Properties

Label 936.2.w.g.811.2
Level $936$
Weight $2$
Character 936.811
Analytic conductor $7.474$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,2,Mod(307,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.307");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.w (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{26})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 811.2
Root \(2.54951 + 2.54951i\) of defining polynomial
Character \(\chi\) \(=\) 936.811
Dual form 936.2.w.g.307.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.00000i) q^{2} -2.00000i q^{4} +(2.54951 + 2.54951i) q^{5} +(2.54951 - 2.54951i) q^{7} +(-2.00000 - 2.00000i) q^{8} +O(q^{10})\) \(q+(1.00000 - 1.00000i) q^{2} -2.00000i q^{4} +(2.54951 + 2.54951i) q^{5} +(2.54951 - 2.54951i) q^{7} +(-2.00000 - 2.00000i) q^{8} +5.09902 q^{10} +(-1.00000 - 1.00000i) q^{11} +(-2.54951 - 2.54951i) q^{13} -5.09902i q^{14} -4.00000 q^{16} +3.00000i q^{17} +(2.00000 - 2.00000i) q^{19} +(5.09902 - 5.09902i) q^{20} -2.00000 q^{22} +5.09902 q^{23} +8.00000i q^{25} -5.09902 q^{26} +(-5.09902 - 5.09902i) q^{28} -5.09902i q^{29} +(5.09902 + 5.09902i) q^{31} +(-4.00000 + 4.00000i) q^{32} +(3.00000 + 3.00000i) q^{34} +13.0000 q^{35} +(2.54951 - 2.54951i) q^{37} -4.00000i q^{38} -10.1980i q^{40} +(-6.00000 + 6.00000i) q^{41} -1.00000i q^{43} +(-2.00000 + 2.00000i) q^{44} +(5.09902 - 5.09902i) q^{46} +(-2.54951 + 2.54951i) q^{47} -6.00000i q^{49} +(8.00000 + 8.00000i) q^{50} +(-5.09902 + 5.09902i) q^{52} +5.09902i q^{53} -5.09902i q^{55} -10.1980 q^{56} +(-5.09902 - 5.09902i) q^{58} +(-8.00000 - 8.00000i) q^{59} +10.1980 q^{62} +8.00000i q^{64} -13.0000i q^{65} +(3.00000 - 3.00000i) q^{67} +6.00000 q^{68} +(13.0000 - 13.0000i) q^{70} +(7.64853 + 7.64853i) q^{71} +(-6.00000 - 6.00000i) q^{73} -5.09902i q^{74} +(-4.00000 - 4.00000i) q^{76} -5.09902 q^{77} +5.09902i q^{79} +(-10.1980 - 10.1980i) q^{80} +12.0000i q^{82} +(-5.00000 + 5.00000i) q^{83} +(-7.64853 + 7.64853i) q^{85} +(-1.00000 - 1.00000i) q^{86} +4.00000i q^{88} +(2.00000 + 2.00000i) q^{89} -13.0000 q^{91} -10.1980i q^{92} +5.09902i q^{94} +10.1980 q^{95} +(-7.00000 + 7.00000i) q^{97} +(-6.00000 - 6.00000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 8 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{2} - 8 q^{8} - 4 q^{11} - 16 q^{16} + 8 q^{19} - 8 q^{22} - 16 q^{32} + 12 q^{34} + 52 q^{35} - 24 q^{41} - 8 q^{44} + 32 q^{50} - 32 q^{59} + 12 q^{67} + 24 q^{68} + 52 q^{70} - 24 q^{73} - 16 q^{76} - 20 q^{83} - 4 q^{86} + 8 q^{89} - 52 q^{91} - 28 q^{97} - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.00000i 0.707107 0.707107i
\(3\) 0 0
\(4\) 2.00000i 1.00000i
\(5\) 2.54951 + 2.54951i 1.14018 + 1.14018i 0.988418 + 0.151758i \(0.0484933\pi\)
0.151758 + 0.988418i \(0.451507\pi\)
\(6\) 0 0
\(7\) 2.54951 2.54951i 0.963624 0.963624i −0.0357371 0.999361i \(-0.511378\pi\)
0.999361 + 0.0357371i \(0.0113779\pi\)
\(8\) −2.00000 2.00000i −0.707107 0.707107i
\(9\) 0 0
\(10\) 5.09902 1.61245
\(11\) −1.00000 1.00000i −0.301511 0.301511i 0.540094 0.841605i \(-0.318389\pi\)
−0.841605 + 0.540094i \(0.818389\pi\)
\(12\) 0 0
\(13\) −2.54951 2.54951i −0.707107 0.707107i
\(14\) 5.09902i 1.36277i
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) 3.00000i 0.727607i 0.931476 + 0.363803i \(0.118522\pi\)
−0.931476 + 0.363803i \(0.881478\pi\)
\(18\) 0 0
\(19\) 2.00000 2.00000i 0.458831 0.458831i −0.439440 0.898272i \(-0.644823\pi\)
0.898272 + 0.439440i \(0.144823\pi\)
\(20\) 5.09902 5.09902i 1.14018 1.14018i
\(21\) 0 0
\(22\) −2.00000 −0.426401
\(23\) 5.09902 1.06322 0.531610 0.846990i \(-0.321587\pi\)
0.531610 + 0.846990i \(0.321587\pi\)
\(24\) 0 0
\(25\) 8.00000i 1.60000i
\(26\) −5.09902 −1.00000
\(27\) 0 0
\(28\) −5.09902 5.09902i −0.963624 0.963624i
\(29\) 5.09902i 0.946864i −0.880830 0.473432i \(-0.843015\pi\)
0.880830 0.473432i \(-0.156985\pi\)
\(30\) 0 0
\(31\) 5.09902 + 5.09902i 0.915811 + 0.915811i 0.996721 0.0809104i \(-0.0257828\pi\)
−0.0809104 + 0.996721i \(0.525783\pi\)
\(32\) −4.00000 + 4.00000i −0.707107 + 0.707107i
\(33\) 0 0
\(34\) 3.00000 + 3.00000i 0.514496 + 0.514496i
\(35\) 13.0000 2.19740
\(36\) 0 0
\(37\) 2.54951 2.54951i 0.419137 0.419137i −0.465769 0.884906i \(-0.654222\pi\)
0.884906 + 0.465769i \(0.154222\pi\)
\(38\) 4.00000i 0.648886i
\(39\) 0 0
\(40\) 10.1980i 1.61245i
\(41\) −6.00000 + 6.00000i −0.937043 + 0.937043i −0.998132 0.0610897i \(-0.980542\pi\)
0.0610897 + 0.998132i \(0.480542\pi\)
\(42\) 0 0
\(43\) 1.00000i 0.152499i −0.997089 0.0762493i \(-0.975706\pi\)
0.997089 0.0762493i \(-0.0242945\pi\)
\(44\) −2.00000 + 2.00000i −0.301511 + 0.301511i
\(45\) 0 0
\(46\) 5.09902 5.09902i 0.751809 0.751809i
\(47\) −2.54951 + 2.54951i −0.371884 + 0.371884i −0.868163 0.496279i \(-0.834699\pi\)
0.496279 + 0.868163i \(0.334699\pi\)
\(48\) 0 0
\(49\) 6.00000i 0.857143i
\(50\) 8.00000 + 8.00000i 1.13137 + 1.13137i
\(51\) 0 0
\(52\) −5.09902 + 5.09902i −0.707107 + 0.707107i
\(53\) 5.09902i 0.700404i 0.936674 + 0.350202i \(0.113887\pi\)
−0.936674 + 0.350202i \(0.886113\pi\)
\(54\) 0 0
\(55\) 5.09902i 0.687552i
\(56\) −10.1980 −1.36277
\(57\) 0 0
\(58\) −5.09902 5.09902i −0.669534 0.669534i
\(59\) −8.00000 8.00000i −1.04151 1.04151i −0.999100 0.0424110i \(-0.986496\pi\)
−0.0424110 0.999100i \(-0.513504\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 10.1980 1.29515
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) 13.0000i 1.61245i
\(66\) 0 0
\(67\) 3.00000 3.00000i 0.366508 0.366508i −0.499694 0.866202i \(-0.666554\pi\)
0.866202 + 0.499694i \(0.166554\pi\)
\(68\) 6.00000 0.727607
\(69\) 0 0
\(70\) 13.0000 13.0000i 1.55380 1.55380i
\(71\) 7.64853 + 7.64853i 0.907713 + 0.907713i 0.996087 0.0883739i \(-0.0281670\pi\)
−0.0883739 + 0.996087i \(0.528167\pi\)
\(72\) 0 0
\(73\) −6.00000 6.00000i −0.702247 0.702247i 0.262646 0.964892i \(-0.415405\pi\)
−0.964892 + 0.262646i \(0.915405\pi\)
\(74\) 5.09902i 0.592749i
\(75\) 0 0
\(76\) −4.00000 4.00000i −0.458831 0.458831i
\(77\) −5.09902 −0.581087
\(78\) 0 0
\(79\) 5.09902i 0.573685i 0.957978 + 0.286842i \(0.0926056\pi\)
−0.957978 + 0.286842i \(0.907394\pi\)
\(80\) −10.1980 10.1980i −1.14018 1.14018i
\(81\) 0 0
\(82\) 12.0000i 1.32518i
\(83\) −5.00000 + 5.00000i −0.548821 + 0.548821i −0.926100 0.377279i \(-0.876860\pi\)
0.377279 + 0.926100i \(0.376860\pi\)
\(84\) 0 0
\(85\) −7.64853 + 7.64853i −0.829599 + 0.829599i
\(86\) −1.00000 1.00000i −0.107833 0.107833i
\(87\) 0 0
\(88\) 4.00000i 0.426401i
\(89\) 2.00000 + 2.00000i 0.212000 + 0.212000i 0.805116 0.593117i \(-0.202103\pi\)
−0.593117 + 0.805116i \(0.702103\pi\)
\(90\) 0 0
\(91\) −13.0000 −1.36277
\(92\) 10.1980i 1.06322i
\(93\) 0 0
\(94\) 5.09902i 0.525924i
\(95\) 10.1980 1.04630
\(96\) 0 0
\(97\) −7.00000 + 7.00000i −0.710742 + 0.710742i −0.966691 0.255948i \(-0.917612\pi\)
0.255948 + 0.966691i \(0.417612\pi\)
\(98\) −6.00000 6.00000i −0.606092 0.606092i
\(99\) 0 0
\(100\) 16.0000 1.60000
\(101\) −10.1980 −1.01474 −0.507371 0.861727i \(-0.669383\pi\)
−0.507371 + 0.861727i \(0.669383\pi\)
\(102\) 0 0
\(103\) −5.09902 −0.502421 −0.251211 0.967932i \(-0.580829\pi\)
−0.251211 + 0.967932i \(0.580829\pi\)
\(104\) 10.1980i 1.00000i
\(105\) 0 0
\(106\) 5.09902 + 5.09902i 0.495261 + 0.495261i
\(107\) 2.00000 0.193347 0.0966736 0.995316i \(-0.469180\pi\)
0.0966736 + 0.995316i \(0.469180\pi\)
\(108\) 0 0
\(109\) 2.54951 + 2.54951i 0.244199 + 0.244199i 0.818585 0.574386i \(-0.194759\pi\)
−0.574386 + 0.818585i \(0.694759\pi\)
\(110\) −5.09902 5.09902i −0.486172 0.486172i
\(111\) 0 0
\(112\) −10.1980 + 10.1980i −0.963624 + 0.963624i
\(113\) −4.00000 −0.376288 −0.188144 0.982141i \(-0.560247\pi\)
−0.188144 + 0.982141i \(0.560247\pi\)
\(114\) 0 0
\(115\) 13.0000 + 13.0000i 1.21226 + 1.21226i
\(116\) −10.1980 −0.946864
\(117\) 0 0
\(118\) −16.0000 −1.47292
\(119\) 7.64853 + 7.64853i 0.701140 + 0.701140i
\(120\) 0 0
\(121\) 9.00000i 0.818182i
\(122\) 0 0
\(123\) 0 0
\(124\) 10.1980 10.1980i 0.915811 0.915811i
\(125\) −7.64853 + 7.64853i −0.684105 + 0.684105i
\(126\) 0 0
\(127\) 15.2971 1.35739 0.678697 0.734418i \(-0.262545\pi\)
0.678697 + 0.734418i \(0.262545\pi\)
\(128\) 8.00000 + 8.00000i 0.707107 + 0.707107i
\(129\) 0 0
\(130\) −13.0000 13.0000i −1.14018 1.14018i
\(131\) −7.00000 −0.611593 −0.305796 0.952097i \(-0.598923\pi\)
−0.305796 + 0.952097i \(0.598923\pi\)
\(132\) 0 0
\(133\) 10.1980i 0.884282i
\(134\) 6.00000i 0.518321i
\(135\) 0 0
\(136\) 6.00000 6.00000i 0.514496 0.514496i
\(137\) 5.00000 + 5.00000i 0.427179 + 0.427179i 0.887666 0.460487i \(-0.152325\pi\)
−0.460487 + 0.887666i \(0.652325\pi\)
\(138\) 0 0
\(139\) −15.0000 −1.27228 −0.636142 0.771572i \(-0.719471\pi\)
−0.636142 + 0.771572i \(0.719471\pi\)
\(140\) 26.0000i 2.19740i
\(141\) 0 0
\(142\) 15.2971 1.28370
\(143\) 5.09902i 0.426401i
\(144\) 0 0
\(145\) 13.0000 13.0000i 1.07959 1.07959i
\(146\) −12.0000 −0.993127
\(147\) 0 0
\(148\) −5.09902 5.09902i −0.419137 0.419137i
\(149\) 10.1980 + 10.1980i 0.835456 + 0.835456i 0.988257 0.152801i \(-0.0488294\pi\)
−0.152801 + 0.988257i \(0.548829\pi\)
\(150\) 0 0
\(151\) −7.64853 + 7.64853i −0.622428 + 0.622428i −0.946152 0.323723i \(-0.895065\pi\)
0.323723 + 0.946152i \(0.395065\pi\)
\(152\) −8.00000 −0.648886
\(153\) 0 0
\(154\) −5.09902 + 5.09902i −0.410891 + 0.410891i
\(155\) 26.0000i 2.08837i
\(156\) 0 0
\(157\) 10.1980i 0.813892i 0.913452 + 0.406946i \(0.133406\pi\)
−0.913452 + 0.406946i \(0.866594\pi\)
\(158\) 5.09902 + 5.09902i 0.405656 + 0.405656i
\(159\) 0 0
\(160\) −20.3961 −1.61245
\(161\) 13.0000 13.0000i 1.02454 1.02454i
\(162\) 0 0
\(163\) 9.00000 + 9.00000i 0.704934 + 0.704934i 0.965465 0.260531i \(-0.0838976\pi\)
−0.260531 + 0.965465i \(0.583898\pi\)
\(164\) 12.0000 + 12.0000i 0.937043 + 0.937043i
\(165\) 0 0
\(166\) 10.0000i 0.776151i
\(167\) −15.2971 + 15.2971i −1.18372 + 1.18372i −0.204949 + 0.978773i \(0.565703\pi\)
−0.978773 + 0.204949i \(0.934297\pi\)
\(168\) 0 0
\(169\) 13.0000i 1.00000i
\(170\) 15.2971i 1.17323i
\(171\) 0 0
\(172\) −2.00000 −0.152499
\(173\) 5.09902 0.387671 0.193836 0.981034i \(-0.437907\pi\)
0.193836 + 0.981034i \(0.437907\pi\)
\(174\) 0 0
\(175\) 20.3961 + 20.3961i 1.54180 + 1.54180i
\(176\) 4.00000 + 4.00000i 0.301511 + 0.301511i
\(177\) 0 0
\(178\) 4.00000 0.299813
\(179\) 9.00000i 0.672692i 0.941739 + 0.336346i \(0.109191\pi\)
−0.941739 + 0.336346i \(0.890809\pi\)
\(180\) 0 0
\(181\) −15.2971 −1.13702 −0.568511 0.822676i \(-0.692480\pi\)
−0.568511 + 0.822676i \(0.692480\pi\)
\(182\) −13.0000 + 13.0000i −0.963624 + 0.963624i
\(183\) 0 0
\(184\) −10.1980 10.1980i −0.751809 0.751809i
\(185\) 13.0000 0.955779
\(186\) 0 0
\(187\) 3.00000 3.00000i 0.219382 0.219382i
\(188\) 5.09902 + 5.09902i 0.371884 + 0.371884i
\(189\) 0 0
\(190\) 10.1980 10.1980i 0.739844 0.739844i
\(191\) 25.4951i 1.84476i −0.386283 0.922380i \(-0.626241\pi\)
0.386283 0.922380i \(-0.373759\pi\)
\(192\) 0 0
\(193\) 9.00000 + 9.00000i 0.647834 + 0.647834i 0.952469 0.304635i \(-0.0985345\pi\)
−0.304635 + 0.952469i \(0.598534\pi\)
\(194\) 14.0000i 1.00514i
\(195\) 0 0
\(196\) −12.0000 −0.857143
\(197\) −12.7475 12.7475i −0.908225 0.908225i 0.0879037 0.996129i \(-0.471983\pi\)
−0.996129 + 0.0879037i \(0.971983\pi\)
\(198\) 0 0
\(199\) 25.4951 1.80730 0.903650 0.428272i \(-0.140878\pi\)
0.903650 + 0.428272i \(0.140878\pi\)
\(200\) 16.0000 16.0000i 1.13137 1.13137i
\(201\) 0 0
\(202\) −10.1980 + 10.1980i −0.717532 + 0.717532i
\(203\) −13.0000 13.0000i −0.912421 0.912421i
\(204\) 0 0
\(205\) −30.5941 −2.13679
\(206\) −5.09902 + 5.09902i −0.355266 + 0.355266i
\(207\) 0 0
\(208\) 10.1980 + 10.1980i 0.707107 + 0.707107i
\(209\) −4.00000 −0.276686
\(210\) 0 0
\(211\) 7.00000 0.481900 0.240950 0.970538i \(-0.422541\pi\)
0.240950 + 0.970538i \(0.422541\pi\)
\(212\) 10.1980 0.700404
\(213\) 0 0
\(214\) 2.00000 2.00000i 0.136717 0.136717i
\(215\) 2.54951 2.54951i 0.173875 0.173875i
\(216\) 0 0
\(217\) 26.0000 1.76500
\(218\) 5.09902 0.345349
\(219\) 0 0
\(220\) −10.1980 −0.687552
\(221\) 7.64853 7.64853i 0.514496 0.514496i
\(222\) 0 0
\(223\) 7.64853 + 7.64853i 0.512183 + 0.512183i 0.915195 0.403012i \(-0.132037\pi\)
−0.403012 + 0.915195i \(0.632037\pi\)
\(224\) 20.3961i 1.36277i
\(225\) 0 0
\(226\) −4.00000 + 4.00000i −0.266076 + 0.266076i
\(227\) 12.0000 12.0000i 0.796468 0.796468i −0.186069 0.982537i \(-0.559575\pi\)
0.982537 + 0.186069i \(0.0595747\pi\)
\(228\) 0 0
\(229\) −2.54951 + 2.54951i −0.168476 + 0.168476i −0.786309 0.617833i \(-0.788011\pi\)
0.617833 + 0.786309i \(0.288011\pi\)
\(230\) 26.0000 1.71439
\(231\) 0 0
\(232\) −10.1980 + 10.1980i −0.669534 + 0.669534i
\(233\) 11.0000i 0.720634i 0.932830 + 0.360317i \(0.117331\pi\)
−0.932830 + 0.360317i \(0.882669\pi\)
\(234\) 0 0
\(235\) −13.0000 −0.848026
\(236\) −16.0000 + 16.0000i −1.04151 + 1.04151i
\(237\) 0 0
\(238\) 15.2971 0.991561
\(239\) −2.54951 2.54951i −0.164914 0.164914i 0.619826 0.784740i \(-0.287203\pi\)
−0.784740 + 0.619826i \(0.787203\pi\)
\(240\) 0 0
\(241\) −14.0000 14.0000i −0.901819 0.901819i 0.0937742 0.995593i \(-0.470107\pi\)
−0.995593 + 0.0937742i \(0.970107\pi\)
\(242\) −9.00000 9.00000i −0.578542 0.578542i
\(243\) 0 0
\(244\) 0 0
\(245\) 15.2971 15.2971i 0.977293 0.977293i
\(246\) 0 0
\(247\) −10.1980 −0.648886
\(248\) 20.3961i 1.29515i
\(249\) 0 0
\(250\) 15.2971i 0.967471i
\(251\) 10.0000i 0.631194i −0.948893 0.315597i \(-0.897795\pi\)
0.948893 0.315597i \(-0.102205\pi\)
\(252\) 0 0
\(253\) −5.09902 5.09902i −0.320573 0.320573i
\(254\) 15.2971 15.2971i 0.959823 0.959823i
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 3.00000i 0.187135i 0.995613 + 0.0935674i \(0.0298271\pi\)
−0.995613 + 0.0935674i \(0.970173\pi\)
\(258\) 0 0
\(259\) 13.0000i 0.807781i
\(260\) −26.0000 −1.61245
\(261\) 0 0
\(262\) −7.00000 + 7.00000i −0.432461 + 0.432461i
\(263\) 20.3961i 1.25768i −0.777536 0.628838i \(-0.783531\pi\)
0.777536 0.628838i \(-0.216469\pi\)
\(264\) 0 0
\(265\) −13.0000 + 13.0000i −0.798584 + 0.798584i
\(266\) −10.1980 10.1980i −0.625282 0.625282i
\(267\) 0 0
\(268\) −6.00000 6.00000i −0.366508 0.366508i
\(269\) 20.3961i 1.24357i 0.783188 + 0.621785i \(0.213592\pi\)
−0.783188 + 0.621785i \(0.786408\pi\)
\(270\) 0 0
\(271\) −7.64853 + 7.64853i −0.464615 + 0.464615i −0.900165 0.435550i \(-0.856554\pi\)
0.435550 + 0.900165i \(0.356554\pi\)
\(272\) 12.0000i 0.727607i
\(273\) 0 0
\(274\) 10.0000 0.604122
\(275\) 8.00000 8.00000i 0.482418 0.482418i
\(276\) 0 0
\(277\) −10.1980 −0.612741 −0.306370 0.951912i \(-0.599115\pi\)
−0.306370 + 0.951912i \(0.599115\pi\)
\(278\) −15.0000 + 15.0000i −0.899640 + 0.899640i
\(279\) 0 0
\(280\) −26.0000 26.0000i −1.55380 1.55380i
\(281\) −16.0000 16.0000i −0.954480 0.954480i 0.0445282 0.999008i \(-0.485822\pi\)
−0.999008 + 0.0445282i \(0.985822\pi\)
\(282\) 0 0
\(283\) 16.0000i 0.951101i −0.879688 0.475551i \(-0.842249\pi\)
0.879688 0.475551i \(-0.157751\pi\)
\(284\) 15.2971 15.2971i 0.907713 0.907713i
\(285\) 0 0
\(286\) 5.09902 + 5.09902i 0.301511 + 0.301511i
\(287\) 30.5941i 1.80591i
\(288\) 0 0
\(289\) 8.00000 0.470588
\(290\) 26.0000i 1.52677i
\(291\) 0 0
\(292\) −12.0000 + 12.0000i −0.702247 + 0.702247i
\(293\) −12.7475 + 12.7475i −0.744720 + 0.744720i −0.973482 0.228763i \(-0.926532\pi\)
0.228763 + 0.973482i \(0.426532\pi\)
\(294\) 0 0
\(295\) 40.7922i 2.37501i
\(296\) −10.1980 −0.592749
\(297\) 0 0
\(298\) 20.3961 1.18151
\(299\) −13.0000 13.0000i −0.751809 0.751809i
\(300\) 0 0
\(301\) −2.54951 2.54951i −0.146951 0.146951i
\(302\) 15.2971i 0.880247i
\(303\) 0 0
\(304\) −8.00000 + 8.00000i −0.458831 + 0.458831i
\(305\) 0 0
\(306\) 0 0
\(307\) −10.0000 10.0000i −0.570730 0.570730i 0.361602 0.932332i \(-0.382230\pi\)
−0.932332 + 0.361602i \(0.882230\pi\)
\(308\) 10.1980i 0.581087i
\(309\) 0 0
\(310\) 26.0000 + 26.0000i 1.47670 + 1.47670i
\(311\) −10.1980 −0.578278 −0.289139 0.957287i \(-0.593369\pi\)
−0.289139 + 0.957287i \(0.593369\pi\)
\(312\) 0 0
\(313\) −31.0000 −1.75222 −0.876112 0.482108i \(-0.839871\pi\)
−0.876112 + 0.482108i \(0.839871\pi\)
\(314\) 10.1980 + 10.1980i 0.575509 + 0.575509i
\(315\) 0 0
\(316\) 10.1980 0.573685
\(317\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(318\) 0 0
\(319\) −5.09902 + 5.09902i −0.285490 + 0.285490i
\(320\) −20.3961 + 20.3961i −1.14018 + 1.14018i
\(321\) 0 0
\(322\) 26.0000i 1.44892i
\(323\) 6.00000 + 6.00000i 0.333849 + 0.333849i
\(324\) 0 0
\(325\) 20.3961 20.3961i 1.13137 1.13137i
\(326\) 18.0000 0.996928
\(327\) 0 0
\(328\) 24.0000 1.32518
\(329\) 13.0000i 0.716713i
\(330\) 0 0
\(331\) 21.0000 21.0000i 1.15426 1.15426i 0.168576 0.985689i \(-0.446083\pi\)
0.985689 0.168576i \(-0.0539168\pi\)
\(332\) 10.0000 + 10.0000i 0.548821 + 0.548821i
\(333\) 0 0
\(334\) 30.5941i 1.67404i
\(335\) 15.2971 0.835768
\(336\) 0 0
\(337\) 17.0000i 0.926049i 0.886345 + 0.463025i \(0.153236\pi\)
−0.886345 + 0.463025i \(0.846764\pi\)
\(338\) 13.0000 + 13.0000i 0.707107 + 0.707107i
\(339\) 0 0
\(340\) 15.2971 + 15.2971i 0.829599 + 0.829599i
\(341\) 10.1980i 0.552255i
\(342\) 0 0
\(343\) 2.54951 + 2.54951i 0.137661 + 0.137661i
\(344\) −2.00000 + 2.00000i −0.107833 + 0.107833i
\(345\) 0 0
\(346\) 5.09902 5.09902i 0.274125 0.274125i
\(347\) 7.00000 0.375780 0.187890 0.982190i \(-0.439835\pi\)
0.187890 + 0.982190i \(0.439835\pi\)
\(348\) 0 0
\(349\) 22.9456 22.9456i 1.22825 1.22825i 0.263624 0.964626i \(-0.415082\pi\)
0.964626 0.263624i \(-0.0849177\pi\)
\(350\) 40.7922 2.18043
\(351\) 0 0
\(352\) 8.00000 0.426401
\(353\) −5.00000 + 5.00000i −0.266123 + 0.266123i −0.827536 0.561413i \(-0.810258\pi\)
0.561413 + 0.827536i \(0.310258\pi\)
\(354\) 0 0
\(355\) 39.0000i 2.06991i
\(356\) 4.00000 4.00000i 0.212000 0.212000i
\(357\) 0 0
\(358\) 9.00000 + 9.00000i 0.475665 + 0.475665i
\(359\) 15.2971 15.2971i 0.807348 0.807348i −0.176884 0.984232i \(-0.556602\pi\)
0.984232 + 0.176884i \(0.0566017\pi\)
\(360\) 0 0
\(361\) 11.0000i 0.578947i
\(362\) −15.2971 + 15.2971i −0.803996 + 0.803996i
\(363\) 0 0
\(364\) 26.0000i 1.36277i
\(365\) 30.5941i 1.60137i
\(366\) 0 0
\(367\) 15.2971i 0.798500i −0.916842 0.399250i \(-0.869271\pi\)
0.916842 0.399250i \(-0.130729\pi\)
\(368\) −20.3961 −1.06322
\(369\) 0 0
\(370\) 13.0000 13.0000i 0.675838 0.675838i
\(371\) 13.0000 + 13.0000i 0.674926 + 0.674926i
\(372\) 0 0
\(373\) 20.3961i 1.05607i 0.849223 + 0.528034i \(0.177071\pi\)
−0.849223 + 0.528034i \(0.822929\pi\)
\(374\) 6.00000i 0.310253i
\(375\) 0 0
\(376\) 10.1980 0.525924
\(377\) −13.0000 + 13.0000i −0.669534 + 0.669534i
\(378\) 0 0
\(379\) −23.0000 + 23.0000i −1.18143 + 1.18143i −0.202057 + 0.979374i \(0.564763\pi\)
−0.979374 + 0.202057i \(0.935237\pi\)
\(380\) 20.3961i 1.04630i
\(381\) 0 0
\(382\) −25.4951 25.4951i −1.30444 1.30444i
\(383\) −7.64853 7.64853i −0.390822 0.390822i 0.484159 0.874980i \(-0.339126\pi\)
−0.874980 + 0.484159i \(0.839126\pi\)
\(384\) 0 0
\(385\) −13.0000 13.0000i −0.662541 0.662541i
\(386\) 18.0000 0.916176
\(387\) 0 0
\(388\) 14.0000 + 14.0000i 0.710742 + 0.710742i
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 15.2971i 0.773606i
\(392\) −12.0000 + 12.0000i −0.606092 + 0.606092i
\(393\) 0 0
\(394\) −25.4951 −1.28442
\(395\) −13.0000 + 13.0000i −0.654101 + 0.654101i
\(396\) 0 0
\(397\) −10.1980 + 10.1980i −0.511825 + 0.511825i −0.915085 0.403260i \(-0.867877\pi\)
0.403260 + 0.915085i \(0.367877\pi\)
\(398\) 25.4951 25.4951i 1.27795 1.27795i
\(399\) 0 0
\(400\) 32.0000i 1.60000i
\(401\) −1.00000 1.00000i −0.0499376 0.0499376i 0.681697 0.731635i \(-0.261242\pi\)
−0.731635 + 0.681697i \(0.761242\pi\)
\(402\) 0 0
\(403\) 26.0000i 1.29515i
\(404\) 20.3961i 1.01474i
\(405\) 0 0
\(406\) −26.0000 −1.29036
\(407\) −5.09902 −0.252749
\(408\) 0 0
\(409\) 27.0000 27.0000i 1.33506 1.33506i 0.434292 0.900772i \(-0.356999\pi\)
0.900772 0.434292i \(-0.143001\pi\)
\(410\) −30.5941 + 30.5941i −1.51094 + 1.51094i
\(411\) 0 0
\(412\) 10.1980i 0.502421i
\(413\) −40.7922 −2.00725
\(414\) 0 0
\(415\) −25.4951 −1.25151
\(416\) 20.3961 1.00000
\(417\) 0 0
\(418\) −4.00000 + 4.00000i −0.195646 + 0.195646i
\(419\) −5.00000 −0.244266 −0.122133 0.992514i \(-0.538973\pi\)
−0.122133 + 0.992514i \(0.538973\pi\)
\(420\) 0 0
\(421\) −7.64853 7.64853i −0.372767 0.372767i 0.495717 0.868484i \(-0.334905\pi\)
−0.868484 + 0.495717i \(0.834905\pi\)
\(422\) 7.00000 7.00000i 0.340755 0.340755i
\(423\) 0 0
\(424\) 10.1980 10.1980i 0.495261 0.495261i
\(425\) −24.0000 −1.16417
\(426\) 0 0
\(427\) 0 0
\(428\) 4.00000i 0.193347i
\(429\) 0 0
\(430\) 5.09902i 0.245897i
\(431\) 7.64853 + 7.64853i 0.368417 + 0.368417i 0.866900 0.498483i \(-0.166109\pi\)
−0.498483 + 0.866900i \(0.666109\pi\)
\(432\) 0 0
\(433\) 19.0000i 0.913082i 0.889702 + 0.456541i \(0.150912\pi\)
−0.889702 + 0.456541i \(0.849088\pi\)
\(434\) 26.0000 26.0000i 1.24804 1.24804i
\(435\) 0 0
\(436\) 5.09902 5.09902i 0.244199 0.244199i
\(437\) 10.1980 10.1980i 0.487838 0.487838i
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) −10.1980 + 10.1980i −0.486172 + 0.486172i
\(441\) 0 0
\(442\) 15.2971i 0.727607i
\(443\) 31.0000 1.47285 0.736427 0.676517i \(-0.236511\pi\)
0.736427 + 0.676517i \(0.236511\pi\)
\(444\) 0 0
\(445\) 10.1980i 0.483433i
\(446\) 15.2971 0.724337
\(447\) 0 0
\(448\) 20.3961 + 20.3961i 0.963624 + 0.963624i
\(449\) −3.00000 3.00000i −0.141579 0.141579i 0.632765 0.774344i \(-0.281920\pi\)
−0.774344 + 0.632765i \(0.781920\pi\)
\(450\) 0 0
\(451\) 12.0000 0.565058
\(452\) 8.00000i 0.376288i
\(453\) 0 0
\(454\) 24.0000i 1.12638i
\(455\) −33.1436 33.1436i −1.55380 1.55380i
\(456\) 0 0
\(457\) −2.00000 + 2.00000i −0.0935561 + 0.0935561i −0.752336 0.658780i \(-0.771073\pi\)
0.658780 + 0.752336i \(0.271073\pi\)
\(458\) 5.09902i 0.238262i
\(459\) 0 0
\(460\) 26.0000 26.0000i 1.21226 1.21226i
\(461\) −17.8466 17.8466i −0.831198 0.831198i 0.156483 0.987681i \(-0.449984\pi\)
−0.987681 + 0.156483i \(0.949984\pi\)
\(462\) 0 0
\(463\) 25.4951 25.4951i 1.18486 1.18486i 0.206387 0.978470i \(-0.433829\pi\)
0.978470 0.206387i \(-0.0661707\pi\)
\(464\) 20.3961i 0.946864i
\(465\) 0 0
\(466\) 11.0000 + 11.0000i 0.509565 + 0.509565i
\(467\) 2.00000i 0.0925490i −0.998929 0.0462745i \(-0.985265\pi\)
0.998929 0.0462745i \(-0.0147349\pi\)
\(468\) 0 0
\(469\) 15.2971i 0.706353i
\(470\) −13.0000 + 13.0000i −0.599645 + 0.599645i
\(471\) 0 0
\(472\) 32.0000i 1.47292i
\(473\) −1.00000 + 1.00000i −0.0459800 + 0.0459800i
\(474\) 0 0
\(475\) 16.0000 + 16.0000i 0.734130 + 0.734130i
\(476\) 15.2971 15.2971i 0.701140 0.701140i
\(477\) 0 0
\(478\) −5.09902 −0.233224
\(479\) 2.54951 2.54951i 0.116490 0.116490i −0.646459 0.762949i \(-0.723751\pi\)
0.762949 + 0.646459i \(0.223751\pi\)
\(480\) 0 0
\(481\) −13.0000 −0.592749
\(482\) −28.0000 −1.27537
\(483\) 0 0
\(484\) −18.0000 −0.818182
\(485\) −35.6931 −1.62074
\(486\) 0 0
\(487\) −25.4951 25.4951i −1.15529 1.15529i −0.985476 0.169818i \(-0.945682\pi\)
−0.169818 0.985476i \(-0.554318\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 30.5941i 1.38210i
\(491\) 5.00000i 0.225647i −0.993615 0.112823i \(-0.964011\pi\)
0.993615 0.112823i \(-0.0359894\pi\)
\(492\) 0 0
\(493\) 15.2971 0.688945
\(494\) −10.1980 + 10.1980i −0.458831 + 0.458831i
\(495\) 0 0
\(496\) −20.3961 20.3961i −0.915811 0.915811i
\(497\) 39.0000 1.74939
\(498\) 0 0
\(499\) 2.00000 2.00000i 0.0895323 0.0895323i −0.660922 0.750454i \(-0.729835\pi\)
0.750454 + 0.660922i \(0.229835\pi\)
\(500\) 15.2971 + 15.2971i 0.684105 + 0.684105i
\(501\) 0 0
\(502\) −10.0000 10.0000i −0.446322 0.446322i
\(503\) 20.3961i 0.909416i −0.890641 0.454708i \(-0.849744\pi\)
0.890641 0.454708i \(-0.150256\pi\)
\(504\) 0 0
\(505\) −26.0000 26.0000i −1.15698 1.15698i
\(506\) −10.1980 −0.453358
\(507\) 0 0
\(508\) 30.5941i 1.35739i
\(509\) 10.1980 + 10.1980i 0.452020 + 0.452020i 0.896025 0.444004i \(-0.146443\pi\)
−0.444004 + 0.896025i \(0.646443\pi\)
\(510\) 0 0
\(511\) −30.5941 −1.35340
\(512\) 16.0000 16.0000i 0.707107 0.707107i
\(513\) 0 0
\(514\) 3.00000 + 3.00000i 0.132324 + 0.132324i
\(515\) −13.0000 13.0000i −0.572848 0.572848i
\(516\) 0 0
\(517\) 5.09902 0.224255
\(518\) −13.0000 13.0000i −0.571187 0.571187i
\(519\) 0 0
\(520\) −26.0000 + 26.0000i −1.14018 + 1.14018i
\(521\) 3.00000 0.131432 0.0657162 0.997838i \(-0.479067\pi\)
0.0657162 + 0.997838i \(0.479067\pi\)
\(522\) 0 0
\(523\) −6.00000 −0.262362 −0.131181 0.991358i \(-0.541877\pi\)
−0.131181 + 0.991358i \(0.541877\pi\)
\(524\) 14.0000i 0.611593i
\(525\) 0 0
\(526\) −20.3961 20.3961i −0.889311 0.889311i
\(527\) −15.2971 + 15.2971i −0.666350 + 0.666350i
\(528\) 0 0
\(529\) 3.00000 0.130435
\(530\) 26.0000i 1.12937i
\(531\) 0 0
\(532\) −20.3961 −0.884282
\(533\) 30.5941 1.32518
\(534\) 0 0
\(535\) 5.09902 + 5.09902i 0.220450 + 0.220450i
\(536\) −12.0000 −0.518321
\(537\) 0 0
\(538\) 20.3961 + 20.3961i 0.879337 + 0.879337i
\(539\) −6.00000 + 6.00000i −0.258438 + 0.258438i
\(540\) 0 0
\(541\) 17.8466 17.8466i 0.767284 0.767284i −0.210344 0.977628i \(-0.567458\pi\)
0.977628 + 0.210344i \(0.0674583\pi\)
\(542\) 15.2971i 0.657065i
\(543\) 0 0
\(544\) −12.0000 12.0000i −0.514496 0.514496i
\(545\) 13.0000i 0.556859i
\(546\) 0 0
\(547\) 23.0000 0.983409 0.491704 0.870762i \(-0.336374\pi\)
0.491704 + 0.870762i \(0.336374\pi\)
\(548\) 10.0000 10.0000i 0.427179 0.427179i
\(549\) 0 0
\(550\) 16.0000i 0.682242i
\(551\) −10.1980 10.1980i −0.434451 0.434451i
\(552\) 0 0
\(553\) 13.0000 + 13.0000i 0.552816 + 0.552816i
\(554\) −10.1980 + 10.1980i −0.433273 + 0.433273i
\(555\) 0 0
\(556\) 30.0000i 1.27228i
\(557\) 22.9456 22.9456i 0.972236 0.972236i −0.0273891 0.999625i \(-0.508719\pi\)
0.999625 + 0.0273891i \(0.00871931\pi\)
\(558\) 0 0
\(559\) −2.54951 + 2.54951i −0.107833 + 0.107833i
\(560\) −52.0000 −2.19740
\(561\) 0 0
\(562\) −32.0000 −1.34984
\(563\) 9.00000i 0.379305i −0.981851 0.189652i \(-0.939264\pi\)
0.981851 0.189652i \(-0.0607361\pi\)
\(564\) 0 0
\(565\) −10.1980 10.1980i −0.429035 0.429035i
\(566\) −16.0000 16.0000i −0.672530 0.672530i
\(567\) 0 0
\(568\) 30.5941i 1.28370i
\(569\) 31.0000i 1.29959i −0.760111 0.649794i \(-0.774855\pi\)
0.760111 0.649794i \(-0.225145\pi\)
\(570\) 0 0
\(571\) 15.0000i 0.627730i 0.949468 + 0.313865i \(0.101624\pi\)
−0.949468 + 0.313865i \(0.898376\pi\)
\(572\) 10.1980 0.426401
\(573\) 0 0
\(574\) 30.5941 + 30.5941i 1.27697 + 1.27697i
\(575\) 40.7922i 1.70115i
\(576\) 0 0
\(577\) 18.0000 18.0000i 0.749350 0.749350i −0.225007 0.974357i \(-0.572241\pi\)
0.974357 + 0.225007i \(0.0722406\pi\)
\(578\) 8.00000 8.00000i 0.332756 0.332756i
\(579\) 0 0
\(580\) −26.0000 26.0000i −1.07959 1.07959i
\(581\) 25.4951i 1.05771i
\(582\) 0 0
\(583\) 5.09902 5.09902i 0.211180 0.211180i
\(584\) 24.0000i 0.993127i
\(585\) 0 0
\(586\) 25.4951i 1.05319i
\(587\) 7.00000 7.00000i 0.288921 0.288921i −0.547733 0.836653i \(-0.684509\pi\)
0.836653 + 0.547733i \(0.184509\pi\)
\(588\) 0 0
\(589\) 20.3961 0.840406
\(590\) −40.7922 40.7922i −1.67939 1.67939i
\(591\) 0 0
\(592\) −10.1980 + 10.1980i −0.419137 + 0.419137i
\(593\) −29.0000 29.0000i −1.19089 1.19089i −0.976819 0.214069i \(-0.931328\pi\)
−0.214069 0.976819i \(-0.568672\pi\)
\(594\) 0 0
\(595\) 39.0000i 1.59884i
\(596\) 20.3961 20.3961i 0.835456 0.835456i
\(597\) 0 0
\(598\) −26.0000 −1.06322
\(599\) 30.5941i 1.25004i −0.780608 0.625021i \(-0.785090\pi\)
0.780608 0.625021i \(-0.214910\pi\)
\(600\) 0 0
\(601\) 37.0000 1.50926 0.754631 0.656150i \(-0.227816\pi\)
0.754631 + 0.656150i \(0.227816\pi\)
\(602\) −5.09902 −0.207821
\(603\) 0 0
\(604\) 15.2971 + 15.2971i 0.622428 + 0.622428i
\(605\) 22.9456 22.9456i 0.932871 0.932871i
\(606\) 0 0
\(607\) 10.1980i 0.413926i 0.978349 + 0.206963i \(0.0663579\pi\)
−0.978349 + 0.206963i \(0.933642\pi\)
\(608\) 16.0000i 0.648886i
\(609\) 0 0
\(610\) 0 0
\(611\) 13.0000 0.525924
\(612\) 0 0
\(613\) −5.09902 5.09902i −0.205947 0.205947i 0.596595 0.802542i \(-0.296520\pi\)
−0.802542 + 0.596595i \(0.796520\pi\)
\(614\) −20.0000 −0.807134
\(615\) 0 0
\(616\) 10.1980 + 10.1980i 0.410891 + 0.410891i
\(617\) 12.0000 12.0000i 0.483102 0.483102i −0.423019 0.906121i \(-0.639030\pi\)
0.906121 + 0.423019i \(0.139030\pi\)
\(618\) 0 0
\(619\) −22.0000 22.0000i −0.884255 0.884255i 0.109709 0.993964i \(-0.465008\pi\)
−0.993964 + 0.109709i \(0.965008\pi\)
\(620\) 52.0000 2.08837
\(621\) 0 0
\(622\) −10.1980 + 10.1980i −0.408904 + 0.408904i
\(623\) 10.1980 0.408576
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −31.0000 + 31.0000i −1.23901 + 1.23901i
\(627\) 0 0
\(628\) 20.3961 0.813892
\(629\) 7.64853 + 7.64853i 0.304967 + 0.304967i
\(630\) 0 0
\(631\) 17.8466 17.8466i 0.710461 0.710461i −0.256171 0.966632i \(-0.582461\pi\)
0.966632 + 0.256171i \(0.0824610\pi\)
\(632\) 10.1980 10.1980i 0.405656 0.405656i
\(633\) 0 0
\(634\) 0 0
\(635\) 39.0000 + 39.0000i 1.54767 + 1.54767i
\(636\) 0 0
\(637\) −15.2971 + 15.2971i −0.606092 + 0.606092i
\(638\) 10.1980i 0.403744i
\(639\) 0 0
\(640\) 40.7922i 1.61245i
\(641\) 40.0000i 1.57991i 0.613168 + 0.789953i \(0.289895\pi\)
−0.613168 + 0.789953i \(0.710105\pi\)
\(642\) 0 0
\(643\) 15.0000 15.0000i 0.591542 0.591542i −0.346506 0.938048i \(-0.612632\pi\)
0.938048 + 0.346506i \(0.112632\pi\)
\(644\) −26.0000 26.0000i −1.02454 1.02454i
\(645\) 0 0
\(646\) 12.0000 0.472134
\(647\) 10.1980 0.400926 0.200463 0.979701i \(-0.435755\pi\)
0.200463 + 0.979701i \(0.435755\pi\)
\(648\) 0 0
\(649\) 16.0000i 0.628055i
\(650\) 40.7922i 1.60000i
\(651\) 0 0
\(652\) 18.0000 18.0000i 0.704934 0.704934i
\(653\) 30.5941i 1.19724i 0.801033 + 0.598620i \(0.204284\pi\)
−0.801033 + 0.598620i \(0.795716\pi\)
\(654\) 0 0
\(655\) −17.8466 17.8466i −0.697323 0.697323i
\(656\) 24.0000 24.0000i 0.937043 0.937043i
\(657\) 0 0
\(658\) 13.0000 + 13.0000i 0.506793 + 0.506793i
\(659\) −30.0000 −1.16863 −0.584317 0.811525i \(-0.698638\pi\)
−0.584317 + 0.811525i \(0.698638\pi\)
\(660\) 0 0
\(661\) 5.09902 5.09902i 0.198329 0.198329i −0.600954 0.799283i \(-0.705213\pi\)
0.799283 + 0.600954i \(0.205213\pi\)
\(662\) 42.0000i 1.63238i
\(663\) 0 0
\(664\) 20.0000 0.776151
\(665\) 26.0000 26.0000i 1.00824 1.00824i
\(666\) 0 0
\(667\) 26.0000i 1.00672i
\(668\) 30.5941 + 30.5941i 1.18372 + 1.18372i
\(669\) 0 0
\(670\) 15.2971 15.2971i 0.590977 0.590977i
\(671\) 0 0
\(672\) 0 0
\(673\) 21.0000i 0.809491i −0.914429 0.404745i \(-0.867360\pi\)
0.914429 0.404745i \(-0.132640\pi\)
\(674\) 17.0000 + 17.0000i 0.654816 + 0.654816i
\(675\) 0 0
\(676\) 26.0000 1.00000
\(677\) 15.2971i 0.587914i 0.955819 + 0.293957i \(0.0949722\pi\)
−0.955819 + 0.293957i \(0.905028\pi\)
\(678\) 0 0
\(679\) 35.6931i 1.36978i
\(680\) 30.5941 1.17323
\(681\) 0 0
\(682\) −10.1980 10.1980i −0.390503 0.390503i
\(683\) −29.0000 29.0000i −1.10965 1.10965i −0.993196 0.116459i \(-0.962846\pi\)
−0.116459 0.993196i \(-0.537154\pi\)
\(684\) 0 0
\(685\) 25.4951i 0.974118i
\(686\) 5.09902 0.194681
\(687\) 0 0
\(688\) 4.00000i 0.152499i
\(689\) 13.0000 13.0000i 0.495261 0.495261i
\(690\) 0 0
\(691\) 6.00000 6.00000i 0.228251 0.228251i −0.583711 0.811962i \(-0.698400\pi\)
0.811962 + 0.583711i \(0.198400\pi\)
\(692\) 10.1980i 0.387671i
\(693\) 0 0
\(694\) 7.00000 7.00000i 0.265716 0.265716i
\(695\) −38.2426 38.2426i −1.45063 1.45063i
\(696\) 0 0
\(697\) −18.0000 18.0000i −0.681799 0.681799i
\(698\) 45.8912i 1.73701i
\(699\) 0 0
\(700\) 40.7922 40.7922i 1.54180 1.54180i
\(701\) 15.2971 0.577762 0.288881 0.957365i \(-0.406717\pi\)
0.288881 + 0.957365i \(0.406717\pi\)
\(702\) 0 0
\(703\) 10.1980i 0.384626i
\(704\) 8.00000 8.00000i 0.301511 0.301511i
\(705\) 0 0
\(706\) 10.0000i 0.376355i
\(707\) −26.0000 + 26.0000i −0.977831 + 0.977831i
\(708\) 0 0
\(709\) 10.1980 10.1980i 0.382995 0.382995i −0.489185 0.872180i \(-0.662706\pi\)
0.872180 + 0.489185i \(0.162706\pi\)
\(710\) 39.0000 + 39.0000i 1.46364 + 1.46364i
\(711\) 0 0
\(712\) 8.00000i 0.299813i
\(713\) 26.0000 + 26.0000i 0.973708 + 0.973708i
\(714\) 0 0
\(715\) −13.0000 + 13.0000i −0.486172 + 0.486172i
\(716\) 18.0000 0.672692
\(717\) 0 0
\(718\) 30.5941i 1.14176i
\(719\) 25.4951 0.950807 0.475403 0.879768i \(-0.342302\pi\)
0.475403 + 0.879768i \(0.342302\pi\)
\(720\) 0 0
\(721\) −13.0000 + 13.0000i −0.484145 + 0.484145i
\(722\) 11.0000 + 11.0000i 0.409378 + 0.409378i
\(723\) 0 0
\(724\) 30.5941i 1.13702i
\(725\) 40.7922 1.51498
\(726\) 0 0
\(727\) 15.2971 0.567336 0.283668 0.958922i \(-0.408449\pi\)
0.283668 + 0.958922i \(0.408449\pi\)
\(728\) 26.0000 + 26.0000i 0.963624 + 0.963624i
\(729\) 0 0
\(730\) −30.5941 30.5941i −1.13234 1.13234i
\(731\) 3.00000 0.110959
\(732\) 0 0
\(733\) 33.1436 + 33.1436i 1.22419 + 1.22419i 0.966129 + 0.258058i \(0.0830827\pi\)
0.258058 + 0.966129i \(0.416917\pi\)
\(734\) −15.2971 15.2971i −0.564625 0.564625i
\(735\) 0 0
\(736\) −20.3961 + 20.3961i −0.751809 + 0.751809i
\(737\) −6.00000 −0.221013
\(738\) 0 0
\(739\) −2.00000 2.00000i −0.0735712 0.0735712i 0.669364 0.742935i \(-0.266567\pi\)
−0.742935 + 0.669364i \(0.766567\pi\)
\(740\) 26.0000i 0.955779i
\(741\) 0 0
\(742\) 26.0000 0.954490
\(743\) −7.64853 7.64853i −0.280597 0.280597i 0.552750 0.833347i \(-0.313578\pi\)
−0.833347 + 0.552750i \(0.813578\pi\)
\(744\) 0 0
\(745\) 52.0000i 1.90513i
\(746\) 20.3961 + 20.3961i 0.746753 + 0.746753i
\(747\) 0 0
\(748\) −6.00000 6.00000i −0.219382 0.219382i
\(749\) 5.09902 5.09902i 0.186314 0.186314i
\(750\) 0 0
\(751\) 10.1980 0.372132 0.186066 0.982537i \(-0.440426\pi\)
0.186066 + 0.982537i \(0.440426\pi\)
\(752\) 10.1980 10.1980i 0.371884 0.371884i
\(753\) 0 0
\(754\) 26.0000i 0.946864i
\(755\) −39.0000 −1.41936
\(756\) 0 0
\(757\) 35.6931i 1.29729i 0.761091 + 0.648645i \(0.224664\pi\)
−0.761091 + 0.648645i \(0.775336\pi\)
\(758\) 46.0000i 1.67080i
\(759\) 0 0
\(760\) −20.3961 20.3961i −0.739844 0.739844i
\(761\) 4.00000 + 4.00000i 0.145000 + 0.145000i 0.775880 0.630880i \(-0.217306\pi\)
−0.630880 + 0.775880i \(0.717306\pi\)
\(762\) 0 0
\(763\) 13.0000 0.470632
\(764\) −50.9902 −1.84476
\(765\) 0 0
\(766\) −15.2971 −0.552705
\(767\) 40.7922i 1.47292i
\(768\) 0 0
\(769\) −8.00000 + 8.00000i −0.288487 + 0.288487i −0.836482 0.547995i \(-0.815391\pi\)
0.547995 + 0.836482i \(0.315391\pi\)
\(770\) −26.0000 −0.936975
\(771\) 0 0
\(772\) 18.0000 18.0000i 0.647834 0.647834i
\(773\) −7.64853 7.64853i −0.275098 0.275098i 0.556050 0.831149i \(-0.312316\pi\)
−0.831149 + 0.556050i \(0.812316\pi\)
\(774\) 0 0
\(775\) −40.7922 + 40.7922i −1.46530 + 1.46530i
\(776\) 28.0000 1.00514
\(777\) 0 0
\(778\) 0 0
\(779\) 24.0000i 0.859889i
\(780\) 0 0
\(781\) 15.2971i 0.547372i
\(782\) 15.2971 + 15.2971i 0.547022 + 0.547022i
\(783\) 0 0
\(784\) 24.0000i 0.857143i
\(785\) −26.0000 + 26.0000i −0.927980 + 0.927980i
\(786\) 0 0