Properties

Label 936.2.w.j.307.11
Level $936$
Weight $2$
Character 936.307
Analytic conductor $7.474$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(307,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.w (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 307.11
Character \(\chi\) \(=\) 936.307
Dual form 936.2.w.j.811.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.35425 + 0.407446i) q^{2} +(1.66797 + 1.10357i) q^{4} +(-0.273741 + 0.273741i) q^{5} +(1.75949 + 1.75949i) q^{7} +(1.80921 + 2.17411i) q^{8} +(-0.482247 + 0.259178i) q^{10} +(3.22801 - 3.22801i) q^{11} +(-1.42905 - 3.31026i) q^{13} +(1.66589 + 3.09968i) q^{14} +(1.56428 + 3.68144i) q^{16} -2.18769i q^{17} +(5.33373 + 5.33373i) q^{19} +(-0.758684 + 0.154501i) q^{20} +(5.68676 - 3.05628i) q^{22} -6.75871 q^{23} +4.85013i q^{25} +(-0.586533 - 5.06517i) q^{26} +(0.993070 + 4.87650i) q^{28} -0.239304i q^{29} +(-1.75949 + 1.75949i) q^{31} +(0.618432 + 5.62295i) q^{32} +(0.891368 - 2.96268i) q^{34} -0.963288 q^{35} +(3.35366 + 3.35366i) q^{37} +(5.04999 + 9.39641i) q^{38} +(-1.09040 - 0.0998898i) q^{40} +(-1.29342 - 1.29342i) q^{41} +2.60196i q^{43} +(8.94655 - 1.82191i) q^{44} +(-9.15296 - 2.75381i) q^{46} +(-7.61070 - 7.61070i) q^{47} -0.808387i q^{49} +(-1.97617 + 6.56828i) q^{50} +(1.26948 - 7.09848i) q^{52} +11.6675i q^{53} +1.76727i q^{55} +(-0.642050 + 7.00861i) q^{56} +(0.0975034 - 0.324076i) q^{58} +(9.48121 - 9.48121i) q^{59} -1.47245i q^{61} +(-3.09968 + 1.66589i) q^{62} +(-1.45354 + 7.86684i) q^{64} +(1.29734 + 0.514964i) q^{65} +(-7.93570 - 7.93570i) q^{67} +(2.41427 - 3.64902i) q^{68} +(-1.30453 - 0.392488i) q^{70} +(5.30009 - 5.30009i) q^{71} +(3.04174 - 3.04174i) q^{73} +(3.17525 + 5.90813i) q^{74} +(3.01040 + 14.7827i) q^{76} +11.3593 q^{77} -16.2639i q^{79} +(-1.43597 - 0.579554i) q^{80} +(-1.22462 - 2.27862i) q^{82} +(2.81374 + 2.81374i) q^{83} +(0.598861 + 0.598861i) q^{85} +(-1.06016 + 3.52370i) q^{86} +(12.8582 + 1.17792i) q^{88} +(0.702659 - 0.702659i) q^{89} +(3.30997 - 8.33877i) q^{91} +(-11.2734 - 7.45868i) q^{92} +(-7.20583 - 13.4077i) q^{94} -2.92012 q^{95} +(-3.22944 - 3.22944i) q^{97} +(0.329375 - 1.09476i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 6 q^{8} - 8 q^{11} - 36 q^{14} + 28 q^{16} + 20 q^{19} + 20 q^{20} + 20 q^{22} - 12 q^{26} - 16 q^{28} + 30 q^{32} + 16 q^{34} - 16 q^{35} + 36 q^{40} + 12 q^{41} + 32 q^{44} - 44 q^{46} + 36 q^{50}+ \cdots - 68 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.35425 + 0.407446i 0.957598 + 0.288108i
\(3\) 0 0
\(4\) 1.66797 + 1.10357i 0.833987 + 0.551783i
\(5\) −0.273741 + 0.273741i −0.122421 + 0.122421i −0.765663 0.643242i \(-0.777589\pi\)
0.643242 + 0.765663i \(0.277589\pi\)
\(6\) 0 0
\(7\) 1.75949 + 1.75949i 0.665025 + 0.665025i 0.956560 0.291535i \(-0.0941661\pi\)
−0.291535 + 0.956560i \(0.594166\pi\)
\(8\) 1.80921 + 2.17411i 0.639651 + 0.768665i
\(9\) 0 0
\(10\) −0.482247 + 0.259178i −0.152500 + 0.0819593i
\(11\) 3.22801 3.22801i 0.973281 0.973281i −0.0263717 0.999652i \(-0.508395\pi\)
0.999652 + 0.0263717i \(0.00839534\pi\)
\(12\) 0 0
\(13\) −1.42905 3.31026i −0.396347 0.918101i
\(14\) 1.66589 + 3.09968i 0.445227 + 0.828425i
\(15\) 0 0
\(16\) 1.56428 + 3.68144i 0.391070 + 0.920361i
\(17\) 2.18769i 0.530594i −0.964167 0.265297i \(-0.914530\pi\)
0.964167 0.265297i \(-0.0854700\pi\)
\(18\) 0 0
\(19\) 5.33373 + 5.33373i 1.22364 + 1.22364i 0.966328 + 0.257315i \(0.0828379\pi\)
0.257315 + 0.966328i \(0.417162\pi\)
\(20\) −0.758684 + 0.154501i −0.169647 + 0.0345476i
\(21\) 0 0
\(22\) 5.68676 3.05628i 1.21242 0.651601i
\(23\) −6.75871 −1.40929 −0.704644 0.709561i \(-0.748893\pi\)
−0.704644 + 0.709561i \(0.748893\pi\)
\(24\) 0 0
\(25\) 4.85013i 0.970026i
\(26\) −0.586533 5.06517i −0.115029 0.993362i
\(27\) 0 0
\(28\) 0.993070 + 4.87650i 0.187673 + 0.921572i
\(29\) 0.239304i 0.0444375i −0.999753 0.0222188i \(-0.992927\pi\)
0.999753 0.0222188i \(-0.00707304\pi\)
\(30\) 0 0
\(31\) −1.75949 + 1.75949i −0.316014 + 0.316014i −0.847234 0.531220i \(-0.821734\pi\)
0.531220 + 0.847234i \(0.321734\pi\)
\(32\) 0.618432 + 5.62295i 0.109324 + 0.994006i
\(33\) 0 0
\(34\) 0.891368 2.96268i 0.152868 0.508096i
\(35\) −0.963288 −0.162825
\(36\) 0 0
\(37\) 3.35366 + 3.35366i 0.551339 + 0.551339i 0.926827 0.375488i \(-0.122525\pi\)
−0.375488 + 0.926827i \(0.622525\pi\)
\(38\) 5.04999 + 9.39641i 0.819216 + 1.52430i
\(39\) 0 0
\(40\) −1.09040 0.0998898i −0.172407 0.0157940i
\(41\) −1.29342 1.29342i −0.201999 0.201999i 0.598857 0.800856i \(-0.295622\pi\)
−0.800856 + 0.598857i \(0.795622\pi\)
\(42\) 0 0
\(43\) 2.60196i 0.396796i 0.980122 + 0.198398i \(0.0635738\pi\)
−0.980122 + 0.198398i \(0.936426\pi\)
\(44\) 8.94655 1.82191i 1.34874 0.274664i
\(45\) 0 0
\(46\) −9.15296 2.75381i −1.34953 0.406027i
\(47\) −7.61070 7.61070i −1.11014 1.11014i −0.993131 0.117004i \(-0.962671\pi\)
−0.117004 0.993131i \(-0.537329\pi\)
\(48\) 0 0
\(49\) 0.808387i 0.115484i
\(50\) −1.97617 + 6.56828i −0.279473 + 0.928895i
\(51\) 0 0
\(52\) 1.26948 7.09848i 0.176045 0.984382i
\(53\) 11.6675i 1.60265i 0.598229 + 0.801325i \(0.295871\pi\)
−0.598229 + 0.801325i \(0.704129\pi\)
\(54\) 0 0
\(55\) 1.76727i 0.238299i
\(56\) −0.642050 + 7.00861i −0.0857975 + 0.936565i
\(57\) 0 0
\(58\) 0.0975034 0.324076i 0.0128028 0.0425533i
\(59\) 9.48121 9.48121i 1.23435 1.23435i 0.272071 0.962277i \(-0.412291\pi\)
0.962277 0.272071i \(-0.0877086\pi\)
\(60\) 0 0
\(61\) 1.47245i 0.188528i −0.995547 0.0942641i \(-0.969950\pi\)
0.995547 0.0942641i \(-0.0300498\pi\)
\(62\) −3.09968 + 1.66589i −0.393660 + 0.211568i
\(63\) 0 0
\(64\) −1.45354 + 7.86684i −0.181693 + 0.983355i
\(65\) 1.29734 + 0.514964i 0.160915 + 0.0638734i
\(66\) 0 0
\(67\) −7.93570 7.93570i −0.969500 0.969500i 0.0300487 0.999548i \(-0.490434\pi\)
−0.999548 + 0.0300487i \(0.990434\pi\)
\(68\) 2.41427 3.64902i 0.292773 0.442509i
\(69\) 0 0
\(70\) −1.30453 0.392488i −0.155921 0.0469113i
\(71\) 5.30009 5.30009i 0.629005 0.629005i −0.318813 0.947818i \(-0.603284\pi\)
0.947818 + 0.318813i \(0.103284\pi\)
\(72\) 0 0
\(73\) 3.04174 3.04174i 0.356009 0.356009i −0.506330 0.862340i \(-0.668998\pi\)
0.862340 + 0.506330i \(0.168998\pi\)
\(74\) 3.17525 + 5.90813i 0.369116 + 0.686806i
\(75\) 0 0
\(76\) 3.01040 + 14.7827i 0.345317 + 1.69569i
\(77\) 11.3593 1.29451
\(78\) 0 0
\(79\) 16.2639i 1.82983i −0.403642 0.914917i \(-0.632256\pi\)
0.403642 0.914917i \(-0.367744\pi\)
\(80\) −1.43597 0.579554i −0.160546 0.0647961i
\(81\) 0 0
\(82\) −1.22462 2.27862i −0.135236 0.251631i
\(83\) 2.81374 + 2.81374i 0.308848 + 0.308848i 0.844463 0.535615i \(-0.179920\pi\)
−0.535615 + 0.844463i \(0.679920\pi\)
\(84\) 0 0
\(85\) 0.598861 + 0.598861i 0.0649556 + 0.0649556i
\(86\) −1.06016 + 3.52370i −0.114320 + 0.379971i
\(87\) 0 0
\(88\) 12.8582 + 1.17792i 1.37069 + 0.125567i
\(89\) 0.702659 0.702659i 0.0744817 0.0744817i −0.668885 0.743366i \(-0.733228\pi\)
0.743366 + 0.668885i \(0.233228\pi\)
\(90\) 0 0
\(91\) 3.30997 8.33877i 0.346979 0.874140i
\(92\) −11.2734 7.45868i −1.17533 0.777622i
\(93\) 0 0
\(94\) −7.20583 13.4077i −0.743224 1.38290i
\(95\) −2.92012 −0.299598
\(96\) 0 0
\(97\) −3.22944 3.22944i −0.327900 0.327900i 0.523888 0.851787i \(-0.324481\pi\)
−0.851787 + 0.523888i \(0.824481\pi\)
\(98\) 0.329375 1.09476i 0.0332719 0.110587i
\(99\) 0 0
\(100\) −5.35245 + 8.08990i −0.535245 + 0.808990i
\(101\) −12.6936 −1.26306 −0.631528 0.775353i \(-0.717572\pi\)
−0.631528 + 0.775353i \(0.717572\pi\)
\(102\) 0 0
\(103\) −10.4036 −1.02510 −0.512548 0.858659i \(-0.671298\pi\)
−0.512548 + 0.858659i \(0.671298\pi\)
\(104\) 4.61144 9.09586i 0.452188 0.891922i
\(105\) 0 0
\(106\) −4.75387 + 15.8006i −0.461737 + 1.53469i
\(107\) −9.91564 −0.958581 −0.479291 0.877656i \(-0.659106\pi\)
−0.479291 + 0.877656i \(0.659106\pi\)
\(108\) 0 0
\(109\) −8.34923 + 8.34923i −0.799711 + 0.799711i −0.983050 0.183338i \(-0.941310\pi\)
0.183338 + 0.983050i \(0.441310\pi\)
\(110\) −0.720069 + 2.39333i −0.0686559 + 0.228195i
\(111\) 0 0
\(112\) −3.72513 + 9.22980i −0.351992 + 0.872134i
\(113\) −3.60085 −0.338739 −0.169370 0.985553i \(-0.554173\pi\)
−0.169370 + 0.985553i \(0.554173\pi\)
\(114\) 0 0
\(115\) 1.85013 1.85013i 0.172526 0.172526i
\(116\) 0.264087 0.399152i 0.0245199 0.0370604i
\(117\) 0 0
\(118\) 16.7030 8.97682i 1.53763 0.826383i
\(119\) 3.84923 3.84923i 0.352858 0.352858i
\(120\) 0 0
\(121\) 9.84005i 0.894550i
\(122\) 0.599945 1.99406i 0.0543165 0.180534i
\(123\) 0 0
\(124\) −4.87650 + 0.993070i −0.437923 + 0.0891803i
\(125\) −2.69638 2.69638i −0.241172 0.241172i
\(126\) 0 0
\(127\) 4.03065 0.357662 0.178831 0.983880i \(-0.442768\pi\)
0.178831 + 0.983880i \(0.442768\pi\)
\(128\) −5.17377 + 10.0614i −0.457301 + 0.889312i
\(129\) 0 0
\(130\) 1.54710 + 1.22599i 0.135690 + 0.107526i
\(131\) −6.67425 −0.583132 −0.291566 0.956551i \(-0.594176\pi\)
−0.291566 + 0.956551i \(0.594176\pi\)
\(132\) 0 0
\(133\) 18.7693i 1.62751i
\(134\) −7.51353 13.9803i −0.649070 1.20771i
\(135\) 0 0
\(136\) 4.75630 3.95799i 0.407849 0.339395i
\(137\) −8.50127 + 8.50127i −0.726312 + 0.726312i −0.969883 0.243571i \(-0.921681\pi\)
0.243571 + 0.969883i \(0.421681\pi\)
\(138\) 0 0
\(139\) −0.357408 −0.0303149 −0.0151575 0.999885i \(-0.504825\pi\)
−0.0151575 + 0.999885i \(0.504825\pi\)
\(140\) −1.60674 1.06305i −0.135794 0.0898444i
\(141\) 0 0
\(142\) 9.33713 5.01813i 0.783555 0.421112i
\(143\) −15.2985 6.07256i −1.27933 0.507813i
\(144\) 0 0
\(145\) 0.0655071 + 0.0655071i 0.00544007 + 0.00544007i
\(146\) 5.35862 2.87993i 0.443483 0.238345i
\(147\) 0 0
\(148\) 1.89283 + 9.29482i 0.155590 + 0.764029i
\(149\) 0.325120 0.325120i 0.0266349 0.0266349i −0.693664 0.720299i \(-0.744005\pi\)
0.720299 + 0.693664i \(0.244005\pi\)
\(150\) 0 0
\(151\) −11.3804 11.3804i −0.926126 0.926126i 0.0713267 0.997453i \(-0.477277\pi\)
−0.997453 + 0.0713267i \(0.977277\pi\)
\(152\) −1.94632 + 21.2460i −0.157867 + 1.72328i
\(153\) 0 0
\(154\) 15.3833 + 4.62830i 1.23962 + 0.372959i
\(155\) 0.963288i 0.0773731i
\(156\) 0 0
\(157\) 16.2487i 1.29679i −0.761303 0.648396i \(-0.775440\pi\)
0.761303 0.648396i \(-0.224560\pi\)
\(158\) 6.62668 22.0254i 0.527190 1.75224i
\(159\) 0 0
\(160\) −1.70852 1.36994i −0.135070 0.108303i
\(161\) −11.8919 11.8919i −0.937211 0.937211i
\(162\) 0 0
\(163\) 11.3489 11.3489i 0.888911 0.888911i −0.105508 0.994418i \(-0.533647\pi\)
0.994418 + 0.105508i \(0.0336468\pi\)
\(164\) −0.730018 3.58478i −0.0570049 0.279924i
\(165\) 0 0
\(166\) 2.66405 + 4.95695i 0.206771 + 0.384734i
\(167\) 10.8504 + 10.8504i 0.839631 + 0.839631i 0.988810 0.149179i \(-0.0476630\pi\)
−0.149179 + 0.988810i \(0.547663\pi\)
\(168\) 0 0
\(169\) −8.91564 + 9.46105i −0.685818 + 0.727773i
\(170\) 0.567002 + 1.05501i 0.0434871 + 0.0809156i
\(171\) 0 0
\(172\) −2.87144 + 4.34001i −0.218945 + 0.330923i
\(173\) 15.4648 1.17577 0.587885 0.808944i \(-0.299961\pi\)
0.587885 + 0.808944i \(0.299961\pi\)
\(174\) 0 0
\(175\) −8.53376 + 8.53376i −0.645092 + 0.645092i
\(176\) 16.9332 + 6.83422i 1.27639 + 0.515149i
\(177\) 0 0
\(178\) 1.23787 0.665278i 0.0927823 0.0498647i
\(179\) 11.8652i 0.886850i −0.896311 0.443425i \(-0.853763\pi\)
0.896311 0.443425i \(-0.146237\pi\)
\(180\) 0 0
\(181\) 23.5146 1.74783 0.873913 0.486083i \(-0.161575\pi\)
0.873913 + 0.486083i \(0.161575\pi\)
\(182\) 7.88012 9.94412i 0.584114 0.737107i
\(183\) 0 0
\(184\) −12.2279 14.6942i −0.901453 1.08327i
\(185\) −1.83607 −0.134990
\(186\) 0 0
\(187\) −7.06189 7.06189i −0.516417 0.516417i
\(188\) −4.29554 21.0934i −0.313285 1.53839i
\(189\) 0 0
\(190\) −3.95457 1.18979i −0.286894 0.0863166i
\(191\) 4.77834i 0.345748i 0.984944 + 0.172874i \(0.0553054\pi\)
−0.984944 + 0.172874i \(0.944695\pi\)
\(192\) 0 0
\(193\) −8.23161 + 8.23161i −0.592524 + 0.592524i −0.938312 0.345789i \(-0.887611\pi\)
0.345789 + 0.938312i \(0.387611\pi\)
\(194\) −3.05764 5.68929i −0.219526 0.408467i
\(195\) 0 0
\(196\) 0.892110 1.34837i 0.0637221 0.0963121i
\(197\) 2.67116 2.67116i 0.190312 0.190312i −0.605519 0.795831i \(-0.707034\pi\)
0.795831 + 0.605519i \(0.207034\pi\)
\(198\) 0 0
\(199\) −6.54186 −0.463740 −0.231870 0.972747i \(-0.574484\pi\)
−0.231870 + 0.972747i \(0.574484\pi\)
\(200\) −10.5447 + 8.77489i −0.745626 + 0.620479i
\(201\) 0 0
\(202\) −17.1902 5.17194i −1.20950 0.363897i
\(203\) 0.421052 0.421052i 0.0295521 0.0295521i
\(204\) 0 0
\(205\) 0.708125 0.0494576
\(206\) −14.0890 4.23890i −0.981630 0.295338i
\(207\) 0 0
\(208\) 9.95110 10.4391i 0.689985 0.723824i
\(209\) 34.4347 2.38190
\(210\) 0 0
\(211\) 3.19386 0.219874 0.109937 0.993939i \(-0.464935\pi\)
0.109937 + 0.993939i \(0.464935\pi\)
\(212\) −12.8758 + 19.4610i −0.884316 + 1.33659i
\(213\) 0 0
\(214\) −13.4282 4.04009i −0.917935 0.276175i
\(215\) −0.712263 0.712263i −0.0485759 0.0485759i
\(216\) 0 0
\(217\) −6.19161 −0.420314
\(218\) −14.7088 + 7.90507i −0.996205 + 0.535399i
\(219\) 0 0
\(220\) −1.95030 + 2.94777i −0.131489 + 0.198738i
\(221\) −7.24184 + 3.12632i −0.487139 + 0.210299i
\(222\) 0 0
\(223\) −2.23810 + 2.23810i −0.149874 + 0.149874i −0.778062 0.628188i \(-0.783797\pi\)
0.628188 + 0.778062i \(0.283797\pi\)
\(224\) −8.80540 + 10.9816i −0.588335 + 0.733742i
\(225\) 0 0
\(226\) −4.87644 1.46715i −0.324376 0.0975935i
\(227\) 0.434431 + 0.434431i 0.0288342 + 0.0288342i 0.721377 0.692543i \(-0.243510\pi\)
−0.692543 + 0.721377i \(0.743510\pi\)
\(228\) 0 0
\(229\) 12.0455 + 12.0455i 0.795989 + 0.795989i 0.982460 0.186472i \(-0.0597052\pi\)
−0.186472 + 0.982460i \(0.559705\pi\)
\(230\) 3.25937 1.75171i 0.214916 0.115504i
\(231\) 0 0
\(232\) 0.520273 0.432950i 0.0341576 0.0284245i
\(233\) 8.29495i 0.543420i 0.962379 + 0.271710i \(0.0875892\pi\)
−0.962379 + 0.271710i \(0.912411\pi\)
\(234\) 0 0
\(235\) 4.16672 0.271807
\(236\) 26.2776 5.35127i 1.71052 0.348338i
\(237\) 0 0
\(238\) 6.78116 3.64445i 0.439558 0.236235i
\(239\) −6.22920 + 6.22920i −0.402933 + 0.402933i −0.879265 0.476332i \(-0.841966\pi\)
0.476332 + 0.879265i \(0.341966\pi\)
\(240\) 0 0
\(241\) 2.37756 2.37756i 0.153152 0.153152i −0.626372 0.779524i \(-0.715461\pi\)
0.779524 + 0.626372i \(0.215461\pi\)
\(242\) 4.00929 13.3259i 0.257727 0.856619i
\(243\) 0 0
\(244\) 1.62495 2.45601i 0.104027 0.157230i
\(245\) 0.221288 + 0.221288i 0.0141376 + 0.0141376i
\(246\) 0 0
\(247\) 10.0339 25.2782i 0.638441 1.60841i
\(248\) −7.00861 0.642050i −0.445047 0.0407702i
\(249\) 0 0
\(250\) −2.55294 4.75020i −0.161462 0.300429i
\(251\) 6.08062i 0.383806i −0.981414 0.191903i \(-0.938534\pi\)
0.981414 0.191903i \(-0.0614658\pi\)
\(252\) 0 0
\(253\) −21.8171 + 21.8171i −1.37163 + 1.37163i
\(254\) 5.45850 + 1.64227i 0.342496 + 0.103045i
\(255\) 0 0
\(256\) −11.1061 + 11.5176i −0.694129 + 0.719851i
\(257\) 10.6271i 0.662903i −0.943472 0.331452i \(-0.892462\pi\)
0.943472 0.331452i \(-0.107538\pi\)
\(258\) 0 0
\(259\) 11.8015i 0.733308i
\(260\) 1.59564 + 2.29065i 0.0989571 + 0.142060i
\(261\) 0 0
\(262\) −9.03859 2.71940i −0.558406 0.168005i
\(263\) 7.34200i 0.452727i 0.974043 + 0.226364i \(0.0726838\pi\)
−0.974043 + 0.226364i \(0.927316\pi\)
\(264\) 0 0
\(265\) −3.19386 3.19386i −0.196197 0.196197i
\(266\) −7.64749 + 25.4183i −0.468898 + 1.55850i
\(267\) 0 0
\(268\) −4.47897 21.9941i −0.273597 1.34350i
\(269\) 7.05046i 0.429874i 0.976628 + 0.214937i \(0.0689547\pi\)
−0.976628 + 0.214937i \(0.931045\pi\)
\(270\) 0 0
\(271\) −10.1872 10.1872i −0.618830 0.618830i 0.326401 0.945231i \(-0.394164\pi\)
−0.945231 + 0.326401i \(0.894164\pi\)
\(272\) 8.05388 3.42217i 0.488338 0.207499i
\(273\) 0 0
\(274\) −14.9766 + 8.04901i −0.904772 + 0.486259i
\(275\) 15.6563 + 15.6563i 0.944108 + 0.944108i
\(276\) 0 0
\(277\) 17.5316 1.05337 0.526687 0.850059i \(-0.323434\pi\)
0.526687 + 0.850059i \(0.323434\pi\)
\(278\) −0.484018 0.145624i −0.0290295 0.00873397i
\(279\) 0 0
\(280\) −1.74279 2.09430i −0.104151 0.125158i
\(281\) −14.4169 + 14.4169i −0.860041 + 0.860041i −0.991342 0.131302i \(-0.958084\pi\)
0.131302 + 0.991342i \(0.458084\pi\)
\(282\) 0 0
\(283\) 32.4691i 1.93009i −0.262086 0.965045i \(-0.584410\pi\)
0.262086 0.965045i \(-0.415590\pi\)
\(284\) 14.6894 2.99141i 0.871656 0.177508i
\(285\) 0 0
\(286\) −18.2437 14.4571i −1.07878 0.854865i
\(287\) 4.55153i 0.268668i
\(288\) 0 0
\(289\) 12.2140 0.718470
\(290\) 0.0620222 + 0.115403i 0.00364207 + 0.00677673i
\(291\) 0 0
\(292\) 8.43032 1.71678i 0.493347 0.100467i
\(293\) −16.5624 16.5624i −0.967588 0.967588i 0.0319027 0.999491i \(-0.489843\pi\)
−0.999491 + 0.0319027i \(0.989843\pi\)
\(294\) 0 0
\(295\) 5.19078i 0.302219i
\(296\) −1.22377 + 13.3587i −0.0711304 + 0.776459i
\(297\) 0 0
\(298\) 0.572763 0.307824i 0.0331793 0.0178318i
\(299\) 9.65852 + 22.3731i 0.558567 + 1.29387i
\(300\) 0 0
\(301\) −4.57813 + 4.57813i −0.263879 + 0.263879i
\(302\) −10.7750 20.0488i −0.620032 1.15368i
\(303\) 0 0
\(304\) −11.2924 + 27.9793i −0.647663 + 1.60472i
\(305\) 0.403070 + 0.403070i 0.0230797 + 0.0230797i
\(306\) 0 0
\(307\) −12.1539 + 12.1539i −0.693662 + 0.693662i −0.963036 0.269374i \(-0.913183\pi\)
0.269374 + 0.963036i \(0.413183\pi\)
\(308\) 18.9470 + 12.5357i 1.07961 + 0.714290i
\(309\) 0 0
\(310\) 0.392488 1.30453i 0.0222918 0.0740924i
\(311\) 31.7700 1.80151 0.900755 0.434328i \(-0.143014\pi\)
0.900755 + 0.434328i \(0.143014\pi\)
\(312\) 0 0
\(313\) −31.0473 −1.75490 −0.877449 0.479669i \(-0.840757\pi\)
−0.877449 + 0.479669i \(0.840757\pi\)
\(314\) 6.62050 22.0048i 0.373616 1.24180i
\(315\) 0 0
\(316\) 17.9483 27.1278i 1.00967 1.52606i
\(317\) −1.06867 + 1.06867i −0.0600226 + 0.0600226i −0.736481 0.676458i \(-0.763514\pi\)
0.676458 + 0.736481i \(0.263514\pi\)
\(318\) 0 0
\(319\) −0.772473 0.772473i −0.0432502 0.0432502i
\(320\) −1.75558 2.55137i −0.0981400 0.142626i
\(321\) 0 0
\(322\) −11.2592 20.9499i −0.627453 1.16749i
\(323\) 11.6686 11.6686i 0.649257 0.649257i
\(324\) 0 0
\(325\) 16.0552 6.93108i 0.890582 0.384467i
\(326\) 19.9932 10.7451i 1.10732 0.595117i
\(327\) 0 0
\(328\) 0.471979 5.15212i 0.0260607 0.284478i
\(329\) 26.7819i 1.47654i
\(330\) 0 0
\(331\) 23.2735 + 23.2735i 1.27923 + 1.27923i 0.941100 + 0.338127i \(0.109793\pi\)
0.338127 + 0.941100i \(0.390207\pi\)
\(332\) 1.58810 + 7.79839i 0.0871581 + 0.427992i
\(333\) 0 0
\(334\) 10.2732 + 19.1151i 0.562125 + 1.04593i
\(335\) 4.34465 0.237373
\(336\) 0 0
\(337\) 7.22327i 0.393477i −0.980456 0.196738i \(-0.936965\pi\)
0.980456 0.196738i \(-0.0630350\pi\)
\(338\) −15.9289 + 9.17996i −0.866415 + 0.499324i
\(339\) 0 0
\(340\) 0.338002 + 1.65977i 0.0183307 + 0.0900136i
\(341\) 11.3593i 0.615140i
\(342\) 0 0
\(343\) 13.7388 13.7388i 0.741825 0.741825i
\(344\) −5.65696 + 4.70749i −0.305003 + 0.253811i
\(345\) 0 0
\(346\) 20.9432 + 6.30110i 1.12592 + 0.338749i
\(347\) −22.1160 −1.18725 −0.593623 0.804743i \(-0.702303\pi\)
−0.593623 + 0.804743i \(0.702303\pi\)
\(348\) 0 0
\(349\) 7.54495 + 7.54495i 0.403872 + 0.403872i 0.879595 0.475723i \(-0.157814\pi\)
−0.475723 + 0.879595i \(0.657814\pi\)
\(350\) −15.0339 + 8.07978i −0.803595 + 0.431882i
\(351\) 0 0
\(352\) 20.1472 + 16.1546i 1.07385 + 0.861044i
\(353\) 8.70266 + 8.70266i 0.463196 + 0.463196i 0.899701 0.436506i \(-0.143784\pi\)
−0.436506 + 0.899701i \(0.643784\pi\)
\(354\) 0 0
\(355\) 2.90170i 0.154006i
\(356\) 1.94745 0.396586i 0.103215 0.0210190i
\(357\) 0 0
\(358\) 4.83445 16.0685i 0.255509 0.849246i
\(359\) −15.0569 15.0569i −0.794672 0.794672i 0.187578 0.982250i \(-0.439936\pi\)
−0.982250 + 0.187578i \(0.939936\pi\)
\(360\) 0 0
\(361\) 37.8975i 1.99460i
\(362\) 31.8446 + 9.58093i 1.67371 + 0.503563i
\(363\) 0 0
\(364\) 14.7233 10.2561i 0.771713 0.537565i
\(365\) 1.66530i 0.0871657i
\(366\) 0 0
\(367\) 9.34625i 0.487870i 0.969792 + 0.243935i \(0.0784384\pi\)
−0.969792 + 0.243935i \(0.921562\pi\)
\(368\) −10.5725 24.8818i −0.551130 1.29705i
\(369\) 0 0
\(370\) −2.48649 0.748099i −0.129266 0.0388918i
\(371\) −20.5288 + 20.5288i −1.06580 + 1.06580i
\(372\) 0 0
\(373\) 13.7080i 0.709776i 0.934909 + 0.354888i \(0.115481\pi\)
−0.934909 + 0.354888i \(0.884519\pi\)
\(374\) −6.68621 12.4409i −0.345736 0.643303i
\(375\) 0 0
\(376\) 2.77720 30.3159i 0.143223 1.56342i
\(377\) −0.792157 + 0.341976i −0.0407982 + 0.0176127i
\(378\) 0 0
\(379\) 12.8046 + 12.8046i 0.657726 + 0.657726i 0.954842 0.297116i \(-0.0960246\pi\)
−0.297116 + 0.954842i \(0.596025\pi\)
\(380\) −4.87069 3.22255i −0.249861 0.165313i
\(381\) 0 0
\(382\) −1.94692 + 6.47105i −0.0996129 + 0.331088i
\(383\) 3.65583 3.65583i 0.186804 0.186804i −0.607509 0.794313i \(-0.707831\pi\)
0.794313 + 0.607509i \(0.207831\pi\)
\(384\) 0 0
\(385\) −3.10950 + 3.10950i −0.158475 + 0.158475i
\(386\) −14.5016 + 7.79370i −0.738111 + 0.396689i
\(387\) 0 0
\(388\) −1.82272 8.95053i −0.0925346 0.454394i
\(389\) 17.1554 0.869813 0.434906 0.900476i \(-0.356781\pi\)
0.434906 + 0.900476i \(0.356781\pi\)
\(390\) 0 0
\(391\) 14.7860i 0.747759i
\(392\) 1.75753 1.46254i 0.0887685 0.0738694i
\(393\) 0 0
\(394\) 4.70577 2.52906i 0.237073 0.127412i
\(395\) 4.45209 + 4.45209i 0.224009 + 0.224009i
\(396\) 0 0
\(397\) 7.76633 + 7.76633i 0.389781 + 0.389781i 0.874609 0.484829i \(-0.161118\pi\)
−0.484829 + 0.874609i \(0.661118\pi\)
\(398\) −8.85930 2.66546i −0.444077 0.133607i
\(399\) 0 0
\(400\) −17.8555 + 7.58696i −0.892774 + 0.379348i
\(401\) −26.6147 + 26.6147i −1.32907 + 1.32907i −0.422894 + 0.906179i \(0.638986\pi\)
−0.906179 + 0.422894i \(0.861014\pi\)
\(402\) 0 0
\(403\) 8.33877 + 3.30997i 0.415384 + 0.164881i
\(404\) −21.1725 14.0082i −1.05337 0.696934i
\(405\) 0 0
\(406\) 0.741765 0.398653i 0.0368132 0.0197848i
\(407\) 21.6513 1.07321
\(408\) 0 0
\(409\) −5.43112 5.43112i −0.268551 0.268551i 0.559965 0.828516i \(-0.310815\pi\)
−0.828516 + 0.559965i \(0.810815\pi\)
\(410\) 0.958977 + 0.288523i 0.0473605 + 0.0142491i
\(411\) 0 0
\(412\) −17.3529 11.4811i −0.854917 0.565631i
\(413\) 33.3642 1.64174
\(414\) 0 0
\(415\) −1.54047 −0.0756186
\(416\) 17.7296 10.0826i 0.869268 0.494342i
\(417\) 0 0
\(418\) 46.6331 + 14.0303i 2.28090 + 0.686243i
\(419\) 1.40140 0.0684629 0.0342314 0.999414i \(-0.489102\pi\)
0.0342314 + 0.999414i \(0.489102\pi\)
\(420\) 0 0
\(421\) 20.5866 20.5866i 1.00333 1.00333i 0.00333710 0.999994i \(-0.498938\pi\)
0.999994 0.00333710i \(-0.00106223\pi\)
\(422\) 4.32528 + 1.30133i 0.210551 + 0.0633476i
\(423\) 0 0
\(424\) −25.3664 + 21.1089i −1.23190 + 1.02514i
\(425\) 10.6106 0.514690
\(426\) 0 0
\(427\) 2.59076 2.59076i 0.125376 0.125376i
\(428\) −16.5390 10.9426i −0.799445 0.528929i
\(429\) 0 0
\(430\) −0.674372 1.25479i −0.0325211 0.0605113i
\(431\) −25.8032 + 25.8032i −1.24290 + 1.24290i −0.284104 + 0.958793i \(0.591696\pi\)
−0.958793 + 0.284104i \(0.908304\pi\)
\(432\) 0 0
\(433\) 24.9806i 1.20049i 0.799815 + 0.600246i \(0.204931\pi\)
−0.799815 + 0.600246i \(0.795069\pi\)
\(434\) −8.38498 2.52275i −0.402492 0.121096i
\(435\) 0 0
\(436\) −23.1402 + 4.71237i −1.10822 + 0.225682i
\(437\) −36.0491 36.0491i −1.72446 1.72446i
\(438\) 0 0
\(439\) 24.4346 1.16620 0.583100 0.812401i \(-0.301840\pi\)
0.583100 + 0.812401i \(0.301840\pi\)
\(440\) −3.84225 + 3.19736i −0.183172 + 0.152428i
\(441\) 0 0
\(442\) −11.0811 + 1.28315i −0.527072 + 0.0610334i
\(443\) −18.3745 −0.873000 −0.436500 0.899704i \(-0.643782\pi\)
−0.436500 + 0.899704i \(0.643782\pi\)
\(444\) 0 0
\(445\) 0.384692i 0.0182362i
\(446\) −3.94284 + 2.11903i −0.186699 + 0.100339i
\(447\) 0 0
\(448\) −16.3991 + 11.2841i −0.774786 + 0.533126i
\(449\) −2.60237 + 2.60237i −0.122813 + 0.122813i −0.765842 0.643029i \(-0.777678\pi\)
0.643029 + 0.765842i \(0.277678\pi\)
\(450\) 0 0
\(451\) −8.35036 −0.393203
\(452\) −6.00612 3.97378i −0.282504 0.186911i
\(453\) 0 0
\(454\) 0.411320 + 0.765335i 0.0193042 + 0.0359189i
\(455\) 1.37659 + 3.18873i 0.0645353 + 0.149490i
\(456\) 0 0
\(457\) 25.2812 + 25.2812i 1.18261 + 1.18261i 0.979067 + 0.203540i \(0.0652448\pi\)
0.203540 + 0.979067i \(0.434755\pi\)
\(458\) 11.4047 + 21.2205i 0.532906 + 0.991568i
\(459\) 0 0
\(460\) 5.12772 1.04423i 0.239081 0.0486874i
\(461\) −6.82810 + 6.82810i −0.318016 + 0.318016i −0.848005 0.529989i \(-0.822196\pi\)
0.529989 + 0.848005i \(0.322196\pi\)
\(462\) 0 0
\(463\) −22.9626 22.9626i −1.06716 1.06716i −0.997576 0.0695868i \(-0.977832\pi\)
−0.0695868 0.997576i \(-0.522168\pi\)
\(464\) 0.880982 0.374338i 0.0408986 0.0173782i
\(465\) 0 0
\(466\) −3.37975 + 11.2334i −0.156564 + 0.520378i
\(467\) 31.5214i 1.45864i −0.684173 0.729319i \(-0.739837\pi\)
0.684173 0.729319i \(-0.260163\pi\)
\(468\) 0 0
\(469\) 27.9256i 1.28948i
\(470\) 5.64277 + 1.69771i 0.260282 + 0.0783097i
\(471\) 0 0
\(472\) 37.7667 + 3.45976i 1.73835 + 0.159248i
\(473\) 8.39915 + 8.39915i 0.386193 + 0.386193i
\(474\) 0 0
\(475\) −25.8693 + 25.8693i −1.18697 + 1.18697i
\(476\) 10.6683 2.17253i 0.488981 0.0995780i
\(477\) 0 0
\(478\) −10.9739 + 5.89781i −0.501936 + 0.269760i
\(479\) 5.14345 + 5.14345i 0.235010 + 0.235010i 0.814780 0.579770i \(-0.196858\pi\)
−0.579770 + 0.814780i \(0.696858\pi\)
\(480\) 0 0
\(481\) 6.30895 15.8940i 0.287663 0.724706i
\(482\) 4.18853 2.25107i 0.190782 0.102534i
\(483\) 0 0
\(484\) 10.8592 16.4130i 0.493598 0.746043i
\(485\) 1.76806 0.0802834
\(486\) 0 0
\(487\) −16.3140 + 16.3140i −0.739257 + 0.739257i −0.972434 0.233177i \(-0.925088\pi\)
0.233177 + 0.972434i \(0.425088\pi\)
\(488\) 3.20128 2.66397i 0.144915 0.120592i
\(489\) 0 0
\(490\) 0.209516 + 0.389843i 0.00946498 + 0.0176113i
\(491\) 28.9725i 1.30751i 0.756706 + 0.653755i \(0.226807\pi\)
−0.756706 + 0.653755i \(0.773193\pi\)
\(492\) 0 0
\(493\) −0.523523 −0.0235783
\(494\) 23.8879 30.1447i 1.07477 1.35627i
\(495\) 0 0
\(496\) −9.22980 3.72513i −0.414430 0.167263i
\(497\) 18.6509 0.836607
\(498\) 0 0
\(499\) −6.81836 6.81836i −0.305232 0.305232i 0.537825 0.843057i \(-0.319246\pi\)
−0.843057 + 0.537825i \(0.819246\pi\)
\(500\) −1.52186 7.47313i −0.0680596 0.334209i
\(501\) 0 0
\(502\) 2.47753 8.23467i 0.110577 0.367531i
\(503\) 10.1216i 0.451298i −0.974209 0.225649i \(-0.927550\pi\)
0.974209 0.225649i \(-0.0724503\pi\)
\(504\) 0 0
\(505\) 3.47474 3.47474i 0.154624 0.154624i
\(506\) −38.4351 + 20.6565i −1.70865 + 0.918294i
\(507\) 0 0
\(508\) 6.72302 + 4.44809i 0.298286 + 0.197352i
\(509\) 16.1690 16.1690i 0.716678 0.716678i −0.251245 0.967923i \(-0.580840\pi\)
0.967923 + 0.251245i \(0.0808400\pi\)
\(510\) 0 0
\(511\) 10.7038 0.473510
\(512\) −19.7332 + 11.0726i −0.872091 + 0.489344i
\(513\) 0 0
\(514\) 4.32999 14.3918i 0.190988 0.634795i
\(515\) 2.84788 2.84788i 0.125493 0.125493i
\(516\) 0 0
\(517\) −49.1348 −2.16095
\(518\) −4.80847 + 15.9821i −0.211272 + 0.702214i
\(519\) 0 0
\(520\) 1.22757 + 3.75224i 0.0538325 + 0.164547i
\(521\) −10.5425 −0.461875 −0.230938 0.972969i \(-0.574179\pi\)
−0.230938 + 0.972969i \(0.574179\pi\)
\(522\) 0 0
\(523\) −25.4062 −1.11093 −0.555467 0.831538i \(-0.687461\pi\)
−0.555467 + 0.831538i \(0.687461\pi\)
\(524\) −11.1325 7.36549i −0.486325 0.321763i
\(525\) 0 0
\(526\) −2.99147 + 9.94289i −0.130434 + 0.433531i
\(527\) 3.84923 + 3.84923i 0.167675 + 0.167675i
\(528\) 0 0
\(529\) 22.6801 0.986091
\(530\) −3.02395 5.62661i −0.131352 0.244404i
\(531\) 0 0
\(532\) −20.7132 + 31.3067i −0.898031 + 1.35732i
\(533\) −2.43320 + 6.12993i −0.105394 + 0.265517i
\(534\) 0 0
\(535\) 2.71431 2.71431i 0.117350 0.117350i
\(536\) 2.89579 31.6104i 0.125079 1.36536i
\(537\) 0 0
\(538\) −2.87269 + 9.54807i −0.123850 + 0.411647i
\(539\) −2.60948 2.60948i −0.112398 0.112398i
\(540\) 0 0
\(541\) −29.5292 29.5292i −1.26956 1.26956i −0.946316 0.323244i \(-0.895227\pi\)
−0.323244 0.946316i \(-0.604773\pi\)
\(542\) −9.64529 17.9468i −0.414301 0.770881i
\(543\) 0 0
\(544\) 12.3013 1.35294i 0.527414 0.0580068i
\(545\) 4.57105i 0.195802i
\(546\) 0 0
\(547\) 15.7462 0.673259 0.336630 0.941637i \(-0.390713\pi\)
0.336630 + 0.941637i \(0.390713\pi\)
\(548\) −23.5616 + 4.79818i −1.00650 + 0.204968i
\(549\) 0 0
\(550\) 14.8234 + 27.5815i 0.632071 + 1.17608i
\(551\) 1.27638 1.27638i 0.0543757 0.0543757i
\(552\) 0 0
\(553\) 28.6162 28.6162i 1.21688 1.21688i
\(554\) 23.7422 + 7.14320i 1.00871 + 0.303486i
\(555\) 0 0
\(556\) −0.596147 0.394423i −0.0252823 0.0167273i
\(557\) 28.9539 + 28.9539i 1.22682 + 1.22682i 0.965162 + 0.261654i \(0.0842679\pi\)
0.261654 + 0.965162i \(0.415732\pi\)
\(558\) 0 0
\(559\) 8.61317 3.71833i 0.364298 0.157269i
\(560\) −1.50685 3.54629i −0.0636761 0.149858i
\(561\) 0 0
\(562\) −25.3982 + 13.6499i −1.07136 + 0.575788i
\(563\) 14.4177i 0.607633i 0.952731 + 0.303816i \(0.0982610\pi\)
−0.952731 + 0.303816i \(0.901739\pi\)
\(564\) 0 0
\(565\) 0.985698 0.985698i 0.0414686 0.0414686i
\(566\) 13.2294 43.9712i 0.556074 1.84825i
\(567\) 0 0
\(568\) 21.1119 + 1.93404i 0.885838 + 0.0811504i
\(569\) 15.1969i 0.637087i 0.947908 + 0.318544i \(0.103194\pi\)
−0.947908 + 0.318544i \(0.896806\pi\)
\(570\) 0 0
\(571\) 2.38340i 0.0997424i 0.998756 + 0.0498712i \(0.0158811\pi\)
−0.998756 + 0.0498712i \(0.984119\pi\)
\(572\) −18.8161 27.0118i −0.786739 1.12942i
\(573\) 0 0
\(574\) 1.85451 6.16390i 0.0774056 0.257276i
\(575\) 32.7806i 1.36705i
\(576\) 0 0
\(577\) 0.400904 + 0.400904i 0.0166898 + 0.0166898i 0.715402 0.698713i \(-0.246243\pi\)
−0.698713 + 0.715402i \(0.746243\pi\)
\(578\) 16.5408 + 4.97655i 0.688005 + 0.206997i
\(579\) 0 0
\(580\) 0.0369727 + 0.181556i 0.00153521 + 0.00753869i
\(581\) 9.90149i 0.410783i
\(582\) 0 0
\(583\) 37.6627 + 37.6627i 1.55983 + 1.55983i
\(584\) 12.1162 + 1.10995i 0.501374 + 0.0459302i
\(585\) 0 0
\(586\) −15.6813 29.1780i −0.647790 1.20533i
\(587\) 14.4823 + 14.4823i 0.597749 + 0.597749i 0.939713 0.341964i \(-0.111092\pi\)
−0.341964 + 0.939713i \(0.611092\pi\)
\(588\) 0 0
\(589\) −18.7693 −0.773376
\(590\) −2.11497 + 7.02961i −0.0870718 + 0.289404i
\(591\) 0 0
\(592\) −7.10025 + 17.5924i −0.291819 + 0.723043i
\(593\) −23.4172 + 23.4172i −0.961630 + 0.961630i −0.999291 0.0376610i \(-0.988009\pi\)
0.0376610 + 0.999291i \(0.488009\pi\)
\(594\) 0 0
\(595\) 2.10738i 0.0863942i
\(596\) 0.901085 0.183500i 0.0369099 0.00751647i
\(597\) 0 0
\(598\) 3.96420 + 34.2340i 0.162108 + 1.39993i
\(599\) 13.3632i 0.546005i 0.962013 + 0.273003i \(0.0880168\pi\)
−0.962013 + 0.273003i \(0.911983\pi\)
\(600\) 0 0
\(601\) 37.8658 1.54458 0.772289 0.635271i \(-0.219112\pi\)
0.772289 + 0.635271i \(0.219112\pi\)
\(602\) −8.06526 + 4.33458i −0.328716 + 0.176664i
\(603\) 0 0
\(604\) −6.42320 31.5413i −0.261356 1.28340i
\(605\) 2.69362 + 2.69362i 0.109511 + 0.109511i
\(606\) 0 0
\(607\) 26.8173i 1.08848i 0.838929 + 0.544241i \(0.183182\pi\)
−0.838929 + 0.544241i \(0.816818\pi\)
\(608\) −26.6928 + 33.2899i −1.08253 + 1.35008i
\(609\) 0 0
\(610\) 0.381627 + 0.710086i 0.0154516 + 0.0287505i
\(611\) −14.3173 + 36.0695i −0.579218 + 1.45921i
\(612\) 0 0
\(613\) 2.02228 2.02228i 0.0816792 0.0816792i −0.665087 0.746766i \(-0.731605\pi\)
0.746766 + 0.665087i \(0.231605\pi\)
\(614\) −21.4115 + 11.5074i −0.864099 + 0.464400i
\(615\) 0 0
\(616\) 20.5513 + 24.6964i 0.828036 + 0.995046i
\(617\) 16.8200 + 16.8200i 0.677147 + 0.677147i 0.959354 0.282207i \(-0.0910664\pi\)
−0.282207 + 0.959354i \(0.591066\pi\)
\(618\) 0 0
\(619\) −8.23170 + 8.23170i −0.330860 + 0.330860i −0.852913 0.522053i \(-0.825166\pi\)
0.522053 + 0.852913i \(0.325166\pi\)
\(620\) 1.06305 1.60674i 0.0426932 0.0645282i
\(621\) 0 0
\(622\) 43.0244 + 12.9446i 1.72512 + 0.519030i
\(623\) 2.47264 0.0990643
\(624\) 0 0
\(625\) −22.7744 −0.910978
\(626\) −42.0458 12.6501i −1.68049 0.505601i
\(627\) 0 0
\(628\) 17.9316 27.1025i 0.715548 1.08151i
\(629\) 7.33679 7.33679i 0.292537 0.292537i
\(630\) 0 0
\(631\) 25.0108 + 25.0108i 0.995663 + 0.995663i 0.999991 0.00432741i \(-0.00137746\pi\)
−0.00432741 + 0.999991i \(0.501377\pi\)
\(632\) 35.3596 29.4248i 1.40653 1.17046i
\(633\) 0 0
\(634\) −1.88267 + 1.01182i −0.0747705 + 0.0401845i
\(635\) −1.10335 + 1.10335i −0.0437852 + 0.0437852i
\(636\) 0 0
\(637\) −2.67597 + 1.15523i −0.106026 + 0.0457717i
\(638\) −0.731379 1.36086i −0.0289556 0.0538770i
\(639\) 0 0
\(640\) −1.33795 4.17049i −0.0528870 0.164853i
\(641\) 6.52712i 0.257806i 0.991657 + 0.128903i \(0.0411455\pi\)
−0.991657 + 0.128903i \(0.958854\pi\)
\(642\) 0 0
\(643\) 10.6765 + 10.6765i 0.421040 + 0.421040i 0.885562 0.464521i \(-0.153774\pi\)
−0.464521 + 0.885562i \(0.653774\pi\)
\(644\) −6.71187 32.9588i −0.264485 1.29876i
\(645\) 0 0
\(646\) 20.5565 11.0478i 0.808784 0.434671i
\(647\) 38.6860 1.52090 0.760452 0.649394i \(-0.224978\pi\)
0.760452 + 0.649394i \(0.224978\pi\)
\(648\) 0 0
\(649\) 61.2108i 2.40273i
\(650\) 24.5668 2.84476i 0.963588 0.111581i
\(651\) 0 0
\(652\) 31.4538 6.40538i 1.23183 0.250854i
\(653\) 20.5679i 0.804883i 0.915446 + 0.402442i \(0.131838\pi\)
−0.915446 + 0.402442i \(0.868162\pi\)
\(654\) 0 0
\(655\) 1.82701 1.82701i 0.0713874 0.0713874i
\(656\) 2.73839 6.78494i 0.106916 0.264908i
\(657\) 0 0
\(658\) 10.9122 36.2694i 0.425402 1.41393i
\(659\) 43.3731 1.68958 0.844789 0.535100i \(-0.179726\pi\)
0.844789 + 0.535100i \(0.179726\pi\)
\(660\) 0 0
\(661\) −16.4842 16.4842i −0.641162 0.641162i 0.309679 0.950841i \(-0.399778\pi\)
−0.950841 + 0.309679i \(0.899778\pi\)
\(662\) 22.0354 + 41.0008i 0.856430 + 1.59354i
\(663\) 0 0
\(664\) −1.02675 + 11.2080i −0.0398457 + 0.434956i
\(665\) −5.13792 5.13792i −0.199240 0.199240i
\(666\) 0 0
\(667\) 1.61738i 0.0626253i
\(668\) 6.12407 + 30.0724i 0.236947 + 1.16354i
\(669\) 0 0
\(670\) 5.88373 + 1.77021i 0.227308 + 0.0683892i
\(671\) −4.75308 4.75308i −0.183491 0.183491i
\(672\) 0 0
\(673\) 2.17145i 0.0837031i 0.999124 + 0.0418516i \(0.0133257\pi\)
−0.999124 + 0.0418516i \(0.986674\pi\)
\(674\) 2.94310 9.78210i 0.113364 0.376793i
\(675\) 0 0
\(676\) −25.3120 + 5.94178i −0.973537 + 0.228530i
\(677\) 8.31481i 0.319564i 0.987152 + 0.159782i \(0.0510792\pi\)
−0.987152 + 0.159782i \(0.948921\pi\)
\(678\) 0 0
\(679\) 11.3643i 0.436123i
\(680\) −0.218528 + 2.38546i −0.00838018 + 0.0914780i
\(681\) 0 0
\(682\) −4.62830 + 15.3833i −0.177227 + 0.589057i
\(683\) 20.4776 20.4776i 0.783553 0.783553i −0.196875 0.980429i \(-0.563079\pi\)
0.980429 + 0.196875i \(0.0630794\pi\)
\(684\) 0 0
\(685\) 4.65428i 0.177831i
\(686\) 24.2035 13.0079i 0.924095 0.496644i
\(687\) 0 0
\(688\) −9.57898 + 4.07020i −0.365195 + 0.155175i
\(689\) 38.6224 16.6734i 1.47139 0.635205i
\(690\) 0 0
\(691\) −24.6029 24.6029i −0.935940 0.935940i 0.0621285 0.998068i \(-0.480211\pi\)
−0.998068 + 0.0621285i \(0.980211\pi\)
\(692\) 25.7950 + 17.0665i 0.980578 + 0.648771i
\(693\) 0 0
\(694\) −29.9505 9.01107i −1.13690 0.342055i
\(695\) 0.0978370 0.0978370i 0.00371117 0.00371117i
\(696\) 0 0
\(697\) −2.82962 + 2.82962i −0.107179 + 0.107179i
\(698\) 7.14357 + 13.2919i 0.270388 + 0.503106i
\(699\) 0 0
\(700\) −23.6517 + 4.81652i −0.893949 + 0.182047i
\(701\) 4.72081 0.178302 0.0891512 0.996018i \(-0.471585\pi\)
0.0891512 + 0.996018i \(0.471585\pi\)
\(702\) 0 0
\(703\) 35.7751i 1.34928i
\(704\) 20.7022 + 30.0863i 0.780243 + 1.13392i
\(705\) 0 0
\(706\) 8.23969 + 15.3314i 0.310105 + 0.577006i
\(707\) −22.3342 22.3342i −0.839964 0.839964i
\(708\) 0 0
\(709\) 0.847414 + 0.847414i 0.0318253 + 0.0318253i 0.722840 0.691015i \(-0.242836\pi\)
−0.691015 + 0.722840i \(0.742836\pi\)
\(710\) −1.18229 + 3.92962i −0.0443704 + 0.147476i
\(711\) 0 0
\(712\) 2.79892 + 0.256405i 0.104894 + 0.00960918i
\(713\) 11.8919 11.8919i 0.445354 0.445354i
\(714\) 0 0
\(715\) 5.85013 2.52552i 0.218783 0.0944491i
\(716\) 13.0941 19.7909i 0.489349 0.739622i
\(717\) 0 0
\(718\) −14.2559 26.5256i −0.532025 0.989928i
\(719\) −16.0362 −0.598048 −0.299024 0.954246i \(-0.596661\pi\)
−0.299024 + 0.954246i \(0.596661\pi\)
\(720\) 0 0
\(721\) −18.3050 18.3050i −0.681714 0.681714i
\(722\) −15.4412 + 51.3226i −0.574661 + 1.91003i
\(723\) 0 0
\(724\) 39.2217 + 25.9499i 1.45766 + 0.964421i
\(725\) 1.16065 0.0431056
\(726\) 0 0
\(727\) 16.4293 0.609329 0.304665 0.952460i \(-0.401456\pi\)
0.304665 + 0.952460i \(0.401456\pi\)
\(728\) 24.1179 7.89030i 0.893867 0.292434i
\(729\) 0 0
\(730\) −0.678520 + 2.25523i −0.0251131 + 0.0834697i
\(731\) 5.69230 0.210537
\(732\) 0 0
\(733\) −2.39796 + 2.39796i −0.0885706 + 0.0885706i −0.750004 0.661433i \(-0.769948\pi\)
0.661433 + 0.750004i \(0.269948\pi\)
\(734\) −3.80810 + 12.6571i −0.140559 + 0.467184i
\(735\) 0 0
\(736\) −4.17980 38.0038i −0.154069 1.40084i
\(737\) −51.2330 −1.88719
\(738\) 0 0
\(739\) 1.09924 1.09924i 0.0404364 0.0404364i −0.686599 0.727036i \(-0.740897\pi\)
0.727036 + 0.686599i \(0.240897\pi\)
\(740\) −3.06251 2.02622i −0.112580 0.0744855i
\(741\) 0 0
\(742\) −36.1655 + 19.4367i −1.32768 + 0.713544i
\(743\) −15.6356 + 15.6356i −0.573615 + 0.573615i −0.933137 0.359522i \(-0.882940\pi\)
0.359522 + 0.933137i \(0.382940\pi\)
\(744\) 0 0
\(745\) 0.177997i 0.00652132i
\(746\) −5.58530 + 18.5641i −0.204492 + 0.679680i
\(747\) 0 0
\(748\) −3.98579 19.5723i −0.145735 0.715635i
\(749\) −17.4465 17.4465i −0.637480 0.637480i
\(750\) 0 0
\(751\) −28.2017 −1.02910 −0.514548 0.857462i \(-0.672040\pi\)
−0.514548 + 0.857462i \(0.672040\pi\)
\(752\) 16.1131 39.9237i 0.587585 1.45587i
\(753\) 0 0
\(754\) −1.21211 + 0.140359i −0.0441426 + 0.00511159i
\(755\) 6.23057 0.226754
\(756\) 0 0
\(757\) 8.46085i 0.307515i −0.988109 0.153757i \(-0.950863\pi\)
0.988109 0.153757i \(-0.0491374\pi\)
\(758\) 12.1234 + 22.5577i 0.440341 + 0.819333i
\(759\) 0 0
\(760\) −5.28310 6.34867i −0.191638 0.230291i
\(761\) 9.80630 9.80630i 0.355478 0.355478i −0.506665 0.862143i \(-0.669122\pi\)
0.862143 + 0.506665i \(0.169122\pi\)
\(762\) 0 0
\(763\) −29.3808 −1.06366
\(764\) −5.27321 + 7.97014i −0.190778 + 0.288350i
\(765\) 0 0
\(766\) 6.44046 3.46135i 0.232703 0.125064i
\(767\) −44.9344 17.8362i −1.62249 0.644026i
\(768\) 0 0
\(769\) −13.5147 13.5147i −0.487354 0.487354i 0.420116 0.907470i \(-0.361989\pi\)
−0.907470 + 0.420116i \(0.861989\pi\)
\(770\) −5.47799 + 2.94408i −0.197413 + 0.106097i
\(771\) 0 0
\(772\) −22.8142 + 4.64598i −0.821102 + 0.167213i
\(773\) −30.1630 + 30.1630i −1.08489 + 1.08489i −0.0888435 + 0.996046i \(0.528317\pi\)
−0.996046 + 0.0888435i \(0.971683\pi\)
\(774\) 0 0
\(775\) −8.53376 8.53376i −0.306542 0.306542i
\(776\) 1.17844 12.8639i 0.0423037 0.461787i
\(777\) 0 0
\(778\) 23.2327 + 6.98990i 0.832931 + 0.250600i
\(779\) 13.7976i 0.494349i
\(780\) 0 0
\(781\) 34.2174i 1.22440i
\(782\) −6.02450 + 20.0239i −0.215436 + 0.716053i
\(783\) 0 0
\(784\) 2.97603 1.26454i 0.106287 0.0451623i
\(785\) 4.44794 + 4.44794i 0.158754 + 0.158754i
\(786\) 0 0
\(787\) 14.9019 14.9019i 0.531194 0.531194i −0.389734 0.920928i \(-0.627433\pi\)
0.920928 + 0.389734i \(0.127433\pi\)
\(788\) 7.40324 1.50763i 0.263730 0.0537069i
\(789\) 0 0
\(790\) 4.21525 + 7.84323i 0.149972 + 0.279050i
\(791\) −6.33566 6.33566i −0.225270 0.225270i
\(792\) 0 0
\(793\) −4.87420 + 2.10421i −0.173088 + 0.0747225i
\(794\) 7.35317 + 13.6819i 0.260954 + 0.485552i
\(795\) 0 0
\(796\) −10.9117 7.21938i −0.386753 0.255884i
\(797\) 30.6279 1.08490 0.542448 0.840090i \(-0.317498\pi\)
0.542448 + 0.840090i \(0.317498\pi\)
\(798\) 0 0
\(799\) −16.6499 + 16.6499i −0.589031 + 0.589031i
\(800\) −27.2720 + 2.99948i −0.964212 + 0.106047i
\(801\) 0 0
\(802\) −46.8869 + 25.1988i −1.65563 + 0.889801i
\(803\) 19.6375i 0.692994i
\(804\) 0 0
\(805\) 6.51058 0.229468
\(806\) 9.94412 + 7.88012i 0.350267 + 0.277566i
\(807\) 0 0
\(808\) −22.9653 27.5972i −0.807915 0.970867i
\(809\) 6.57046 0.231005 0.115503 0.993307i \(-0.463152\pi\)
0.115503 + 0.993307i \(0.463152\pi\)
\(810\) 0 0
\(811\) −15.6438 15.6438i −0.549328 0.549328i 0.376918 0.926246i \(-0.376984\pi\)
−0.926246 + 0.376918i \(0.876984\pi\)
\(812\) 1.16696 0.237645i 0.0409524 0.00833971i
\(813\) 0 0
\(814\) 29.3212 + 8.82174i 1.02771 + 0.309202i
\(815\) 6.21328i 0.217642i
\(816\) 0 0
\(817\) −13.8782 + 13.8782i −0.485536 + 0.485536i
\(818\) −5.14219 9.56797i −0.179792 0.334536i
\(819\) 0 0
\(820\) 1.18113 + 0.781463i 0.0412470 + 0.0272899i
\(821\) −27.5507 + 27.5507i −0.961528 + 0.961528i −0.999287 0.0377591i \(-0.987978\pi\)
0.0377591 + 0.999287i \(0.487978\pi\)
\(822\) 0 0
\(823\) 34.2171 1.19273 0.596367 0.802712i \(-0.296610\pi\)
0.596367 + 0.802712i \(0.296610\pi\)
\(824\) −18.8222 22.6186i −0.655704 0.787956i
\(825\) 0 0
\(826\) 45.1834 + 13.5941i 1.57213 + 0.473000i
\(827\) 20.7423 20.7423i 0.721281 0.721281i −0.247585 0.968866i \(-0.579637\pi\)
0.968866 + 0.247585i \(0.0796371\pi\)
\(828\) 0 0
\(829\) −16.8224 −0.584267 −0.292134 0.956377i \(-0.594365\pi\)
−0.292134 + 0.956377i \(0.594365\pi\)
\(830\) −2.08618 0.627659i −0.0724123 0.0217863i
\(831\) 0 0
\(832\) 28.1185 6.43051i 0.974833 0.222938i
\(833\) −1.76851 −0.0612751
\(834\) 0 0
\(835\) −5.94041 −0.205576
\(836\) 57.4361 + 38.0010i 1.98647 + 1.31429i
\(837\) 0 0
\(838\) 1.89784 + 0.570995i 0.0655599 + 0.0197247i
\(839\) 4.33267 + 4.33267i 0.149580 + 0.149580i 0.777931 0.628350i \(-0.216270\pi\)
−0.628350 + 0.777931i \(0.716270\pi\)
\(840\) 0 0
\(841\) 28.9427 0.998025
\(842\) 36.2674 19.4915i 1.24986 0.671720i
\(843\) 0 0
\(844\) 5.32728 + 3.52464i 0.183372 + 0.121323i
\(845\) −0.149300 5.03044i −0.00513607 0.173053i
\(846\) 0 0
\(847\) 17.3135 17.3135i 0.594898 0.594898i
\(848\) −42.9531 + 18.2512i −1.47502 + 0.626748i
\(849\) 0 0
\(850\) 14.3694 + 4.32326i 0.492866 + 0.148286i
\(851\) −22.6664 22.6664i −0.776995 0.776995i
\(852\) 0 0
\(853\) −31.1735 31.1735i −1.06736 1.06736i −0.997561 0.0697978i \(-0.977765\pi\)
−0.0697978 0.997561i \(-0.522235\pi\)
\(854\) 4.56414 2.45294i 0.156182 0.0839379i
\(855\) 0 0
\(856\) −17.9394 21.5577i −0.613158 0.736828i
\(857\) 35.6847i 1.21897i −0.792799 0.609484i \(-0.791377\pi\)
0.792799 0.609484i \(-0.208623\pi\)
\(858\) 0 0
\(859\) 38.7058 1.32063 0.660313 0.750990i \(-0.270424\pi\)
0.660313 + 0.750990i \(0.270424\pi\)
\(860\) −0.402007 1.97407i −0.0137083 0.0673151i
\(861\) 0 0
\(862\) −45.4574 + 24.4305i −1.54828 + 0.832107i
\(863\) 29.2256 29.2256i 0.994851 0.994851i −0.00513541 0.999987i \(-0.501635\pi\)
0.999987 + 0.00513541i \(0.00163466\pi\)
\(864\) 0 0
\(865\) −4.23336 + 4.23336i −0.143938 + 0.143938i
\(866\) −10.1783 + 33.8300i −0.345872 + 1.14959i
\(867\) 0 0
\(868\) −10.3275 6.83286i −0.350537 0.231922i
\(869\) −52.5000 52.5000i −1.78094 1.78094i
\(870\) 0 0
\(871\) −14.9287 + 37.6097i −0.505840 + 1.27436i
\(872\) −33.2577 3.04669i −1.12625 0.103174i
\(873\) 0 0
\(874\) −34.1314 63.5076i −1.15451 2.14818i
\(875\) 9.48851i 0.320770i
\(876\) 0 0
\(877\) 13.1005 13.1005i 0.442373 0.442373i −0.450436 0.892809i \(-0.648731\pi\)
0.892809 + 0.450436i \(0.148731\pi\)
\(878\) 33.0905 + 9.95579i 1.11675 + 0.335992i
\(879\) 0 0
\(880\) −6.50612 + 2.76451i −0.219321 + 0.0931916i
\(881\) 28.4181i 0.957431i −0.877970 0.478715i \(-0.841103\pi\)
0.877970 0.478715i \(-0.158897\pi\)
\(882\) 0 0
\(883\) 27.5297i 0.926448i 0.886241 + 0.463224i \(0.153308\pi\)
−0.886241 + 0.463224i \(0.846692\pi\)
\(884\) −15.5293 2.77723i −0.522307 0.0934082i
\(885\) 0 0
\(886\) −24.8837 7.48663i −0.835983 0.251518i
\(887\) 43.5367i 1.46182i 0.682473 + 0.730910i \(0.260904\pi\)
−0.682473 + 0.730910i \(0.739096\pi\)
\(888\) 0 0
\(889\) 7.09188 + 7.09188i 0.237854 + 0.237854i
\(890\) −0.156742 + 0.520969i −0.00525399 + 0.0174629i
\(891\) 0 0
\(892\) −6.20298 + 1.26320i −0.207691 + 0.0422951i
\(893\) 81.1870i 2.71682i
\(894\) 0 0
\(895\) 3.24800 + 3.24800i 0.108569 + 0.108569i
\(896\) −26.8062 + 8.59976i −0.895531 + 0.287298i
\(897\) 0 0
\(898\) −4.58458 + 2.46393i −0.152989 + 0.0822224i
\(899\) 0.421052 + 0.421052i 0.0140429 + 0.0140429i
\(900\) 0 0
\(901\) 25.5249 0.850357
\(902\) −11.3085 3.40232i −0.376530 0.113285i
\(903\) 0 0
\(904\) −6.51468 7.82865i −0.216675 0.260377i
\(905\) −6.43690 + 6.43690i −0.213970 + 0.213970i
\(906\) 0 0
\(907\) 27.6601i 0.918440i 0.888323 + 0.459220i \(0.151871\pi\)
−0.888323 + 0.459220i \(0.848129\pi\)
\(908\) 0.245196 + 1.20404i 0.00813712 + 0.0399576i
\(909\) 0 0
\(910\) 0.565000 + 4.87922i 0.0187296 + 0.161745i
\(911\) 7.25921i 0.240508i −0.992743 0.120254i \(-0.961629\pi\)
0.992743 0.120254i \(-0.0383710\pi\)
\(912\) 0 0
\(913\) 18.1655 0.601191
\(914\) 23.9363 + 44.5378i 0.791743 + 1.47318i
\(915\) 0 0
\(916\) 6.79857 + 33.3846i 0.224631 + 1.10306i
\(917\) −11.7433 11.7433i −0.387797 0.387797i
\(918\) 0 0
\(919\) 18.1717i 0.599429i −0.954029 0.299715i \(-0.903109\pi\)
0.954029 0.299715i \(-0.0968915\pi\)
\(920\) 7.36967 + 0.675126i 0.242971 + 0.0222582i
\(921\) 0 0
\(922\) −12.0290 + 6.46486i −0.396155 + 0.212909i
\(923\) −25.1188 9.97058i −0.826794 0.328186i
\(924\) 0 0
\(925\) −16.2657 + 16.2657i −0.534813 + 0.534813i
\(926\) −21.7410 40.4531i −0.714454 1.32937i
\(927\) 0 0
\(928\) 1.34559 0.147993i 0.0441712 0.00485810i
\(929\) −20.8437 20.8437i −0.683861 0.683861i 0.277007 0.960868i \(-0.410657\pi\)
−0.960868 + 0.277007i \(0.910657\pi\)
\(930\) 0 0
\(931\) 4.31172 4.31172i 0.141311 0.141311i
\(932\) −9.15403 + 13.8358i −0.299850 + 0.453205i
\(933\) 0 0
\(934\) 12.8433 42.6879i 0.420246 1.39679i
\(935\) 3.86625 0.126440
\(936\) 0 0
\(937\) −60.3441 −1.97135 −0.985677 0.168642i \(-0.946062\pi\)
−0.985677 + 0.168642i \(0.946062\pi\)
\(938\) 11.3782 37.8181i 0.371511 1.23481i
\(939\) 0 0
\(940\) 6.94998 + 4.59825i 0.226683 + 0.149978i
\(941\) −15.8804 + 15.8804i −0.517686 + 0.517686i −0.916871 0.399185i \(-0.869293\pi\)
0.399185 + 0.916871i \(0.369293\pi\)
\(942\) 0 0
\(943\) 8.74187 + 8.74187i 0.284674 + 0.284674i
\(944\) 49.7358 + 20.0733i 1.61876 + 0.653329i
\(945\) 0 0
\(946\) 7.95233 + 14.7967i 0.258553 + 0.481083i
\(947\) −20.6366 + 20.6366i −0.670600 + 0.670600i −0.957854 0.287255i \(-0.907257\pi\)
0.287255 + 0.957854i \(0.407257\pi\)
\(948\) 0 0
\(949\) −14.4158 5.72216i −0.467956 0.185749i
\(950\) −45.5738 + 24.4931i −1.47861 + 0.794661i
\(951\) 0 0
\(952\) 15.3327 + 1.40461i 0.496936 + 0.0455236i
\(953\) 36.0075i 1.16640i −0.812329 0.583199i \(-0.801801\pi\)
0.812329 0.583199i \(-0.198199\pi\)
\(954\) 0 0
\(955\) −1.30802 1.30802i −0.0423267 0.0423267i
\(956\) −17.2645 + 3.51581i −0.558373 + 0.113709i
\(957\) 0 0
\(958\) 4.86983 + 9.06119i 0.157337 + 0.292754i
\(959\) −29.9158 −0.966031
\(960\) 0 0
\(961\) 24.8084i 0.800271i
\(962\) 15.0198 18.9539i 0.484259 0.611099i
\(963\) 0 0
\(964\) 6.58950 1.34191i 0.212233 0.0432200i
\(965\) 4.50665i 0.145074i
\(966\) 0 0
\(967\) 17.2077 17.2077i 0.553362 0.553362i −0.374047 0.927410i \(-0.622030\pi\)
0.927410 + 0.374047i \(0.122030\pi\)
\(968\) 21.3934 17.8027i 0.687609 0.572200i
\(969\) 0 0
\(970\) 2.39439 + 0.720389i 0.0768792 + 0.0231303i
\(971\) −15.5333 −0.498487 −0.249243 0.968441i \(-0.580182\pi\)
−0.249243 + 0.968441i \(0.580182\pi\)
\(972\) 0 0
\(973\) −0.628855 0.628855i −0.0201602 0.0201602i
\(974\) −28.7402 + 15.4461i −0.920897 + 0.494925i
\(975\) 0 0
\(976\) 5.42075 2.30333i 0.173514 0.0737277i
\(977\) −38.0370 38.0370i −1.21691 1.21691i −0.968708 0.248204i \(-0.920160\pi\)
−0.248204 0.968708i \(-0.579840\pi\)
\(978\) 0 0
\(979\) 4.53637i 0.144983i
\(980\) 0.124897 + 0.613310i 0.00398969 + 0.0195915i
\(981\) 0 0
\(982\) −11.8047 + 39.2359i −0.376704 + 1.25207i
\(983\) 26.1000 + 26.1000i 0.832460 + 0.832460i 0.987853 0.155393i \(-0.0496643\pi\)
−0.155393 + 0.987853i \(0.549664\pi\)
\(984\) 0 0
\(985\) 1.46241i 0.0465963i
\(986\) −0.708980 0.213308i −0.0225785 0.00679310i
\(987\) 0 0
\(988\) 44.6325 31.0904i 1.41995 0.989116i
\(989\) 17.5859i 0.559199i
\(990\) 0 0
\(991\) 0.409809i 0.0130180i −0.999979 0.00650901i \(-0.997928\pi\)
0.999979 0.00650901i \(-0.00207190\pi\)
\(992\) −10.9816 8.80540i −0.348668 0.279572i
\(993\) 0 0
\(994\) 25.2580 + 7.59925i 0.801134 + 0.241033i
\(995\) 1.79077 1.79077i 0.0567713 0.0567713i
\(996\) 0 0
\(997\) 22.9475i 0.726756i 0.931642 + 0.363378i \(0.118377\pi\)
−0.931642 + 0.363378i \(0.881623\pi\)
\(998\) −6.45564 12.0119i −0.204350 0.380229i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.w.j.307.11 24
3.2 odd 2 312.2.t.e.307.2 yes 24
8.3 odd 2 inner 936.2.w.j.307.8 24
12.11 even 2 1248.2.bb.f.463.8 24
13.5 odd 4 inner 936.2.w.j.811.8 24
24.5 odd 2 1248.2.bb.f.463.5 24
24.11 even 2 312.2.t.e.307.5 yes 24
39.5 even 4 312.2.t.e.187.5 yes 24
104.83 even 4 inner 936.2.w.j.811.11 24
156.83 odd 4 1248.2.bb.f.655.5 24
312.5 even 4 1248.2.bb.f.655.8 24
312.83 odd 4 312.2.t.e.187.2 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.t.e.187.2 24 312.83 odd 4
312.2.t.e.187.5 yes 24 39.5 even 4
312.2.t.e.307.2 yes 24 3.2 odd 2
312.2.t.e.307.5 yes 24 24.11 even 2
936.2.w.j.307.8 24 8.3 odd 2 inner
936.2.w.j.307.11 24 1.1 even 1 trivial
936.2.w.j.811.8 24 13.5 odd 4 inner
936.2.w.j.811.11 24 104.83 even 4 inner
1248.2.bb.f.463.5 24 24.5 odd 2
1248.2.bb.f.463.8 24 12.11 even 2
1248.2.bb.f.655.5 24 156.83 odd 4
1248.2.bb.f.655.8 24 312.5 even 4