Properties

Label 936.2.w.j.307.10
Level $936$
Weight $2$
Character 936.307
Analytic conductor $7.474$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(307,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.307"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.w (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 307.10
Character \(\chi\) \(=\) 936.307
Dual form 936.2.w.j.811.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.34492 - 0.437240i) q^{2} +(1.61764 - 1.17611i) q^{4} +(-1.98058 + 1.98058i) q^{5} +(-3.05943 - 3.05943i) q^{7} +(1.66136 - 2.28908i) q^{8} +(-1.79774 + 3.52971i) q^{10} +(1.08518 - 1.08518i) q^{11} +(-3.57990 + 0.429300i) q^{13} +(-5.45240 - 2.77699i) q^{14} +(1.23353 - 3.80505i) q^{16} -5.70052i q^{17} +(-4.39498 - 4.39498i) q^{19} +(-0.874489 + 5.53324i) q^{20} +(0.984999 - 1.93397i) q^{22} +2.95135 q^{23} -2.84537i q^{25} +(-4.62699 + 2.14265i) q^{26} +(-8.54727 - 1.35084i) q^{28} +6.96062i q^{29} +(3.05943 - 3.05943i) q^{31} +(-0.00471188 - 5.65685i) q^{32} +(-2.49250 - 7.66677i) q^{34} +12.1189 q^{35} +(-5.14026 - 5.14026i) q^{37} +(-7.83257 - 3.98925i) q^{38} +(1.24323 + 7.82415i) q^{40} +(2.77963 + 2.77963i) q^{41} -3.00392i q^{43} +(0.479142 - 3.03172i) q^{44} +(3.96934 - 1.29045i) q^{46} +(-6.40146 - 6.40146i) q^{47} +11.7202i q^{49} +(-1.24411 - 3.82681i) q^{50} +(-5.28610 + 4.90481i) q^{52} +4.28172i q^{53} +4.29856i q^{55} +(-12.0861 + 1.92044i) q^{56} +(3.04346 + 9.36150i) q^{58} +(-3.00033 + 3.00033i) q^{59} +1.13106i q^{61} +(2.77699 - 5.45240i) q^{62} +(-2.47974 - 7.60598i) q^{64} +(6.24001 - 7.94053i) q^{65} +(7.39889 + 7.39889i) q^{67} +(-6.70444 - 9.22140i) q^{68} +(16.2989 - 5.29885i) q^{70} +(3.20281 - 3.20281i) q^{71} +(7.87480 - 7.87480i) q^{73} +(-9.16078 - 4.66573i) q^{74} +(-12.2785 - 1.94053i) q^{76} -6.64004 q^{77} +4.46803i q^{79} +(5.09309 + 9.97930i) q^{80} +(4.95376 + 2.52303i) q^{82} +(9.78962 + 9.78962i) q^{83} +(11.2903 + 11.2903i) q^{85} +(-1.31343 - 4.04004i) q^{86} +(-0.681180 - 4.28693i) q^{88} +(-4.24001 + 4.24001i) q^{89} +(12.2659 + 9.63903i) q^{91} +(4.77422 - 3.47111i) q^{92} +(-11.4085 - 5.81050i) q^{94} +17.4092 q^{95} +(-11.5753 - 11.5753i) q^{97} +(5.12453 + 15.7627i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 6 q^{8} - 8 q^{11} - 36 q^{14} + 28 q^{16} + 20 q^{19} + 20 q^{20} + 20 q^{22} - 12 q^{26} - 16 q^{28} + 30 q^{32} + 16 q^{34} - 16 q^{35} + 36 q^{40} + 12 q^{41} + 32 q^{44} - 44 q^{46} + 36 q^{50}+ \cdots - 68 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.34492 0.437240i 0.951005 0.309175i
\(3\) 0 0
\(4\) 1.61764 1.17611i 0.808821 0.588055i
\(5\) −1.98058 + 1.98058i −0.885741 + 0.885741i −0.994111 0.108370i \(-0.965437\pi\)
0.108370 + 0.994111i \(0.465437\pi\)
\(6\) 0 0
\(7\) −3.05943 3.05943i −1.15635 1.15635i −0.985254 0.171100i \(-0.945268\pi\)
−0.171100 0.985254i \(-0.554732\pi\)
\(8\) 1.66136 2.28908i 0.587381 0.809311i
\(9\) 0 0
\(10\) −1.79774 + 3.52971i −0.568495 + 1.11619i
\(11\) 1.08518 1.08518i 0.327194 0.327194i −0.524325 0.851518i \(-0.675682\pi\)
0.851518 + 0.524325i \(0.175682\pi\)
\(12\) 0 0
\(13\) −3.57990 + 0.429300i −0.992886 + 0.119066i
\(14\) −5.45240 2.77699i −1.45721 0.742182i
\(15\) 0 0
\(16\) 1.23353 3.80505i 0.308383 0.951262i
\(17\) 5.70052i 1.38258i −0.722578 0.691290i \(-0.757043\pi\)
0.722578 0.691290i \(-0.242957\pi\)
\(18\) 0 0
\(19\) −4.39498 4.39498i −1.00828 1.00828i −0.999965 0.00831097i \(-0.997355\pi\)
−0.00831097 0.999965i \(-0.502645\pi\)
\(20\) −0.874489 + 5.53324i −0.195542 + 1.23727i
\(21\) 0 0
\(22\) 0.984999 1.93397i 0.210003 0.412323i
\(23\) 2.95135 0.615398 0.307699 0.951484i \(-0.400441\pi\)
0.307699 + 0.951484i \(0.400441\pi\)
\(24\) 0 0
\(25\) 2.84537i 0.569074i
\(26\) −4.62699 + 2.14265i −0.907427 + 0.420209i
\(27\) 0 0
\(28\) −8.54727 1.35084i −1.61528 0.255284i
\(29\) 6.96062i 1.29255i 0.763103 + 0.646277i \(0.223675\pi\)
−0.763103 + 0.646277i \(0.776325\pi\)
\(30\) 0 0
\(31\) 3.05943 3.05943i 0.549489 0.549489i −0.376804 0.926293i \(-0.622977\pi\)
0.926293 + 0.376804i \(0.122977\pi\)
\(32\) −0.00471188 5.65685i −0.000832951 1.00000i
\(33\) 0 0
\(34\) −2.49250 7.66677i −0.427460 1.31484i
\(35\) 12.1189 2.04846
\(36\) 0 0
\(37\) −5.14026 5.14026i −0.845053 0.845053i 0.144458 0.989511i \(-0.453856\pi\)
−0.989511 + 0.144458i \(0.953856\pi\)
\(38\) −7.83257 3.98925i −1.27061 0.647142i
\(39\) 0 0
\(40\) 1.24323 + 7.82415i 0.196572 + 1.23711i
\(41\) 2.77963 + 2.77963i 0.434106 + 0.434106i 0.890022 0.455917i \(-0.150689\pi\)
−0.455917 + 0.890022i \(0.650689\pi\)
\(42\) 0 0
\(43\) 3.00392i 0.458093i −0.973415 0.229046i \(-0.926439\pi\)
0.973415 0.229046i \(-0.0735608\pi\)
\(44\) 0.479142 3.03172i 0.0722333 0.457049i
\(45\) 0 0
\(46\) 3.96934 1.29045i 0.585247 0.190266i
\(47\) −6.40146 6.40146i −0.933749 0.933749i 0.0641887 0.997938i \(-0.479554\pi\)
−0.997938 + 0.0641887i \(0.979554\pi\)
\(48\) 0 0
\(49\) 11.7202i 1.67431i
\(50\) −1.24411 3.82681i −0.175944 0.541192i
\(51\) 0 0
\(52\) −5.28610 + 4.90481i −0.733050 + 0.680175i
\(53\) 4.28172i 0.588140i 0.955784 + 0.294070i \(0.0950099\pi\)
−0.955784 + 0.294070i \(0.904990\pi\)
\(54\) 0 0
\(55\) 4.29856i 0.579618i
\(56\) −12.0861 + 1.92044i −1.61507 + 0.256629i
\(57\) 0 0
\(58\) 3.04346 + 9.36150i 0.399626 + 1.22923i
\(59\) −3.00033 + 3.00033i −0.390610 + 0.390610i −0.874905 0.484295i \(-0.839076\pi\)
0.484295 + 0.874905i \(0.339076\pi\)
\(60\) 0 0
\(61\) 1.13106i 0.144817i 0.997375 + 0.0724084i \(0.0230685\pi\)
−0.997375 + 0.0724084i \(0.976932\pi\)
\(62\) 2.77699 5.45240i 0.352678 0.692455i
\(63\) 0 0
\(64\) −2.47974 7.60598i −0.309967 0.950747i
\(65\) 6.24001 7.94053i 0.773978 0.984902i
\(66\) 0 0
\(67\) 7.39889 + 7.39889i 0.903918 + 0.903918i 0.995772 0.0918540i \(-0.0292793\pi\)
−0.0918540 + 0.995772i \(0.529279\pi\)
\(68\) −6.70444 9.22140i −0.813033 1.11826i
\(69\) 0 0
\(70\) 16.2989 5.29885i 1.94810 0.633334i
\(71\) 3.20281 3.20281i 0.380104 0.380104i −0.491036 0.871139i \(-0.663382\pi\)
0.871139 + 0.491036i \(0.163382\pi\)
\(72\) 0 0
\(73\) 7.87480 7.87480i 0.921675 0.921675i −0.0754728 0.997148i \(-0.524047\pi\)
0.997148 + 0.0754728i \(0.0240466\pi\)
\(74\) −9.16078 4.66573i −1.06492 0.542380i
\(75\) 0 0
\(76\) −12.2785 1.94053i −1.40844 0.222594i
\(77\) −6.64004 −0.756703
\(78\) 0 0
\(79\) 4.46803i 0.502693i 0.967897 + 0.251347i \(0.0808734\pi\)
−0.967897 + 0.251347i \(0.919127\pi\)
\(80\) 5.09309 + 9.97930i 0.569424 + 1.11572i
\(81\) 0 0
\(82\) 4.95376 + 2.52303i 0.547051 + 0.278622i
\(83\) 9.78962 + 9.78962i 1.07455 + 1.07455i 0.996987 + 0.0775625i \(0.0247137\pi\)
0.0775625 + 0.996987i \(0.475286\pi\)
\(84\) 0 0
\(85\) 11.2903 + 11.2903i 1.22461 + 1.22461i
\(86\) −1.31343 4.04004i −0.141631 0.435649i
\(87\) 0 0
\(88\) −0.681180 4.28693i −0.0726140 0.456989i
\(89\) −4.24001 + 4.24001i −0.449440 + 0.449440i −0.895168 0.445728i \(-0.852945\pi\)
0.445728 + 0.895168i \(0.352945\pi\)
\(90\) 0 0
\(91\) 12.2659 + 9.63903i 1.28581 + 1.01045i
\(92\) 4.77422 3.47111i 0.497747 0.361888i
\(93\) 0 0
\(94\) −11.4085 5.81050i −1.17669 0.599308i
\(95\) 17.4092 1.78614
\(96\) 0 0
\(97\) −11.5753 11.5753i −1.17530 1.17530i −0.980929 0.194366i \(-0.937735\pi\)
−0.194366 0.980929i \(-0.562265\pi\)
\(98\) 5.12453 + 15.7627i 0.517655 + 1.59228i
\(99\) 0 0
\(100\) −3.34647 4.60279i −0.334647 0.460279i
\(101\) 5.67835 0.565017 0.282509 0.959265i \(-0.408833\pi\)
0.282509 + 0.959265i \(0.408833\pi\)
\(102\) 0 0
\(103\) −1.20900 −0.119126 −0.0595630 0.998225i \(-0.518971\pi\)
−0.0595630 + 0.998225i \(0.518971\pi\)
\(104\) −4.96482 + 8.90789i −0.486841 + 0.873491i
\(105\) 0 0
\(106\) 1.87214 + 5.75859i 0.181838 + 0.559324i
\(107\) 11.6314 1.12445 0.562225 0.826984i \(-0.309945\pi\)
0.562225 + 0.826984i \(0.309945\pi\)
\(108\) 0 0
\(109\) 7.32910 7.32910i 0.702001 0.702001i −0.262839 0.964840i \(-0.584659\pi\)
0.964840 + 0.262839i \(0.0846588\pi\)
\(110\) 1.87950 + 5.78124i 0.179204 + 0.551219i
\(111\) 0 0
\(112\) −15.4152 + 7.86736i −1.45660 + 0.743396i
\(113\) −15.2598 −1.43552 −0.717760 0.696291i \(-0.754832\pi\)
−0.717760 + 0.696291i \(0.754832\pi\)
\(114\) 0 0
\(115\) −5.84537 + 5.84537i −0.545084 + 0.545084i
\(116\) 8.18645 + 11.2598i 0.760092 + 1.04544i
\(117\) 0 0
\(118\) −2.72336 + 5.34709i −0.250705 + 0.492239i
\(119\) −17.4403 + 17.4403i −1.59875 + 1.59875i
\(120\) 0 0
\(121\) 8.64478i 0.785889i
\(122\) 0.494543 + 1.52118i 0.0447738 + 0.137722i
\(123\) 0 0
\(124\) 1.35084 8.54727i 0.121309 0.767568i
\(125\) −4.26741 4.26741i −0.381689 0.381689i
\(126\) 0 0
\(127\) 5.22910 0.464008 0.232004 0.972715i \(-0.425472\pi\)
0.232004 + 0.972715i \(0.425472\pi\)
\(128\) −6.66070 9.14522i −0.588728 0.808331i
\(129\) 0 0
\(130\) 4.92042 13.4078i 0.431550 1.17594i
\(131\) −17.2100 −1.50364 −0.751821 0.659367i \(-0.770824\pi\)
−0.751821 + 0.659367i \(0.770824\pi\)
\(132\) 0 0
\(133\) 26.8922i 2.33185i
\(134\) 13.1860 + 6.71586i 1.13910 + 0.580162i
\(135\) 0 0
\(136\) −13.0489 9.47064i −1.11894 0.812101i
\(137\) −2.23218 + 2.23218i −0.190708 + 0.190708i −0.796002 0.605294i \(-0.793056\pi\)
0.605294 + 0.796002i \(0.293056\pi\)
\(138\) 0 0
\(139\) 16.1346 1.36852 0.684259 0.729239i \(-0.260126\pi\)
0.684259 + 0.729239i \(0.260126\pi\)
\(140\) 19.6040 14.2531i 1.65684 1.20461i
\(141\) 0 0
\(142\) 2.90714 5.70793i 0.243962 0.478999i
\(143\) −3.41897 + 4.35070i −0.285908 + 0.363824i
\(144\) 0 0
\(145\) −13.7860 13.7860i −1.14487 1.14487i
\(146\) 7.14783 14.0342i 0.591558 1.16148i
\(147\) 0 0
\(148\) −14.3606 2.26959i −1.18043 0.186559i
\(149\) 9.30975 9.30975i 0.762684 0.762684i −0.214123 0.976807i \(-0.568689\pi\)
0.976807 + 0.214123i \(0.0686893\pi\)
\(150\) 0 0
\(151\) −6.21009 6.21009i −0.505370 0.505370i 0.407732 0.913102i \(-0.366320\pi\)
−0.913102 + 0.407732i \(0.866320\pi\)
\(152\) −17.3621 + 2.75878i −1.40825 + 0.223767i
\(153\) 0 0
\(154\) −8.93036 + 2.90329i −0.719629 + 0.233954i
\(155\) 12.1189i 0.973410i
\(156\) 0 0
\(157\) 13.0048i 1.03789i −0.854807 0.518947i \(-0.826324\pi\)
0.854807 0.518947i \(-0.173676\pi\)
\(158\) 1.95360 + 6.00917i 0.155420 + 0.478064i
\(159\) 0 0
\(160\) 11.2132 + 11.1945i 0.886478 + 0.885003i
\(161\) −9.02943 9.02943i −0.711618 0.711618i
\(162\) 0 0
\(163\) 4.16037 4.16037i 0.325865 0.325865i −0.525146 0.851012i \(-0.675989\pi\)
0.851012 + 0.525146i \(0.175989\pi\)
\(164\) 7.76560 + 1.22730i 0.606392 + 0.0958359i
\(165\) 0 0
\(166\) 17.4467 + 8.88588i 1.35413 + 0.689678i
\(167\) 9.56896 + 9.56896i 0.740469 + 0.740469i 0.972668 0.232199i \(-0.0745922\pi\)
−0.232199 + 0.972668i \(0.574592\pi\)
\(168\) 0 0
\(169\) 12.6314 3.07370i 0.971646 0.236439i
\(170\) 20.1212 + 10.2480i 1.54323 + 0.785989i
\(171\) 0 0
\(172\) −3.53293 4.85926i −0.269384 0.370515i
\(173\) 10.9034 0.828968 0.414484 0.910057i \(-0.363962\pi\)
0.414484 + 0.910057i \(0.363962\pi\)
\(174\) 0 0
\(175\) −8.70520 + 8.70520i −0.658051 + 0.658051i
\(176\) −2.79055 5.46776i −0.210346 0.412148i
\(177\) 0 0
\(178\) −3.84859 + 7.55640i −0.288464 + 0.566376i
\(179\) 6.70998i 0.501527i −0.968048 0.250764i \(-0.919318\pi\)
0.968048 0.250764i \(-0.0806817\pi\)
\(180\) 0 0
\(181\) −15.8485 −1.17801 −0.589003 0.808131i \(-0.700479\pi\)
−0.589003 + 0.808131i \(0.700479\pi\)
\(182\) 20.7112 + 7.60065i 1.53522 + 0.563397i
\(183\) 0 0
\(184\) 4.90326 6.75586i 0.361473 0.498048i
\(185\) 20.3614 1.49700
\(186\) 0 0
\(187\) −6.18608 6.18608i −0.452371 0.452371i
\(188\) −17.8841 2.82645i −1.30433 0.206140i
\(189\) 0 0
\(190\) 23.4140 7.61199i 1.69863 0.552232i
\(191\) 17.4715i 1.26419i −0.774890 0.632096i \(-0.782195\pi\)
0.774890 0.632096i \(-0.217805\pi\)
\(192\) 0 0
\(193\) 12.6490 12.6490i 0.910496 0.910496i −0.0858148 0.996311i \(-0.527349\pi\)
0.996311 + 0.0858148i \(0.0273493\pi\)
\(194\) −20.6291 10.5067i −1.48108 0.754339i
\(195\) 0 0
\(196\) 13.7842 + 18.9590i 0.984586 + 1.35422i
\(197\) −4.24269 + 4.24269i −0.302279 + 0.302279i −0.841905 0.539626i \(-0.818566\pi\)
0.539626 + 0.841905i \(0.318566\pi\)
\(198\) 0 0
\(199\) 8.86969 0.628755 0.314378 0.949298i \(-0.398204\pi\)
0.314378 + 0.949298i \(0.398204\pi\)
\(200\) −6.51327 4.72719i −0.460558 0.334263i
\(201\) 0 0
\(202\) 7.63695 2.48280i 0.537334 0.174689i
\(203\) 21.2955 21.2955i 1.49465 1.49465i
\(204\) 0 0
\(205\) −11.0105 −0.769010
\(206\) −1.62601 + 0.528622i −0.113289 + 0.0368308i
\(207\) 0 0
\(208\) −2.78242 + 14.1513i −0.192926 + 0.981213i
\(209\) −9.53866 −0.659803
\(210\) 0 0
\(211\) 8.48028 0.583807 0.291903 0.956448i \(-0.405711\pi\)
0.291903 + 0.956448i \(0.405711\pi\)
\(212\) 5.03578 + 6.92630i 0.345859 + 0.475700i
\(213\) 0 0
\(214\) 15.6434 5.08572i 1.06936 0.347652i
\(215\) 5.94949 + 5.94949i 0.405752 + 0.405752i
\(216\) 0 0
\(217\) −18.7202 −1.27081
\(218\) 6.65251 13.0617i 0.450565 0.884647i
\(219\) 0 0
\(220\) 5.05558 + 6.95353i 0.340847 + 0.468807i
\(221\) 2.44723 + 20.4073i 0.164619 + 1.37274i
\(222\) 0 0
\(223\) 16.9807 16.9807i 1.13711 1.13711i 0.148143 0.988966i \(-0.452670\pi\)
0.988966 0.148143i \(-0.0473295\pi\)
\(224\) −17.2923 + 17.3211i −1.15539 + 1.15732i
\(225\) 0 0
\(226\) −20.5233 + 6.67219i −1.36519 + 0.443827i
\(227\) −8.63107 8.63107i −0.572864 0.572864i 0.360064 0.932928i \(-0.382755\pi\)
−0.932928 + 0.360064i \(0.882755\pi\)
\(228\) 0 0
\(229\) 4.16041 + 4.16041i 0.274928 + 0.274928i 0.831080 0.556153i \(-0.187723\pi\)
−0.556153 + 0.831080i \(0.687723\pi\)
\(230\) −5.30575 + 10.4174i −0.349851 + 0.686904i
\(231\) 0 0
\(232\) 15.9334 + 11.5641i 1.04608 + 0.759221i
\(233\) 2.78928i 0.182732i 0.995817 + 0.0913660i \(0.0291233\pi\)
−0.995817 + 0.0913660i \(0.970877\pi\)
\(234\) 0 0
\(235\) 25.3572 1.65412
\(236\) −1.32475 + 8.38219i −0.0862336 + 0.545634i
\(237\) 0 0
\(238\) −15.8303 + 31.0815i −1.02613 + 2.01472i
\(239\) −3.17166 + 3.17166i −0.205158 + 0.205158i −0.802206 0.597048i \(-0.796340\pi\)
0.597048 + 0.802206i \(0.296340\pi\)
\(240\) 0 0
\(241\) −19.8233 + 19.8233i −1.27693 + 1.27693i −0.334554 + 0.942377i \(0.608586\pi\)
−0.942377 + 0.334554i \(0.891414\pi\)
\(242\) 3.77984 + 11.6266i 0.242977 + 0.747384i
\(243\) 0 0
\(244\) 1.33025 + 1.82964i 0.0851602 + 0.117131i
\(245\) −23.2127 23.2127i −1.48300 1.48300i
\(246\) 0 0
\(247\) 17.6203 + 13.8468i 1.12116 + 0.881052i
\(248\) −1.92044 12.0861i −0.121948 0.767467i
\(249\) 0 0
\(250\) −7.60523 3.87346i −0.480997 0.244979i
\(251\) 5.23069i 0.330158i 0.986280 + 0.165079i \(0.0527879\pi\)
−0.986280 + 0.165079i \(0.947212\pi\)
\(252\) 0 0
\(253\) 3.20274 3.20274i 0.201354 0.201354i
\(254\) 7.03275 2.28637i 0.441274 0.143460i
\(255\) 0 0
\(256\) −12.9568 9.38730i −0.809800 0.586707i
\(257\) 8.93669i 0.557455i 0.960370 + 0.278728i \(0.0899127\pi\)
−0.960370 + 0.278728i \(0.910087\pi\)
\(258\) 0 0
\(259\) 31.4525i 1.95436i
\(260\) 0.755169 20.1839i 0.0468336 1.25175i
\(261\) 0 0
\(262\) −23.1461 + 7.52489i −1.42997 + 0.464889i
\(263\) 6.37699i 0.393222i −0.980482 0.196611i \(-0.937006\pi\)
0.980482 0.196611i \(-0.0629936\pi\)
\(264\) 0 0
\(265\) −8.48028 8.48028i −0.520940 0.520940i
\(266\) 11.7583 + 36.1680i 0.720950 + 2.21760i
\(267\) 0 0
\(268\) 20.6707 + 3.26685i 1.26266 + 0.199555i
\(269\) 15.2813i 0.931717i 0.884859 + 0.465859i \(0.154255\pi\)
−0.884859 + 0.465859i \(0.845745\pi\)
\(270\) 0 0
\(271\) 1.94520 + 1.94520i 0.118163 + 0.118163i 0.763716 0.645553i \(-0.223373\pi\)
−0.645553 + 0.763716i \(0.723373\pi\)
\(272\) −21.6908 7.03178i −1.31520 0.426364i
\(273\) 0 0
\(274\) −2.02611 + 3.97811i −0.122402 + 0.240326i
\(275\) −3.08773 3.08773i −0.186197 0.186197i
\(276\) 0 0
\(277\) 6.63729 0.398796 0.199398 0.979919i \(-0.436101\pi\)
0.199398 + 0.979919i \(0.436101\pi\)
\(278\) 21.6998 7.05469i 1.30147 0.423112i
\(279\) 0 0
\(280\) 20.1338 27.7410i 1.20323 1.65784i
\(281\) 13.3992 13.3992i 0.799331 0.799331i −0.183659 0.982990i \(-0.558794\pi\)
0.982990 + 0.183659i \(0.0587943\pi\)
\(282\) 0 0
\(283\) 8.82007i 0.524299i −0.965027 0.262149i \(-0.915569\pi\)
0.965027 0.262149i \(-0.0844313\pi\)
\(284\) 1.41415 8.94786i 0.0839141 0.530958i
\(285\) 0 0
\(286\) −2.69595 + 7.34627i −0.159415 + 0.434394i
\(287\) 17.0082i 1.00396i
\(288\) 0 0
\(289\) −15.4959 −0.911526
\(290\) −24.5690 12.5134i −1.44274 0.734810i
\(291\) 0 0
\(292\) 3.47698 22.0002i 0.203475 1.28747i
\(293\) −12.6596 12.6596i −0.739582 0.739582i 0.232915 0.972497i \(-0.425174\pi\)
−0.972497 + 0.232915i \(0.925174\pi\)
\(294\) 0 0
\(295\) 11.8848i 0.691959i
\(296\) −20.3063 + 3.22660i −1.18028 + 0.187542i
\(297\) 0 0
\(298\) 8.45031 16.5915i 0.489513 0.961120i
\(299\) −10.5655 + 1.26701i −0.611021 + 0.0732732i
\(300\) 0 0
\(301\) −9.19026 + 9.19026i −0.529718 + 0.529718i
\(302\) −11.0674 5.63680i −0.636858 0.324362i
\(303\) 0 0
\(304\) −22.1444 + 11.3017i −1.27007 + 0.648200i
\(305\) −2.24014 2.24014i −0.128270 0.128270i
\(306\) 0 0
\(307\) −11.6407 + 11.6407i −0.664371 + 0.664371i −0.956407 0.292036i \(-0.905667\pi\)
0.292036 + 0.956407i \(0.405667\pi\)
\(308\) −10.7412 + 7.80942i −0.612038 + 0.444983i
\(309\) 0 0
\(310\) 5.29885 + 16.2989i 0.300954 + 0.925718i
\(311\) 14.2715 0.809263 0.404632 0.914480i \(-0.367400\pi\)
0.404632 + 0.914480i \(0.367400\pi\)
\(312\) 0 0
\(313\) −20.4770 −1.15743 −0.578714 0.815531i \(-0.696445\pi\)
−0.578714 + 0.815531i \(0.696445\pi\)
\(314\) −5.68620 17.4904i −0.320891 0.987042i
\(315\) 0 0
\(316\) 5.25490 + 7.22768i 0.295611 + 0.406589i
\(317\) 18.4519 18.4519i 1.03636 1.03636i 0.0370478 0.999313i \(-0.488205\pi\)
0.999313 0.0370478i \(-0.0117954\pi\)
\(318\) 0 0
\(319\) 7.55351 + 7.55351i 0.422915 + 0.422915i
\(320\) 19.9755 + 10.1529i 1.11667 + 0.567565i
\(321\) 0 0
\(322\) −16.0919 8.19587i −0.896768 0.456738i
\(323\) −25.0537 + 25.0537i −1.39402 + 1.39402i
\(324\) 0 0
\(325\) 1.22152 + 10.1861i 0.0677575 + 0.565026i
\(326\) 3.77630 7.41447i 0.209150 0.410649i
\(327\) 0 0
\(328\) 10.9808 1.74481i 0.606312 0.0963410i
\(329\) 39.1696i 2.15949i
\(330\) 0 0
\(331\) −9.99851 9.99851i −0.549568 0.549568i 0.376748 0.926316i \(-0.377042\pi\)
−0.926316 + 0.376748i \(0.877042\pi\)
\(332\) 27.3498 + 4.32244i 1.50101 + 0.237224i
\(333\) 0 0
\(334\) 17.0535 + 8.68560i 0.933124 + 0.475255i
\(335\) −29.3081 −1.60128
\(336\) 0 0
\(337\) 13.7956i 0.751492i −0.926723 0.375746i \(-0.877387\pi\)
0.926723 0.375746i \(-0.122613\pi\)
\(338\) 15.6443 9.65685i 0.850940 0.525263i
\(339\) 0 0
\(340\) 31.5424 + 4.98505i 1.71062 + 0.270352i
\(341\) 6.64004i 0.359579i
\(342\) 0 0
\(343\) 14.4410 14.4410i 0.779740 0.779740i
\(344\) −6.87619 4.99060i −0.370739 0.269075i
\(345\) 0 0
\(346\) 14.6642 4.76739i 0.788353 0.256296i
\(347\) −2.33288 −0.125236 −0.0626178 0.998038i \(-0.519945\pi\)
−0.0626178 + 0.998038i \(0.519945\pi\)
\(348\) 0 0
\(349\) −14.8829 14.8829i −0.796661 0.796661i 0.185906 0.982567i \(-0.440478\pi\)
−0.982567 + 0.185906i \(0.940478\pi\)
\(350\) −7.90157 + 15.5141i −0.422357 + 0.829263i
\(351\) 0 0
\(352\) −6.14381 6.13358i −0.327466 0.326921i
\(353\) 3.75999 + 3.75999i 0.200124 + 0.200124i 0.800053 0.599929i \(-0.204805\pi\)
−0.599929 + 0.800053i \(0.704805\pi\)
\(354\) 0 0
\(355\) 12.6868i 0.673347i
\(356\) −1.87210 + 11.8455i −0.0992213 + 0.627812i
\(357\) 0 0
\(358\) −2.93387 9.02441i −0.155060 0.476955i
\(359\) 17.6464 + 17.6464i 0.931343 + 0.931343i 0.997790 0.0664468i \(-0.0211663\pi\)
−0.0664468 + 0.997790i \(0.521166\pi\)
\(360\) 0 0
\(361\) 19.6316i 1.03324i
\(362\) −21.3150 + 6.92958i −1.12029 + 0.364211i
\(363\) 0 0
\(364\) 31.1783 + 1.16652i 1.63419 + 0.0611423i
\(365\) 31.1933i 1.63273i
\(366\) 0 0
\(367\) 37.0651i 1.93478i −0.253290 0.967390i \(-0.581513\pi\)
0.253290 0.967390i \(-0.418487\pi\)
\(368\) 3.64058 11.2300i 0.189779 0.585405i
\(369\) 0 0
\(370\) 27.3845 8.90280i 1.42365 0.462834i
\(371\) 13.0996 13.0996i 0.680098 0.680098i
\(372\) 0 0
\(373\) 17.1978i 0.890470i 0.895414 + 0.445235i \(0.146880\pi\)
−0.895414 + 0.445235i \(0.853120\pi\)
\(374\) −11.0246 5.61501i −0.570069 0.290345i
\(375\) 0 0
\(376\) −25.2886 + 4.01828i −1.30416 + 0.207227i
\(377\) −2.98819 24.9183i −0.153900 1.28336i
\(378\) 0 0
\(379\) −20.6610 20.6610i −1.06129 1.06129i −0.997995 0.0632908i \(-0.979840\pi\)
−0.0632908 0.997995i \(-0.520160\pi\)
\(380\) 28.1618 20.4751i 1.44467 1.05035i
\(381\) 0 0
\(382\) −7.63923 23.4978i −0.390857 1.20225i
\(383\) 14.2843 14.2843i 0.729894 0.729894i −0.240705 0.970598i \(-0.577379\pi\)
0.970598 + 0.240705i \(0.0773785\pi\)
\(384\) 0 0
\(385\) 13.1511 13.1511i 0.670243 0.670243i
\(386\) 11.4813 22.5426i 0.584383 1.14739i
\(387\) 0 0
\(388\) −32.3386 5.11088i −1.64174 0.259466i
\(389\) 3.02809 0.153530 0.0767651 0.997049i \(-0.475541\pi\)
0.0767651 + 0.997049i \(0.475541\pi\)
\(390\) 0 0
\(391\) 16.8242i 0.850837i
\(392\) 26.8284 + 19.4715i 1.35504 + 0.983457i
\(393\) 0 0
\(394\) −3.85102 + 7.56117i −0.194012 + 0.380926i
\(395\) −8.84929 8.84929i −0.445256 0.445256i
\(396\) 0 0
\(397\) 5.46083 + 5.46083i 0.274071 + 0.274071i 0.830737 0.556666i \(-0.187920\pi\)
−0.556666 + 0.830737i \(0.687920\pi\)
\(398\) 11.9291 3.87818i 0.597950 0.194396i
\(399\) 0 0
\(400\) −10.8268 3.50986i −0.541339 0.175493i
\(401\) 14.1868 14.1868i 0.708456 0.708456i −0.257754 0.966210i \(-0.582983\pi\)
0.966210 + 0.257754i \(0.0829826\pi\)
\(402\) 0 0
\(403\) −9.63903 + 12.2659i −0.480154 + 0.611006i
\(404\) 9.18554 6.67836i 0.456998 0.332261i
\(405\) 0 0
\(406\) 19.3296 37.9520i 0.959310 1.88353i
\(407\) −11.1562 −0.552992
\(408\) 0 0
\(409\) −9.80736 9.80736i −0.484943 0.484943i 0.421763 0.906706i \(-0.361411\pi\)
−0.906706 + 0.421763i \(0.861411\pi\)
\(410\) −14.8084 + 4.81425i −0.731332 + 0.237759i
\(411\) 0 0
\(412\) −1.95572 + 1.42191i −0.0963516 + 0.0700526i
\(413\) 18.3586 0.903367
\(414\) 0 0
\(415\) −38.7782 −1.90355
\(416\) 2.44535 + 20.2490i 0.119893 + 0.992787i
\(417\) 0 0
\(418\) −12.8288 + 4.17069i −0.627476 + 0.203995i
\(419\) −17.4997 −0.854915 −0.427457 0.904036i \(-0.640591\pi\)
−0.427457 + 0.904036i \(0.640591\pi\)
\(420\) 0 0
\(421\) −11.9652 + 11.9652i −0.583147 + 0.583147i −0.935767 0.352620i \(-0.885291\pi\)
0.352620 + 0.935767i \(0.385291\pi\)
\(422\) 11.4053 3.70792i 0.555203 0.180499i
\(423\) 0 0
\(424\) 9.80119 + 7.11350i 0.475988 + 0.345462i
\(425\) −16.2201 −0.786790
\(426\) 0 0
\(427\) 3.46038 3.46038i 0.167460 0.167460i
\(428\) 18.8154 13.6798i 0.909479 0.661238i
\(429\) 0 0
\(430\) 10.6030 + 5.40026i 0.511320 + 0.260423i
\(431\) 0.239905 0.239905i 0.0115558 0.0115558i −0.701305 0.712861i \(-0.747399\pi\)
0.712861 + 0.701305i \(0.247399\pi\)
\(432\) 0 0
\(433\) 20.0909i 0.965507i −0.875756 0.482754i \(-0.839637\pi\)
0.875756 0.482754i \(-0.160363\pi\)
\(434\) −25.1772 + 8.18521i −1.20854 + 0.392902i
\(435\) 0 0
\(436\) 3.23604 20.4757i 0.154978 0.980608i
\(437\) −12.9711 12.9711i −0.620492 0.620492i
\(438\) 0 0
\(439\) 2.49150 0.118913 0.0594565 0.998231i \(-0.481063\pi\)
0.0594565 + 0.998231i \(0.481063\pi\)
\(440\) 9.83973 + 7.14147i 0.469091 + 0.340456i
\(441\) 0 0
\(442\) 12.2142 + 26.3763i 0.580972 + 1.25459i
\(443\) −13.5192 −0.642318 −0.321159 0.947025i \(-0.604072\pi\)
−0.321159 + 0.947025i \(0.604072\pi\)
\(444\) 0 0
\(445\) 16.7953i 0.796175i
\(446\) 15.4131 30.2623i 0.729830 1.43296i
\(447\) 0 0
\(448\) −15.6833 + 30.8565i −0.740968 + 1.45783i
\(449\) −12.8287 + 12.8287i −0.605424 + 0.605424i −0.941747 0.336323i \(-0.890817\pi\)
0.336323 + 0.941747i \(0.390817\pi\)
\(450\) 0 0
\(451\) 6.03279 0.284073
\(452\) −24.6849 + 17.9472i −1.16108 + 0.844164i
\(453\) 0 0
\(454\) −15.3820 7.83429i −0.721912 0.367681i
\(455\) −43.3843 + 5.20262i −2.03389 + 0.243903i
\(456\) 0 0
\(457\) 21.9620 + 21.9620i 1.02734 + 1.02734i 0.999616 + 0.0277231i \(0.00882568\pi\)
0.0277231 + 0.999616i \(0.491174\pi\)
\(458\) 7.41453 + 3.77634i 0.346458 + 0.176457i
\(459\) 0 0
\(460\) −2.58092 + 16.3305i −0.120336 + 0.761414i
\(461\) −20.6299 + 20.6299i −0.960830 + 0.960830i −0.999261 0.0384313i \(-0.987764\pi\)
0.0384313 + 0.999261i \(0.487764\pi\)
\(462\) 0 0
\(463\) 0.0796856 + 0.0796856i 0.00370330 + 0.00370330i 0.708956 0.705253i \(-0.249166\pi\)
−0.705253 + 0.708956i \(0.749166\pi\)
\(464\) 26.4855 + 8.58615i 1.22956 + 0.398602i
\(465\) 0 0
\(466\) 1.21959 + 3.75137i 0.0564962 + 0.173779i
\(467\) 21.9896i 1.01756i 0.860898 + 0.508778i \(0.169903\pi\)
−0.860898 + 0.508778i \(0.830097\pi\)
\(468\) 0 0
\(469\) 45.2727i 2.09050i
\(470\) 34.1035 11.0872i 1.57308 0.511413i
\(471\) 0 0
\(472\) 1.88335 + 11.8526i 0.0866880 + 0.545562i
\(473\) −3.25979 3.25979i −0.149885 0.149885i
\(474\) 0 0
\(475\) −12.5053 + 12.5053i −0.573784 + 0.573784i
\(476\) −7.70047 + 48.7239i −0.352951 + 2.23326i
\(477\) 0 0
\(478\) −2.87887 + 5.65242i −0.131676 + 0.258536i
\(479\) −4.31955 4.31955i −0.197365 0.197365i 0.601504 0.798870i \(-0.294568\pi\)
−0.798870 + 0.601504i \(0.794568\pi\)
\(480\) 0 0
\(481\) 20.6083 + 16.1949i 0.939659 + 0.738424i
\(482\) −17.9933 + 35.3284i −0.819572 + 1.60916i
\(483\) 0 0
\(484\) 10.1672 + 13.9842i 0.462146 + 0.635643i
\(485\) 45.8516 2.08201
\(486\) 0 0
\(487\) −28.5902 + 28.5902i −1.29555 + 1.29555i −0.364243 + 0.931304i \(0.618672\pi\)
−0.931304 + 0.364243i \(0.881328\pi\)
\(488\) 2.58907 + 1.87909i 0.117202 + 0.0850626i
\(489\) 0 0
\(490\) −41.3688 21.0698i −1.86885 0.951836i
\(491\) 12.4888i 0.563611i −0.959472 0.281805i \(-0.909067\pi\)
0.959472 0.281805i \(-0.0909333\pi\)
\(492\) 0 0
\(493\) 39.6791 1.78706
\(494\) 29.7524 + 10.9186i 1.33862 + 0.491251i
\(495\) 0 0
\(496\) −7.86736 15.4152i −0.353255 0.692161i
\(497\) −19.5975 −0.879069
\(498\) 0 0
\(499\) 10.2871 + 10.2871i 0.460512 + 0.460512i 0.898823 0.438311i \(-0.144423\pi\)
−0.438311 + 0.898823i \(0.644423\pi\)
\(500\) −11.9221 1.88420i −0.533172 0.0842640i
\(501\) 0 0
\(502\) 2.28707 + 7.03488i 0.102077 + 0.313982i
\(503\) 20.3269i 0.906329i −0.891427 0.453165i \(-0.850295\pi\)
0.891427 0.453165i \(-0.149705\pi\)
\(504\) 0 0
\(505\) −11.2464 + 11.2464i −0.500459 + 0.500459i
\(506\) 2.90707 5.70781i 0.129235 0.253743i
\(507\) 0 0
\(508\) 8.45882 6.15000i 0.375299 0.272862i
\(509\) −2.36729 + 2.36729i −0.104928 + 0.104928i −0.757622 0.652694i \(-0.773639\pi\)
0.652694 + 0.757622i \(0.273639\pi\)
\(510\) 0 0
\(511\) −48.1847 −2.13157
\(512\) −21.5304 6.95998i −0.951519 0.307591i
\(513\) 0 0
\(514\) 3.90748 + 12.0192i 0.172351 + 0.530143i
\(515\) 2.39451 2.39451i 0.105515 0.105515i
\(516\) 0 0
\(517\) −13.8935 −0.611033
\(518\) 13.7523 + 42.3012i 0.604240 + 1.85861i
\(519\) 0 0
\(520\) −7.80956 27.4760i −0.342472 1.20490i
\(521\) 25.2723 1.10720 0.553600 0.832782i \(-0.313254\pi\)
0.553600 + 0.832782i \(0.313254\pi\)
\(522\) 0 0
\(523\) −14.5946 −0.638178 −0.319089 0.947725i \(-0.603377\pi\)
−0.319089 + 0.947725i \(0.603377\pi\)
\(524\) −27.8396 + 20.2408i −1.21618 + 0.884224i
\(525\) 0 0
\(526\) −2.78828 8.57657i −0.121575 0.373956i
\(527\) −17.4403 17.4403i −0.759712 0.759712i
\(528\) 0 0
\(529\) −14.2896 −0.621285
\(530\) −15.1133 7.69742i −0.656478 0.334355i
\(531\) 0 0
\(532\) 31.6282 + 43.5019i 1.37125 + 1.88605i
\(533\) −11.1441 8.75752i −0.482705 0.379330i
\(534\) 0 0
\(535\) −23.0369 + 23.0369i −0.995972 + 0.995972i
\(536\) 29.2289 4.64437i 1.26250 0.200606i
\(537\) 0 0
\(538\) 6.68160 + 20.5522i 0.288064 + 0.886068i
\(539\) 12.7185 + 12.7185i 0.547823 + 0.547823i
\(540\) 0 0
\(541\) −0.0297801 0.0297801i −0.00128035 0.00128035i 0.706466 0.707747i \(-0.250288\pi\)
−0.707747 + 0.706466i \(0.750288\pi\)
\(542\) 3.46667 + 1.76563i 0.148906 + 0.0758403i
\(543\) 0 0
\(544\) −32.2470 + 0.0268602i −1.38258 + 0.00115162i
\(545\) 29.0317i 1.24358i
\(546\) 0 0
\(547\) 8.90794 0.380876 0.190438 0.981699i \(-0.439009\pi\)
0.190438 + 0.981699i \(0.439009\pi\)
\(548\) −0.985580 + 6.23615i −0.0421019 + 0.266395i
\(549\) 0 0
\(550\) −5.50285 2.80269i −0.234642 0.119507i
\(551\) 30.5917 30.5917i 1.30325 1.30325i
\(552\) 0 0
\(553\) 13.6696 13.6696i 0.581291 0.581291i
\(554\) 8.92665 2.90209i 0.379257 0.123298i
\(555\) 0 0
\(556\) 26.1000 18.9760i 1.10689 0.804763i
\(557\) −3.04221 3.04221i −0.128902 0.128902i 0.639712 0.768615i \(-0.279054\pi\)
−0.768615 + 0.639712i \(0.779054\pi\)
\(558\) 0 0
\(559\) 1.28958 + 10.7537i 0.0545434 + 0.454834i
\(560\) 14.9490 46.1128i 0.631711 1.94862i
\(561\) 0 0
\(562\) 12.1623 23.8796i 0.513034 1.00730i
\(563\) 19.1221i 0.805900i 0.915222 + 0.402950i \(0.132015\pi\)
−0.915222 + 0.402950i \(0.867985\pi\)
\(564\) 0 0
\(565\) 30.2232 30.2232i 1.27150 1.27150i
\(566\) −3.85649 11.8623i −0.162100 0.498611i
\(567\) 0 0
\(568\) −2.01044 12.6525i −0.0843563 0.530887i
\(569\) 17.6181i 0.738590i 0.929312 + 0.369295i \(0.120401\pi\)
−0.929312 + 0.369295i \(0.879599\pi\)
\(570\) 0 0
\(571\) 3.59788i 0.150567i 0.997162 + 0.0752833i \(0.0239861\pi\)
−0.997162 + 0.0752833i \(0.976014\pi\)
\(572\) −0.413765 + 11.0590i −0.0173004 + 0.462398i
\(573\) 0 0
\(574\) −7.43665 22.8747i −0.310400 0.954770i
\(575\) 8.39767i 0.350207i
\(576\) 0 0
\(577\) 26.9842 + 26.9842i 1.12337 + 1.12337i 0.991232 + 0.132135i \(0.0421832\pi\)
0.132135 + 0.991232i \(0.457817\pi\)
\(578\) −20.8409 + 6.77545i −0.866866 + 0.281822i
\(579\) 0 0
\(580\) −38.5148 6.08698i −1.59924 0.252748i
\(581\) 59.9012i 2.48512i
\(582\) 0 0
\(583\) 4.64644 + 4.64644i 0.192436 + 0.192436i
\(584\) −4.94311 31.1089i −0.204547 1.28730i
\(585\) 0 0
\(586\) −22.5615 11.4909i −0.932007 0.474686i
\(587\) −15.2640 15.2640i −0.630014 0.630014i 0.318057 0.948071i \(-0.396970\pi\)
−0.948071 + 0.318057i \(0.896970\pi\)
\(588\) 0 0
\(589\) −26.8922 −1.10807
\(590\) −5.19650 15.9841i −0.213937 0.658056i
\(591\) 0 0
\(592\) −25.8996 + 13.2183i −1.06447 + 0.543267i
\(593\) −17.5925 + 17.5925i −0.722439 + 0.722439i −0.969101 0.246663i \(-0.920666\pi\)
0.246663 + 0.969101i \(0.420666\pi\)
\(594\) 0 0
\(595\) 69.0838i 2.83216i
\(596\) 4.11056 26.0091i 0.168375 1.06537i
\(597\) 0 0
\(598\) −13.6559 + 6.32371i −0.558429 + 0.258596i
\(599\) 12.8652i 0.525659i 0.964842 + 0.262829i \(0.0846556\pi\)
−0.964842 + 0.262829i \(0.915344\pi\)
\(600\) 0 0
\(601\) 25.5562 1.04246 0.521230 0.853416i \(-0.325473\pi\)
0.521230 + 0.853416i \(0.325473\pi\)
\(602\) −8.34185 + 16.3785i −0.339988 + 0.667540i
\(603\) 0 0
\(604\) −17.3495 2.74196i −0.705940 0.111569i
\(605\) −17.1216 17.1216i −0.696094 0.696094i
\(606\) 0 0
\(607\) 31.7217i 1.28754i −0.765218 0.643771i \(-0.777369\pi\)
0.765218 0.643771i \(-0.222631\pi\)
\(608\) −24.8410 + 24.8824i −1.00744 + 1.00912i
\(609\) 0 0
\(610\) −3.99230 2.03334i −0.161644 0.0823276i
\(611\) 25.6648 + 20.1685i 1.03828 + 0.815929i
\(612\) 0 0
\(613\) −11.2028 + 11.2028i −0.452477 + 0.452477i −0.896176 0.443699i \(-0.853666\pi\)
0.443699 + 0.896176i \(0.353666\pi\)
\(614\) −10.5661 + 20.7457i −0.426413 + 0.837227i
\(615\) 0 0
\(616\) −11.0315 + 15.1996i −0.444473 + 0.612408i
\(617\) −13.6394 13.6394i −0.549100 0.549100i 0.377080 0.926181i \(-0.376928\pi\)
−0.926181 + 0.377080i \(0.876928\pi\)
\(618\) 0 0
\(619\) 24.5702 24.5702i 0.987561 0.987561i −0.0123622 0.999924i \(-0.503935\pi\)
0.999924 + 0.0123622i \(0.00393510\pi\)
\(620\) 14.2531 + 19.6040i 0.572418 + 0.787314i
\(621\) 0 0
\(622\) 19.1941 6.24008i 0.769614 0.250204i
\(623\) 25.9440 1.03942
\(624\) 0 0
\(625\) 31.1307 1.24523
\(626\) −27.5400 + 8.95336i −1.10072 + 0.357848i
\(627\) 0 0
\(628\) −15.2950 21.0371i −0.610338 0.839470i
\(629\) −29.3022 + 29.3022i −1.16835 + 1.16835i
\(630\) 0 0
\(631\) 14.4587 + 14.4587i 0.575593 + 0.575593i 0.933686 0.358093i \(-0.116573\pi\)
−0.358093 + 0.933686i \(0.616573\pi\)
\(632\) 10.2277 + 7.42303i 0.406835 + 0.295272i
\(633\) 0 0
\(634\) 16.7485 32.8843i 0.665167 1.30600i
\(635\) −10.3566 + 10.3566i −0.410991 + 0.410991i
\(636\) 0 0
\(637\) −5.03146 41.9570i −0.199354 1.66240i
\(638\) 13.4616 + 6.85620i 0.532950 + 0.271440i
\(639\) 0 0
\(640\) 31.3048 + 4.92079i 1.23743 + 0.194511i
\(641\) 29.9697i 1.18373i −0.806037 0.591866i \(-0.798392\pi\)
0.806037 0.591866i \(-0.201608\pi\)
\(642\) 0 0
\(643\) −19.9356 19.9356i −0.786183 0.786183i 0.194683 0.980866i \(-0.437632\pi\)
−0.980866 + 0.194683i \(0.937632\pi\)
\(644\) −25.2260 3.98679i −0.994043 0.157101i
\(645\) 0 0
\(646\) −22.7408 + 44.6497i −0.894725 + 1.75672i
\(647\) 27.3423 1.07494 0.537469 0.843283i \(-0.319380\pi\)
0.537469 + 0.843283i \(0.319380\pi\)
\(648\) 0 0
\(649\) 6.51179i 0.255610i
\(650\) 6.09664 + 13.1655i 0.239130 + 0.516393i
\(651\) 0 0
\(652\) 1.83694 11.6230i 0.0719401 0.455194i
\(653\) 9.37861i 0.367013i 0.983018 + 0.183507i \(0.0587449\pi\)
−0.983018 + 0.183507i \(0.941255\pi\)
\(654\) 0 0
\(655\) 34.0857 34.0857i 1.33184 1.33184i
\(656\) 14.0054 7.14787i 0.546819 0.279077i
\(657\) 0 0
\(658\) 17.1265 + 52.6801i 0.667661 + 2.05368i
\(659\) 16.9639 0.660821 0.330411 0.943837i \(-0.392813\pi\)
0.330411 + 0.943837i \(0.392813\pi\)
\(660\) 0 0
\(661\) 29.9758 + 29.9758i 1.16592 + 1.16592i 0.983156 + 0.182768i \(0.0585056\pi\)
0.182768 + 0.983156i \(0.441494\pi\)
\(662\) −17.8190 9.07549i −0.692555 0.352729i
\(663\) 0 0
\(664\) 38.6733 6.14506i 1.50081 0.238475i
\(665\) −53.2621 53.2621i −2.06541 2.06541i
\(666\) 0 0
\(667\) 20.5432i 0.795436i
\(668\) 26.7333 + 4.22501i 1.03434 + 0.163471i
\(669\) 0 0
\(670\) −39.4172 + 12.8147i −1.52282 + 0.495075i
\(671\) 1.22740 + 1.22740i 0.0473831 + 0.0473831i
\(672\) 0 0
\(673\) 6.87865i 0.265152i −0.991173 0.132576i \(-0.957675\pi\)
0.991173 0.132576i \(-0.0423249\pi\)
\(674\) −6.03197 18.5540i −0.232343 0.714672i
\(675\) 0 0
\(676\) 16.8181 19.8281i 0.646849 0.762618i
\(677\) 13.0371i 0.501057i −0.968109 0.250528i \(-0.919396\pi\)
0.968109 0.250528i \(-0.0806043\pi\)
\(678\) 0 0
\(679\) 70.8276i 2.71812i
\(680\) 44.6017 7.08707i 1.71040 0.271777i
\(681\) 0 0
\(682\) −2.90329 8.93036i −0.111173 0.341961i
\(683\) 20.9718 20.9718i 0.802463 0.802463i −0.181017 0.983480i \(-0.557939\pi\)
0.983480 + 0.181017i \(0.0579389\pi\)
\(684\) 0 0
\(685\) 8.84200i 0.337836i
\(686\) 13.1079 25.7362i 0.500460 0.982613i
\(687\) 0 0
\(688\) −11.4300 3.70543i −0.435767 0.141268i
\(689\) −1.83814 15.3282i −0.0700277 0.583956i
\(690\) 0 0
\(691\) −33.4370 33.4370i −1.27200 1.27200i −0.945035 0.326969i \(-0.893973\pi\)
−0.326969 0.945035i \(-0.606027\pi\)
\(692\) 17.6377 12.8236i 0.670487 0.487478i
\(693\) 0 0
\(694\) −3.13755 + 1.02003i −0.119100 + 0.0387198i
\(695\) −31.9558 + 31.9558i −1.21215 + 1.21215i
\(696\) 0 0
\(697\) 15.8454 15.8454i 0.600185 0.600185i
\(698\) −26.5237 13.5089i −1.00394 0.511321i
\(699\) 0 0
\(700\) −3.84363 + 24.3202i −0.145276 + 0.919215i
\(701\) 15.0565 0.568675 0.284338 0.958724i \(-0.408226\pi\)
0.284338 + 0.958724i \(0.408226\pi\)
\(702\) 0 0
\(703\) 45.1826i 1.70409i
\(704\) −10.9448 5.56288i −0.412498 0.209659i
\(705\) 0 0
\(706\) 6.70092 + 3.41288i 0.252192 + 0.128446i
\(707\) −17.3725 17.3725i −0.653360 0.653360i
\(708\) 0 0
\(709\) −14.4736 14.4736i −0.543569 0.543569i 0.381004 0.924573i \(-0.375578\pi\)
−0.924573 + 0.381004i \(0.875578\pi\)
\(710\) 5.54719 + 17.0628i 0.208182 + 0.640356i
\(711\) 0 0
\(712\) 2.66151 + 16.7499i 0.0997442 + 0.627729i
\(713\) 9.02943 9.02943i 0.338155 0.338155i
\(714\) 0 0
\(715\) −1.84537 15.3884i −0.0690129 0.575494i
\(716\) −7.89167 10.8543i −0.294925 0.405646i
\(717\) 0 0
\(718\) 31.4488 + 16.0174i 1.17366 + 0.597764i
\(719\) −30.9497 −1.15423 −0.577114 0.816663i \(-0.695821\pi\)
−0.577114 + 0.816663i \(0.695821\pi\)
\(720\) 0 0
\(721\) 3.69883 + 3.69883i 0.137752 + 0.137752i
\(722\) 8.58373 + 26.4030i 0.319453 + 0.982619i
\(723\) 0 0
\(724\) −25.6371 + 18.6395i −0.952797 + 0.692732i
\(725\) 19.8055 0.735559
\(726\) 0 0
\(727\) 34.8766 1.29350 0.646750 0.762702i \(-0.276128\pi\)
0.646750 + 0.762702i \(0.276128\pi\)
\(728\) 42.4425 12.0635i 1.57302 0.447104i
\(729\) 0 0
\(730\) 13.6389 + 41.9526i 0.504800 + 1.55274i
\(731\) −17.1239 −0.633350
\(732\) 0 0
\(733\) −2.70878 + 2.70878i −0.100051 + 0.100051i −0.755361 0.655309i \(-0.772538\pi\)
0.655309 + 0.755361i \(0.272538\pi\)
\(734\) −16.2063 49.8497i −0.598187 1.83999i
\(735\) 0 0
\(736\) −0.0139064 16.6953i −0.000512596 0.615398i
\(737\) 16.0582 0.591513
\(738\) 0 0
\(739\) −36.0138 + 36.0138i −1.32479 + 1.32479i −0.414938 + 0.909850i \(0.636197\pi\)
−0.909850 + 0.414938i \(0.863803\pi\)
\(740\) 32.9374 23.9472i 1.21080 0.880316i
\(741\) 0 0
\(742\) 11.8903 23.3457i 0.436507 0.857046i
\(743\) −34.5489 + 34.5489i −1.26747 + 1.26747i −0.320086 + 0.947388i \(0.603712\pi\)
−0.947388 + 0.320086i \(0.896288\pi\)
\(744\) 0 0
\(745\) 36.8773i 1.35108i
\(746\) 7.51958 + 23.1298i 0.275311 + 0.846841i
\(747\) 0 0
\(748\) −17.2824 2.73136i −0.631906 0.0998683i
\(749\) −35.5854 35.5854i −1.30026 1.30026i
\(750\) 0 0
\(751\) 33.5927 1.22582 0.612908 0.790154i \(-0.290000\pi\)
0.612908 + 0.790154i \(0.290000\pi\)
\(752\) −32.2543 + 16.4615i −1.17619 + 0.600288i
\(753\) 0 0
\(754\) −14.9142 32.2067i −0.543142 1.17290i
\(755\) 24.5991 0.895254
\(756\) 0 0
\(757\) 43.6629i 1.58695i 0.608600 + 0.793477i \(0.291731\pi\)
−0.608600 + 0.793477i \(0.708269\pi\)
\(758\) −36.8214 18.7537i −1.33741 0.681165i
\(759\) 0 0
\(760\) 28.9230 39.8509i 1.04915 1.44554i
\(761\) 8.82087 8.82087i 0.319756 0.319756i −0.528917 0.848673i \(-0.677402\pi\)
0.848673 + 0.528917i \(0.177402\pi\)
\(762\) 0 0
\(763\) −44.8457 −1.62352
\(764\) −20.5484 28.2626i −0.743414 1.02250i
\(765\) 0 0
\(766\) 12.9656 25.4570i 0.468467 0.919798i
\(767\) 9.45286 12.0289i 0.341323 0.434340i
\(768\) 0 0
\(769\) 34.6156 + 34.6156i 1.24827 + 1.24827i 0.956483 + 0.291787i \(0.0942499\pi\)
0.291787 + 0.956483i \(0.405750\pi\)
\(770\) 11.9371 23.4375i 0.430182 0.844627i
\(771\) 0 0
\(772\) 5.58496 35.3382i 0.201007 1.27185i
\(773\) −29.1933 + 29.1933i −1.05001 + 1.05001i −0.0513298 + 0.998682i \(0.516346\pi\)
−0.998682 + 0.0513298i \(0.983654\pi\)
\(774\) 0 0
\(775\) −8.70520 8.70520i −0.312700 0.312700i
\(776\) −45.7276 + 7.26597i −1.64153 + 0.260833i
\(777\) 0 0
\(778\) 4.07255 1.32400i 0.146008 0.0474678i
\(779\) 24.4328i 0.875397i
\(780\) 0 0
\(781\) 6.95124i 0.248735i
\(782\) −7.35622 22.6273i −0.263058 0.809151i
\(783\) 0 0
\(784\) 44.5958 + 14.4572i 1.59271 + 0.516329i
\(785\) 25.7569 + 25.7569i 0.919305 + 0.919305i
\(786\) 0 0
\(787\) 7.46253 7.46253i 0.266011 0.266011i −0.561480 0.827490i \(-0.689768\pi\)
0.827490 + 0.561480i \(0.189768\pi\)
\(788\) −1.87329 + 11.8530i −0.0667330 + 0.422246i
\(789\) 0 0
\(790\) −15.7709 8.03236i −0.561103 0.285778i
\(791\) 46.6862 + 46.6862i 1.65997 + 1.65997i
\(792\) 0 0
\(793\) −0.485562 4.04907i −0.0172428 0.143787i
\(794\) 9.73209 + 4.95671i 0.345379 + 0.175907i
\(795\) 0 0
\(796\) 14.3480 10.4317i 0.508551 0.369743i
\(797\) 22.8833 0.810568 0.405284 0.914191i \(-0.367173\pi\)
0.405284 + 0.914191i \(0.367173\pi\)
\(798\) 0 0
\(799\) −36.4917 + 36.4917i −1.29098 + 1.29098i
\(800\) −16.0958 + 0.0134070i −0.569074 + 0.000474010i
\(801\) 0 0
\(802\) 12.8772 25.2832i 0.454708 0.892782i
\(803\) 17.0911i 0.603132i
\(804\) 0 0
\(805\) 35.7669 1.26062
\(806\) −7.60065 + 20.7112i −0.267721 + 0.729521i
\(807\) 0 0
\(808\) 9.43381 12.9982i 0.331880 0.457274i
\(809\) −44.2093 −1.55432 −0.777158 0.629306i \(-0.783339\pi\)
−0.777158 + 0.629306i \(0.783339\pi\)
\(810\) 0 0
\(811\) −2.94966 2.94966i −0.103576 0.103576i 0.653420 0.756996i \(-0.273334\pi\)
−0.756996 + 0.653420i \(0.773334\pi\)
\(812\) 9.40265 59.4943i 0.329968 2.08784i
\(813\) 0 0
\(814\) −15.0042 + 4.87794i −0.525898 + 0.170972i
\(815\) 16.4799i 0.577265i
\(816\) 0 0
\(817\) −13.2021 + 13.2021i −0.461884 + 0.461884i
\(818\) −17.4783 8.90199i −0.611116 0.311251i
\(819\) 0 0
\(820\) −17.8111 + 12.9496i −0.621992 + 0.452220i
\(821\) 21.8863 21.8863i 0.763837 0.763837i −0.213177 0.977014i \(-0.568381\pi\)
0.977014 + 0.213177i \(0.0683811\pi\)
\(822\) 0 0
\(823\) −4.14879 −0.144618 −0.0723088 0.997382i \(-0.523037\pi\)
−0.0723088 + 0.997382i \(0.523037\pi\)
\(824\) −2.00858 + 2.76748i −0.0699723 + 0.0964099i
\(825\) 0 0
\(826\) 24.6909 8.02711i 0.859107 0.279299i
\(827\) 10.6504 10.6504i 0.370350 0.370350i −0.497255 0.867605i \(-0.665659\pi\)
0.867605 + 0.497255i \(0.165659\pi\)
\(828\) 0 0
\(829\) 0.216258 0.00751097 0.00375548 0.999993i \(-0.498805\pi\)
0.00375548 + 0.999993i \(0.498805\pi\)
\(830\) −52.1537 + 16.9554i −1.81028 + 0.588530i
\(831\) 0 0
\(832\) 12.1425 + 26.1641i 0.420964 + 0.907077i
\(833\) 66.8111 2.31487
\(834\) 0 0
\(835\) −37.9041 −1.31173
\(836\) −15.4301 + 11.2185i −0.533663 + 0.388000i
\(837\) 0 0
\(838\) −23.5357 + 7.65156i −0.813028 + 0.264319i
\(839\) 25.0859 + 25.0859i 0.866061 + 0.866061i 0.992034 0.125972i \(-0.0402050\pi\)
−0.125972 + 0.992034i \(0.540205\pi\)
\(840\) 0 0
\(841\) −19.4502 −0.670695
\(842\) −10.8606 + 21.3239i −0.374281 + 0.734871i
\(843\) 0 0
\(844\) 13.7181 9.97374i 0.472195 0.343310i
\(845\) −18.9298 + 31.1052i −0.651204 + 1.07005i
\(846\) 0 0
\(847\) 26.4480 26.4480i 0.908766 0.908766i
\(848\) 16.2922 + 5.28165i 0.559475 + 0.181373i
\(849\) 0 0
\(850\) −21.8148 + 7.09207i −0.748241 + 0.243256i
\(851\) −15.1707 15.1707i −0.520044 0.520044i
\(852\) 0 0
\(853\) 11.0517 + 11.0517i 0.378403 + 0.378403i 0.870526 0.492123i \(-0.163779\pi\)
−0.492123 + 0.870526i \(0.663779\pi\)
\(854\) 3.14093 6.16696i 0.107480 0.211029i
\(855\) 0 0
\(856\) 19.3240 26.6252i 0.660481 0.910030i
\(857\) 51.1359i 1.74677i 0.487031 + 0.873385i \(0.338080\pi\)
−0.487031 + 0.873385i \(0.661920\pi\)
\(858\) 0 0
\(859\) 7.91145 0.269935 0.134968 0.990850i \(-0.456907\pi\)
0.134968 + 0.990850i \(0.456907\pi\)
\(860\) 16.6214 + 2.62689i 0.566785 + 0.0895763i
\(861\) 0 0
\(862\) 0.217758 0.427550i 0.00741686 0.0145624i
\(863\) 12.9345 12.9345i 0.440294 0.440294i −0.451817 0.892111i \(-0.649224\pi\)
0.892111 + 0.451817i \(0.149224\pi\)
\(864\) 0 0
\(865\) −21.5950 + 21.5950i −0.734251 + 0.734251i
\(866\) −8.78455 27.0208i −0.298511 0.918202i
\(867\) 0 0
\(868\) −30.2825 + 22.0170i −1.02786 + 0.747304i
\(869\) 4.84861 + 4.84861i 0.164478 + 0.164478i
\(870\) 0 0
\(871\) −29.6637 23.3110i −1.00511 0.789862i
\(872\) −4.60057 28.9532i −0.155795 0.980478i
\(873\) 0 0
\(874\) −23.1166 11.7737i −0.781932 0.398250i
\(875\) 26.1116i 0.882735i
\(876\) 0 0
\(877\) 14.4085 14.4085i 0.486539 0.486539i −0.420673 0.907212i \(-0.638206\pi\)
0.907212 + 0.420673i \(0.138206\pi\)
\(878\) 3.35088 1.08939i 0.113087 0.0367650i
\(879\) 0 0
\(880\) 16.3562 + 5.30241i 0.551368 + 0.178744i
\(881\) 22.8221i 0.768895i 0.923147 + 0.384448i \(0.125608\pi\)
−0.923147 + 0.384448i \(0.874392\pi\)
\(882\) 0 0
\(883\) 16.8248i 0.566199i 0.959091 + 0.283099i \(0.0913626\pi\)
−0.959091 + 0.283099i \(0.908637\pi\)
\(884\) 27.9600 + 30.1335i 0.940396 + 1.01350i
\(885\) 0 0
\(886\) −18.1823 + 5.91115i −0.610848 + 0.198589i
\(887\) 13.8258i 0.464226i 0.972689 + 0.232113i \(0.0745640\pi\)
−0.972689 + 0.232113i \(0.925436\pi\)
\(888\) 0 0
\(889\) −15.9981 15.9981i −0.536557 0.536557i
\(890\) −7.34359 22.5885i −0.246158 0.757167i
\(891\) 0 0
\(892\) 7.49751 47.4397i 0.251035 1.58840i
\(893\) 56.2685i 1.88295i
\(894\) 0 0
\(895\) 13.2896 + 13.2896i 0.444223 + 0.444223i
\(896\) −7.60121 + 48.3570i −0.253939 + 1.61550i
\(897\) 0 0
\(898\) −11.6444 + 22.8629i −0.388579 + 0.762943i
\(899\) 21.2955 + 21.2955i 0.710244 + 0.710244i
\(900\) 0 0
\(901\) 24.4081 0.813151
\(902\) 8.11365 2.63778i 0.270155 0.0878284i
\(903\) 0 0
\(904\) −25.3521 + 34.9308i −0.843197 + 1.16178i
\(905\) 31.3891 31.3891i 1.04341 1.04341i
\(906\) 0 0
\(907\) 0.155764i 0.00517206i −0.999997 0.00258603i \(-0.999177\pi\)
0.999997 0.00258603i \(-0.000823160\pi\)
\(908\) −24.1131 3.81090i −0.800220 0.126469i
\(909\) 0 0
\(910\) −56.0738 + 25.9665i −1.85883 + 0.860781i
\(911\) 3.37534i 0.111830i −0.998436 0.0559150i \(-0.982192\pi\)
0.998436 0.0559150i \(-0.0178076\pi\)
\(912\) 0 0
\(913\) 21.2470 0.703172
\(914\) 39.1399 + 19.9346i 1.29463 + 0.659376i
\(915\) 0 0
\(916\) 11.6232 + 1.83696i 0.384040 + 0.0606948i
\(917\) 52.6526 + 52.6526i 1.73874 + 1.73874i
\(918\) 0 0
\(919\) 25.7638i 0.849869i −0.905224 0.424935i \(-0.860297\pi\)
0.905224 0.424935i \(-0.139703\pi\)
\(920\) 3.66921 + 23.0918i 0.120970 + 0.761314i
\(921\) 0 0
\(922\) −18.7254 + 36.7659i −0.616689 + 1.21082i
\(923\) −10.0908 + 12.8407i −0.332142 + 0.422657i
\(924\) 0 0
\(925\) −14.6259 + 14.6259i −0.480898 + 0.480898i
\(926\) 0.142013 + 0.0723294i 0.00466683 + 0.00237689i
\(927\) 0 0
\(928\) 39.3752 0.0327976i 1.29255 0.00107663i
\(929\) 28.3002 + 28.3002i 0.928499 + 0.928499i 0.997609 0.0691097i \(-0.0220159\pi\)
−0.0691097 + 0.997609i \(0.522016\pi\)
\(930\) 0 0
\(931\) 51.5098 51.5098i 1.68817 1.68817i
\(932\) 3.28050 + 4.51206i 0.107456 + 0.147798i
\(933\) 0 0
\(934\) 9.61473 + 29.5743i 0.314604 + 0.967702i
\(935\) 24.5040 0.801367
\(936\) 0 0
\(937\) 42.3237 1.38266 0.691328 0.722541i \(-0.257026\pi\)
0.691328 + 0.722541i \(0.257026\pi\)
\(938\) −19.7950 60.8884i −0.646331 1.98808i
\(939\) 0 0
\(940\) 41.0188 29.8228i 1.33789 0.972713i
\(941\) 21.0672 21.0672i 0.686769 0.686769i −0.274747 0.961517i \(-0.588594\pi\)
0.961517 + 0.274747i \(0.0885941\pi\)
\(942\) 0 0
\(943\) 8.20366 + 8.20366i 0.267148 + 0.267148i
\(944\) 7.71541 + 15.1174i 0.251115 + 0.492030i
\(945\) 0 0
\(946\) −5.80947 2.95886i −0.188882 0.0962007i
\(947\) 37.8829 37.8829i 1.23103 1.23103i 0.267459 0.963569i \(-0.413816\pi\)
0.963569 0.267459i \(-0.0861840\pi\)
\(948\) 0 0
\(949\) −24.8104 + 31.5716i −0.805378 + 1.02486i
\(950\) −11.3509 + 22.2866i −0.368271 + 0.723071i
\(951\) 0 0
\(952\) 10.9475 + 68.8969i 0.354811 + 2.23296i
\(953\) 35.9170i 1.16346i 0.813380 + 0.581732i \(0.197625\pi\)
−0.813380 + 0.581732i \(0.802375\pi\)
\(954\) 0 0
\(955\) 34.6036 + 34.6036i 1.11975 + 1.11975i
\(956\) −1.40039 + 8.86084i −0.0452919 + 0.286580i
\(957\) 0 0
\(958\) −7.69815 3.92079i −0.248716 0.126675i
\(959\) 13.6584 0.441052
\(960\) 0 0
\(961\) 12.2798i 0.396124i
\(962\) 34.7977 + 12.7701i 1.12192 + 0.411726i
\(963\) 0 0
\(964\) −8.75263 + 55.3814i −0.281903 + 1.78371i
\(965\) 50.1047i 1.61293i
\(966\) 0 0
\(967\) −24.7361 + 24.7361i −0.795460 + 0.795460i −0.982376 0.186916i \(-0.940151\pi\)
0.186916 + 0.982376i \(0.440151\pi\)
\(968\) 19.7885 + 14.3621i 0.636028 + 0.461616i
\(969\) 0 0
\(970\) 61.6669 20.0482i 1.98001 0.643708i
\(971\) 19.1899 0.615834 0.307917 0.951413i \(-0.400368\pi\)
0.307917 + 0.951413i \(0.400368\pi\)
\(972\) 0 0
\(973\) −49.3625 49.3625i −1.58249 1.58249i
\(974\) −25.9509 + 50.9525i −0.831520 + 1.63262i
\(975\) 0 0
\(976\) 4.30372 + 1.39519i 0.137759 + 0.0446591i
\(977\) 22.9975 + 22.9975i 0.735755 + 0.735755i 0.971753 0.235999i \(-0.0758361\pi\)
−0.235999 + 0.971753i \(0.575836\pi\)
\(978\) 0 0
\(979\) 9.20234i 0.294108i
\(980\) −64.8505 10.2492i −2.07157 0.327397i
\(981\) 0 0
\(982\) −5.46060 16.7965i −0.174255 0.535997i
\(983\) 1.02696 + 1.02696i 0.0327549 + 0.0327549i 0.723295 0.690540i \(-0.242627\pi\)
−0.690540 + 0.723295i \(0.742627\pi\)
\(984\) 0 0
\(985\) 16.8059i 0.535482i
\(986\) 53.3654 17.3493i 1.69950 0.552515i
\(987\) 0 0
\(988\) 44.7888 + 1.67575i 1.42492 + 0.0533127i
\(989\) 8.86560i 0.281910i
\(990\) 0 0
\(991\) 57.0449i 1.81209i −0.423181 0.906045i \(-0.639087\pi\)
0.423181 0.906045i \(-0.360913\pi\)
\(992\) −17.3211 17.2923i −0.549946 0.549031i
\(993\) 0 0
\(994\) −26.3572 + 8.56882i −0.835999 + 0.271786i
\(995\) −17.5671 + 17.5671i −0.556914 + 0.556914i
\(996\) 0 0
\(997\) 12.0315i 0.381042i −0.981683 0.190521i \(-0.938982\pi\)
0.981683 0.190521i \(-0.0610177\pi\)
\(998\) 18.3332 + 9.33740i 0.580328 + 0.295570i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.w.j.307.10 24
3.2 odd 2 312.2.t.e.307.3 yes 24
8.3 odd 2 inner 936.2.w.j.307.5 24
12.11 even 2 1248.2.bb.f.463.11 24
13.5 odd 4 inner 936.2.w.j.811.5 24
24.5 odd 2 1248.2.bb.f.463.2 24
24.11 even 2 312.2.t.e.307.8 yes 24
39.5 even 4 312.2.t.e.187.8 yes 24
104.83 even 4 inner 936.2.w.j.811.10 24
156.83 odd 4 1248.2.bb.f.655.2 24
312.5 even 4 1248.2.bb.f.655.11 24
312.83 odd 4 312.2.t.e.187.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.t.e.187.3 24 312.83 odd 4
312.2.t.e.187.8 yes 24 39.5 even 4
312.2.t.e.307.3 yes 24 3.2 odd 2
312.2.t.e.307.8 yes 24 24.11 even 2
936.2.w.j.307.5 24 8.3 odd 2 inner
936.2.w.j.307.10 24 1.1 even 1 trivial
936.2.w.j.811.5 24 13.5 odd 4 inner
936.2.w.j.811.10 24 104.83 even 4 inner
1248.2.bb.f.463.2 24 24.5 odd 2
1248.2.bb.f.463.11 24 12.11 even 2
1248.2.bb.f.655.2 24 156.83 odd 4
1248.2.bb.f.655.11 24 312.5 even 4