 0 0
\(910\) −11.7183 + 89.2355i −0.388459 + 2.95813i
\(911\) 37.5437i 1.24388i 0.783066 + 0.621939i \(0.213655\pi\)
−0.783066 + 0.621939i \(0.786345\pi\)
\(912\) 0 0
\(913\) 0.793538 0.0262623
\(914\) −25.7320 + 31.4221i −0.851138 + 1.03935i
\(915\) 0 0
\(916\) −11.7277 7.80040i −0.387494 0.257732i
\(917\) 0.338766 + 0.338766i 0.0111870 + 0.0111870i
\(918\) 0 0
\(919\) 30.2192i 0.996841i 0.866935 + 0.498420i \(0.166086\pi\)
−0.866935 + 0.498420i \(0.833914\pi\)
\(920\) 60.3152 + 31.9938i 1.98853 + 1.05480i
\(921\) 0 0
\(922\) −20.5930 16.8639i −0.678195 0.555382i
\(923\) −24.3015 + 15.0871i −0.799894 + 0.496598i
\(924\) 0 0
\(925\) 27.8401 27.8401i 0.915377 0.915377i
\(926\) 4.11716 5.02760i 0.135298 0.165217i
\(927\) 0 0
\(928\) −2.54894 + 1.37980i −0.0836732 + 0.0452942i
\(929\) −21.2995 21.2995i −0.698815 0.698815i 0.265340 0.964155i \(-0.414516\pi\)
−0.964155 + 0.265340i \(0.914516\pi\)
\(930\) 0 0
\(931\) −13.6488 + 13.6488i −0.447322 + 0.447322i
\(932\) 2.12334 + 10.5581i 0.0695522 + 0.345841i
\(933\) 0 0
\(934\) −56.7114 + 5.64609i −1.85565 + 0.184746i
\(935\) 17.0576 0.557842
\(936\) 0 0
\(937\) 35.9894 1.17572 0.587861 0.808962i \(-0.299970\pi\)
0.587861 + 0.808962i \(0.299970\pi\)
\(938\) −16.3545 + 1.62823i −0.533993 + 0.0531635i
\(939\) 0 0
\(940\) −78.1695 + 15.7207i −2.54961 + 0.512752i
\(941\) 11.4948 11.4948i 0.374720 0.374720i −0.494473 0.869193i \(-0.664639\pi\)
0.869193 + 0.494473i \(0.164639\pi\)
\(942\) 0 0
\(943\) 0.186072 + 0.186072i 0.00605932 + 0.00605932i
\(944\) −2.63711 + 6.44344i −0.0858306 + 0.209716i
\(945\) 0 0
\(946\) −11.4102 + 13.9334i −0.370979 + 0.453015i
\(947\) −5.55235 + 5.55235i −0.180427 + 0.180427i −0.791542 0.611115i \(-0.790721\pi\)
0.611115 + 0.791542i \(0.290721\pi\)
\(948\) 0 0
\(949\) 24.8256 15.4125i 0.805873 0.500310i
\(950\) 31.8187 + 26.0567i 1.03234 + 0.845392i
\(951\) 0 0
\(952\) 10.8265 + 5.74284i 0.350889 + 0.186126i
\(953\) 10.6622i 0.345384i 0.984976 + 0.172692i \(0.0552465\pi\)
−0.984976 + 0.172692i \(0.944753\pi\)
\(954\) 0 0
\(955\) 46.7922 + 46.7922i 1.51416 + 1.51416i
\(956\) −10.1511 + 15.2619i −0.328310 + 0.493605i
\(957\) 0 0
\(958\) −24.1013 + 29.4309i −0.778678 + 0.950869i
\(959\) −47.9437 −1.54818
\(960\) 0 0
\(961\) 14.6618i 0.472962i
\(962\) 11.3180 8.69054i 0.364909 0.280194i
\(963\) 0 0
\(964\) −25.4199 + 38.2182i −0.818721 + 1.23093i
\(965\) 102.325i 3.29397i
\(966\) 0 0
\(967\) 0.807895 0.807895i 0.0259801 0.0259801i −0.693997 0.719978i \(-0.744152\pi\)
0.719978 + 0.693997i \(0.244152\pi\)
\(968\) −6.16140 + 1.89039i −0.198035 + 0.0607594i
\(969\) 0 0
\(970\) −7.61624 76.5002i −0.244543 2.45627i
\(971\) −12.7850 −0.410290 −0.205145 0.978732i \(-0.565767\pi\)
−0.205145 + 0.978732i \(0.565767\pi\)
\(972\) 0 0
\(973\) −27.8251 27.8251i −0.892031 0.892031i
\(974\) 13.0506 + 10.6873i 0.418167 + 0.342442i
\(975\) 0 0
\(976\) −7.21880 17.2215i −0.231068 0.551247i
\(977\) −10.2997 10.2997i −0.329517 0.329517i 0.522886 0.852403i \(-0.324855\pi\)
−0.852403 + 0.522886i \(0.824855\pi\)
\(978\) 0 0
\(979\) 58.6272i 1.87373i
\(980\) 67.9066 + 45.1665i 2.16920 + 1.44279i
\(981\) 0 0
\(982\) −32.8998 + 3.27545i −1.04988 + 0.104524i
\(983\) 36.2990 + 36.2990i 1.15776 + 1.15776i 0.984957 + 0.172800i \(0.0552816\pi\)
0.172800 + 0.984957i \(0.444718\pi\)
\(984\) 0 0
\(985\) 38.5902i 1.22959i
\(986\) −0.0769518 0.772932i −0.00245065 0.0246152i
\(987\) 0 0
\(988\) 10.2044 + 10.8649i 0.324645 + 0.345660i
\(989\) 19.3180i 0.614276i
\(990\) 0 0
\(991\) 22.9756i 0.729843i −0.931038 0.364922i \(-0.881096\pi\)
0.931038 0.364922i \(-0.118904\pi\)
\(992\) −21.9155 6.52176i −0.695817 0.207066i
\(993\) 0 0
\(994\) 4.49269 + 45.1262i 0.142499 + 1.43132i
\(995\) −13.0566 + 13.0566i −0.413923 + 0.413923i
\(996\) 0 0
\(997\) 38.3954i 1.21599i 0.793940 + 0.607997i \(0.208027\pi\)
−0.793940 + 0.607997i \(0.791973\pi\)
\(998\) 23.6035 28.8230i 0.747155 0.912375i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.w.j.307.7 24
3.2 odd 2 312.2.t.e.307.6 yes 24
8.3 odd 2 inner 936.2.w.j.307.12 24
12.11 even 2 1248.2.bb.f.463.12 24
13.5 odd 4 inner 936.2.w.j.811.12 24
24.5 odd 2 1248.2.bb.f.463.1 24
24.11 even 2 312.2.t.e.307.1 yes 24
39.5 even 4 312.2.t.e.187.1 24
104.83 even 4 inner 936.2.w.j.811.7 24
156.83 odd 4 1248.2.bb.f.655.1 24
312.5 even 4 1248.2.bb.f.655.12 24
312.83 odd 4 312.2.t.e.187.6 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.t.e.187.1 24 39.5 even 4
312.2.t.e.187.6 yes 24 312.83 odd 4
312.2.t.e.307.1 yes 24 24.11 even 2
312.2.t.e.307.6 yes 24 3.2 odd 2
936.2.w.j.307.7 24 1.1 even 1 trivial
936.2.w.j.307.12 24 8.3 odd 2 inner
936.2.w.j.811.7 24 104.83 even 4 inner
936.2.w.j.811.12 24 13.5 odd 4 inner
1248.2.bb.f.463.1 24 24.5 odd 2
1248.2.bb.f.463.12 24 12.11 even 2
1248.2.bb.f.655.1 24 156.83 odd 4
1248.2.bb.f.655.12 24 312.5 even 4