Properties

Label 936.2.w.g.307.1
Level $936$
Weight $2$
Character 936.307
Analytic conductor $7.474$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,2,Mod(307,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.307");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.w (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{26})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 307.1
Root \(-2.54951 + 2.54951i\) of defining polynomial
Character \(\chi\) \(=\) 936.307
Dual form 936.2.w.g.811.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.00000i) q^{2} +2.00000i q^{4} +(-2.54951 + 2.54951i) q^{5} +(-2.54951 - 2.54951i) q^{7} +(-2.00000 + 2.00000i) q^{8} +O(q^{10})\) \(q+(1.00000 + 1.00000i) q^{2} +2.00000i q^{4} +(-2.54951 + 2.54951i) q^{5} +(-2.54951 - 2.54951i) q^{7} +(-2.00000 + 2.00000i) q^{8} -5.09902 q^{10} +(-1.00000 + 1.00000i) q^{11} +(2.54951 - 2.54951i) q^{13} -5.09902i q^{14} -4.00000 q^{16} -3.00000i q^{17} +(2.00000 + 2.00000i) q^{19} +(-5.09902 - 5.09902i) q^{20} -2.00000 q^{22} -5.09902 q^{23} -8.00000i q^{25} +5.09902 q^{26} +(5.09902 - 5.09902i) q^{28} -5.09902i q^{29} +(-5.09902 + 5.09902i) q^{31} +(-4.00000 - 4.00000i) q^{32} +(3.00000 - 3.00000i) q^{34} +13.0000 q^{35} +(-2.54951 - 2.54951i) q^{37} +4.00000i q^{38} -10.1980i q^{40} +(-6.00000 - 6.00000i) q^{41} +1.00000i q^{43} +(-2.00000 - 2.00000i) q^{44} +(-5.09902 - 5.09902i) q^{46} +(2.54951 + 2.54951i) q^{47} +6.00000i q^{49} +(8.00000 - 8.00000i) q^{50} +(5.09902 + 5.09902i) q^{52} +5.09902i q^{53} -5.09902i q^{55} +10.1980 q^{56} +(5.09902 - 5.09902i) q^{58} +(-8.00000 + 8.00000i) q^{59} -10.1980 q^{62} -8.00000i q^{64} +13.0000i q^{65} +(3.00000 + 3.00000i) q^{67} +6.00000 q^{68} +(13.0000 + 13.0000i) q^{70} +(-7.64853 + 7.64853i) q^{71} +(-6.00000 + 6.00000i) q^{73} -5.09902i q^{74} +(-4.00000 + 4.00000i) q^{76} +5.09902 q^{77} +5.09902i q^{79} +(10.1980 - 10.1980i) q^{80} -12.0000i q^{82} +(-5.00000 - 5.00000i) q^{83} +(7.64853 + 7.64853i) q^{85} +(-1.00000 + 1.00000i) q^{86} -4.00000i q^{88} +(2.00000 - 2.00000i) q^{89} -13.0000 q^{91} -10.1980i q^{92} +5.09902i q^{94} -10.1980 q^{95} +(-7.00000 - 7.00000i) q^{97} +(-6.00000 + 6.00000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 8 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{2} - 8 q^{8} - 4 q^{11} - 16 q^{16} + 8 q^{19} - 8 q^{22} - 16 q^{32} + 12 q^{34} + 52 q^{35} - 24 q^{41} - 8 q^{44} + 32 q^{50} - 32 q^{59} + 12 q^{67} + 24 q^{68} + 52 q^{70} - 24 q^{73} - 16 q^{76} - 20 q^{83} - 4 q^{86} + 8 q^{89} - 52 q^{91} - 28 q^{97} - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.00000i 0.707107 + 0.707107i
\(3\) 0 0
\(4\) 2.00000i 1.00000i
\(5\) −2.54951 + 2.54951i −1.14018 + 1.14018i −0.151758 + 0.988418i \(0.548493\pi\)
−0.988418 + 0.151758i \(0.951507\pi\)
\(6\) 0 0
\(7\) −2.54951 2.54951i −0.963624 0.963624i 0.0357371 0.999361i \(-0.488622\pi\)
−0.999361 + 0.0357371i \(0.988622\pi\)
\(8\) −2.00000 + 2.00000i −0.707107 + 0.707107i
\(9\) 0 0
\(10\) −5.09902 −1.61245
\(11\) −1.00000 + 1.00000i −0.301511 + 0.301511i −0.841605 0.540094i \(-0.818389\pi\)
0.540094 + 0.841605i \(0.318389\pi\)
\(12\) 0 0
\(13\) 2.54951 2.54951i 0.707107 0.707107i
\(14\) 5.09902i 1.36277i
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) 3.00000i 0.727607i −0.931476 0.363803i \(-0.881478\pi\)
0.931476 0.363803i \(-0.118522\pi\)
\(18\) 0 0
\(19\) 2.00000 + 2.00000i 0.458831 + 0.458831i 0.898272 0.439440i \(-0.144823\pi\)
−0.439440 + 0.898272i \(0.644823\pi\)
\(20\) −5.09902 5.09902i −1.14018 1.14018i
\(21\) 0 0
\(22\) −2.00000 −0.426401
\(23\) −5.09902 −1.06322 −0.531610 0.846990i \(-0.678413\pi\)
−0.531610 + 0.846990i \(0.678413\pi\)
\(24\) 0 0
\(25\) 8.00000i 1.60000i
\(26\) 5.09902 1.00000
\(27\) 0 0
\(28\) 5.09902 5.09902i 0.963624 0.963624i
\(29\) 5.09902i 0.946864i −0.880830 0.473432i \(-0.843015\pi\)
0.880830 0.473432i \(-0.156985\pi\)
\(30\) 0 0
\(31\) −5.09902 + 5.09902i −0.915811 + 0.915811i −0.996721 0.0809104i \(-0.974217\pi\)
0.0809104 + 0.996721i \(0.474217\pi\)
\(32\) −4.00000 4.00000i −0.707107 0.707107i
\(33\) 0 0
\(34\) 3.00000 3.00000i 0.514496 0.514496i
\(35\) 13.0000 2.19740
\(36\) 0 0
\(37\) −2.54951 2.54951i −0.419137 0.419137i 0.465769 0.884906i \(-0.345778\pi\)
−0.884906 + 0.465769i \(0.845778\pi\)
\(38\) 4.00000i 0.648886i
\(39\) 0 0
\(40\) 10.1980i 1.61245i
\(41\) −6.00000 6.00000i −0.937043 0.937043i 0.0610897 0.998132i \(-0.480542\pi\)
−0.998132 + 0.0610897i \(0.980542\pi\)
\(42\) 0 0
\(43\) 1.00000i 0.152499i 0.997089 + 0.0762493i \(0.0242945\pi\)
−0.997089 + 0.0762493i \(0.975706\pi\)
\(44\) −2.00000 2.00000i −0.301511 0.301511i
\(45\) 0 0
\(46\) −5.09902 5.09902i −0.751809 0.751809i
\(47\) 2.54951 + 2.54951i 0.371884 + 0.371884i 0.868163 0.496279i \(-0.165301\pi\)
−0.496279 + 0.868163i \(0.665301\pi\)
\(48\) 0 0
\(49\) 6.00000i 0.857143i
\(50\) 8.00000 8.00000i 1.13137 1.13137i
\(51\) 0 0
\(52\) 5.09902 + 5.09902i 0.707107 + 0.707107i
\(53\) 5.09902i 0.700404i 0.936674 + 0.350202i \(0.113887\pi\)
−0.936674 + 0.350202i \(0.886113\pi\)
\(54\) 0 0
\(55\) 5.09902i 0.687552i
\(56\) 10.1980 1.36277
\(57\) 0 0
\(58\) 5.09902 5.09902i 0.669534 0.669534i
\(59\) −8.00000 + 8.00000i −1.04151 + 1.04151i −0.0424110 + 0.999100i \(0.513504\pi\)
−0.999100 + 0.0424110i \(0.986496\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) −10.1980 −1.29515
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) 13.0000i 1.61245i
\(66\) 0 0
\(67\) 3.00000 + 3.00000i 0.366508 + 0.366508i 0.866202 0.499694i \(-0.166554\pi\)
−0.499694 + 0.866202i \(0.666554\pi\)
\(68\) 6.00000 0.727607
\(69\) 0 0
\(70\) 13.0000 + 13.0000i 1.55380 + 1.55380i
\(71\) −7.64853 + 7.64853i −0.907713 + 0.907713i −0.996087 0.0883739i \(-0.971833\pi\)
0.0883739 + 0.996087i \(0.471833\pi\)
\(72\) 0 0
\(73\) −6.00000 + 6.00000i −0.702247 + 0.702247i −0.964892 0.262646i \(-0.915405\pi\)
0.262646 + 0.964892i \(0.415405\pi\)
\(74\) 5.09902i 0.592749i
\(75\) 0 0
\(76\) −4.00000 + 4.00000i −0.458831 + 0.458831i
\(77\) 5.09902 0.581087
\(78\) 0 0
\(79\) 5.09902i 0.573685i 0.957978 + 0.286842i \(0.0926056\pi\)
−0.957978 + 0.286842i \(0.907394\pi\)
\(80\) 10.1980 10.1980i 1.14018 1.14018i
\(81\) 0 0
\(82\) 12.0000i 1.32518i
\(83\) −5.00000 5.00000i −0.548821 0.548821i 0.377279 0.926100i \(-0.376860\pi\)
−0.926100 + 0.377279i \(0.876860\pi\)
\(84\) 0 0
\(85\) 7.64853 + 7.64853i 0.829599 + 0.829599i
\(86\) −1.00000 + 1.00000i −0.107833 + 0.107833i
\(87\) 0 0
\(88\) 4.00000i 0.426401i
\(89\) 2.00000 2.00000i 0.212000 0.212000i −0.593117 0.805116i \(-0.702103\pi\)
0.805116 + 0.593117i \(0.202103\pi\)
\(90\) 0 0
\(91\) −13.0000 −1.36277
\(92\) 10.1980i 1.06322i
\(93\) 0 0
\(94\) 5.09902i 0.525924i
\(95\) −10.1980 −1.04630
\(96\) 0 0
\(97\) −7.00000 7.00000i −0.710742 0.710742i 0.255948 0.966691i \(-0.417612\pi\)
−0.966691 + 0.255948i \(0.917612\pi\)
\(98\) −6.00000 + 6.00000i −0.606092 + 0.606092i
\(99\) 0 0
\(100\) 16.0000 1.60000
\(101\) 10.1980 1.01474 0.507371 0.861727i \(-0.330617\pi\)
0.507371 + 0.861727i \(0.330617\pi\)
\(102\) 0 0
\(103\) 5.09902 0.502421 0.251211 0.967932i \(-0.419171\pi\)
0.251211 + 0.967932i \(0.419171\pi\)
\(104\) 10.1980i 1.00000i
\(105\) 0 0
\(106\) −5.09902 + 5.09902i −0.495261 + 0.495261i
\(107\) 2.00000 0.193347 0.0966736 0.995316i \(-0.469180\pi\)
0.0966736 + 0.995316i \(0.469180\pi\)
\(108\) 0 0
\(109\) −2.54951 + 2.54951i −0.244199 + 0.244199i −0.818585 0.574386i \(-0.805241\pi\)
0.574386 + 0.818585i \(0.305241\pi\)
\(110\) 5.09902 5.09902i 0.486172 0.486172i
\(111\) 0 0
\(112\) 10.1980 + 10.1980i 0.963624 + 0.963624i
\(113\) −4.00000 −0.376288 −0.188144 0.982141i \(-0.560247\pi\)
−0.188144 + 0.982141i \(0.560247\pi\)
\(114\) 0 0
\(115\) 13.0000 13.0000i 1.21226 1.21226i
\(116\) 10.1980 0.946864
\(117\) 0 0
\(118\) −16.0000 −1.47292
\(119\) −7.64853 + 7.64853i −0.701140 + 0.701140i
\(120\) 0 0
\(121\) 9.00000i 0.818182i
\(122\) 0 0
\(123\) 0 0
\(124\) −10.1980 10.1980i −0.915811 0.915811i
\(125\) 7.64853 + 7.64853i 0.684105 + 0.684105i
\(126\) 0 0
\(127\) −15.2971 −1.35739 −0.678697 0.734418i \(-0.737455\pi\)
−0.678697 + 0.734418i \(0.737455\pi\)
\(128\) 8.00000 8.00000i 0.707107 0.707107i
\(129\) 0 0
\(130\) −13.0000 + 13.0000i −1.14018 + 1.14018i
\(131\) −7.00000 −0.611593 −0.305796 0.952097i \(-0.598923\pi\)
−0.305796 + 0.952097i \(0.598923\pi\)
\(132\) 0 0
\(133\) 10.1980i 0.884282i
\(134\) 6.00000i 0.518321i
\(135\) 0 0
\(136\) 6.00000 + 6.00000i 0.514496 + 0.514496i
\(137\) 5.00000 5.00000i 0.427179 0.427179i −0.460487 0.887666i \(-0.652325\pi\)
0.887666 + 0.460487i \(0.152325\pi\)
\(138\) 0 0
\(139\) −15.0000 −1.27228 −0.636142 0.771572i \(-0.719471\pi\)
−0.636142 + 0.771572i \(0.719471\pi\)
\(140\) 26.0000i 2.19740i
\(141\) 0 0
\(142\) −15.2971 −1.28370
\(143\) 5.09902i 0.426401i
\(144\) 0 0
\(145\) 13.0000 + 13.0000i 1.07959 + 1.07959i
\(146\) −12.0000 −0.993127
\(147\) 0 0
\(148\) 5.09902 5.09902i 0.419137 0.419137i
\(149\) −10.1980 + 10.1980i −0.835456 + 0.835456i −0.988257 0.152801i \(-0.951171\pi\)
0.152801 + 0.988257i \(0.451171\pi\)
\(150\) 0 0
\(151\) 7.64853 + 7.64853i 0.622428 + 0.622428i 0.946152 0.323723i \(-0.104935\pi\)
−0.323723 + 0.946152i \(0.604935\pi\)
\(152\) −8.00000 −0.648886
\(153\) 0 0
\(154\) 5.09902 + 5.09902i 0.410891 + 0.410891i
\(155\) 26.0000i 2.08837i
\(156\) 0 0
\(157\) 10.1980i 0.813892i 0.913452 + 0.406946i \(0.133406\pi\)
−0.913452 + 0.406946i \(0.866594\pi\)
\(158\) −5.09902 + 5.09902i −0.405656 + 0.405656i
\(159\) 0 0
\(160\) 20.3961 1.61245
\(161\) 13.0000 + 13.0000i 1.02454 + 1.02454i
\(162\) 0 0
\(163\) 9.00000 9.00000i 0.704934 0.704934i −0.260531 0.965465i \(-0.583898\pi\)
0.965465 + 0.260531i \(0.0838976\pi\)
\(164\) 12.0000 12.0000i 0.937043 0.937043i
\(165\) 0 0
\(166\) 10.0000i 0.776151i
\(167\) 15.2971 + 15.2971i 1.18372 + 1.18372i 0.978773 + 0.204949i \(0.0657030\pi\)
0.204949 + 0.978773i \(0.434297\pi\)
\(168\) 0 0
\(169\) 13.0000i 1.00000i
\(170\) 15.2971i 1.17323i
\(171\) 0 0
\(172\) −2.00000 −0.152499
\(173\) −5.09902 −0.387671 −0.193836 0.981034i \(-0.562093\pi\)
−0.193836 + 0.981034i \(0.562093\pi\)
\(174\) 0 0
\(175\) −20.3961 + 20.3961i −1.54180 + 1.54180i
\(176\) 4.00000 4.00000i 0.301511 0.301511i
\(177\) 0 0
\(178\) 4.00000 0.299813
\(179\) 9.00000i 0.672692i −0.941739 0.336346i \(-0.890809\pi\)
0.941739 0.336346i \(-0.109191\pi\)
\(180\) 0 0
\(181\) 15.2971 1.13702 0.568511 0.822676i \(-0.307520\pi\)
0.568511 + 0.822676i \(0.307520\pi\)
\(182\) −13.0000 13.0000i −0.963624 0.963624i
\(183\) 0 0
\(184\) 10.1980 10.1980i 0.751809 0.751809i
\(185\) 13.0000 0.955779
\(186\) 0 0
\(187\) 3.00000 + 3.00000i 0.219382 + 0.219382i
\(188\) −5.09902 + 5.09902i −0.371884 + 0.371884i
\(189\) 0 0
\(190\) −10.1980 10.1980i −0.739844 0.739844i
\(191\) 25.4951i 1.84476i −0.386283 0.922380i \(-0.626241\pi\)
0.386283 0.922380i \(-0.373759\pi\)
\(192\) 0 0
\(193\) 9.00000 9.00000i 0.647834 0.647834i −0.304635 0.952469i \(-0.598534\pi\)
0.952469 + 0.304635i \(0.0985345\pi\)
\(194\) 14.0000i 1.00514i
\(195\) 0 0
\(196\) −12.0000 −0.857143
\(197\) 12.7475 12.7475i 0.908225 0.908225i −0.0879037 0.996129i \(-0.528017\pi\)
0.996129 + 0.0879037i \(0.0280168\pi\)
\(198\) 0 0
\(199\) −25.4951 −1.80730 −0.903650 0.428272i \(-0.859122\pi\)
−0.903650 + 0.428272i \(0.859122\pi\)
\(200\) 16.0000 + 16.0000i 1.13137 + 1.13137i
\(201\) 0 0
\(202\) 10.1980 + 10.1980i 0.717532 + 0.717532i
\(203\) −13.0000 + 13.0000i −0.912421 + 0.912421i
\(204\) 0 0
\(205\) 30.5941 2.13679
\(206\) 5.09902 + 5.09902i 0.355266 + 0.355266i
\(207\) 0 0
\(208\) −10.1980 + 10.1980i −0.707107 + 0.707107i
\(209\) −4.00000 −0.276686
\(210\) 0 0
\(211\) 7.00000 0.481900 0.240950 0.970538i \(-0.422541\pi\)
0.240950 + 0.970538i \(0.422541\pi\)
\(212\) −10.1980 −0.700404
\(213\) 0 0
\(214\) 2.00000 + 2.00000i 0.136717 + 0.136717i
\(215\) −2.54951 2.54951i −0.173875 0.173875i
\(216\) 0 0
\(217\) 26.0000 1.76500
\(218\) −5.09902 −0.345349
\(219\) 0 0
\(220\) 10.1980 0.687552
\(221\) −7.64853 7.64853i −0.514496 0.514496i
\(222\) 0 0
\(223\) −7.64853 + 7.64853i −0.512183 + 0.512183i −0.915195 0.403012i \(-0.867963\pi\)
0.403012 + 0.915195i \(0.367963\pi\)
\(224\) 20.3961i 1.36277i
\(225\) 0 0
\(226\) −4.00000 4.00000i −0.266076 0.266076i
\(227\) 12.0000 + 12.0000i 0.796468 + 0.796468i 0.982537 0.186069i \(-0.0595747\pi\)
−0.186069 + 0.982537i \(0.559575\pi\)
\(228\) 0 0
\(229\) 2.54951 + 2.54951i 0.168476 + 0.168476i 0.786309 0.617833i \(-0.211989\pi\)
−0.617833 + 0.786309i \(0.711989\pi\)
\(230\) 26.0000 1.71439
\(231\) 0 0
\(232\) 10.1980 + 10.1980i 0.669534 + 0.669534i
\(233\) 11.0000i 0.720634i −0.932830 0.360317i \(-0.882669\pi\)
0.932830 0.360317i \(-0.117331\pi\)
\(234\) 0 0
\(235\) −13.0000 −0.848026
\(236\) −16.0000 16.0000i −1.04151 1.04151i
\(237\) 0 0
\(238\) −15.2971 −0.991561
\(239\) 2.54951 2.54951i 0.164914 0.164914i −0.619826 0.784740i \(-0.712797\pi\)
0.784740 + 0.619826i \(0.212797\pi\)
\(240\) 0 0
\(241\) −14.0000 + 14.0000i −0.901819 + 0.901819i −0.995593 0.0937742i \(-0.970107\pi\)
0.0937742 + 0.995593i \(0.470107\pi\)
\(242\) −9.00000 + 9.00000i −0.578542 + 0.578542i
\(243\) 0 0
\(244\) 0 0
\(245\) −15.2971 15.2971i −0.977293 0.977293i
\(246\) 0 0
\(247\) 10.1980 0.648886
\(248\) 20.3961i 1.29515i
\(249\) 0 0
\(250\) 15.2971i 0.967471i
\(251\) 10.0000i 0.631194i 0.948893 + 0.315597i \(0.102205\pi\)
−0.948893 + 0.315597i \(0.897795\pi\)
\(252\) 0 0
\(253\) 5.09902 5.09902i 0.320573 0.320573i
\(254\) −15.2971 15.2971i −0.959823 0.959823i
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 3.00000i 0.187135i −0.995613 0.0935674i \(-0.970173\pi\)
0.995613 0.0935674i \(-0.0298271\pi\)
\(258\) 0 0
\(259\) 13.0000i 0.807781i
\(260\) −26.0000 −1.61245
\(261\) 0 0
\(262\) −7.00000 7.00000i −0.432461 0.432461i
\(263\) 20.3961i 1.25768i −0.777536 0.628838i \(-0.783531\pi\)
0.777536 0.628838i \(-0.216469\pi\)
\(264\) 0 0
\(265\) −13.0000 13.0000i −0.798584 0.798584i
\(266\) 10.1980 10.1980i 0.625282 0.625282i
\(267\) 0 0
\(268\) −6.00000 + 6.00000i −0.366508 + 0.366508i
\(269\) 20.3961i 1.24357i 0.783188 + 0.621785i \(0.213592\pi\)
−0.783188 + 0.621785i \(0.786408\pi\)
\(270\) 0 0
\(271\) 7.64853 + 7.64853i 0.464615 + 0.464615i 0.900165 0.435550i \(-0.143446\pi\)
−0.435550 + 0.900165i \(0.643446\pi\)
\(272\) 12.0000i 0.727607i
\(273\) 0 0
\(274\) 10.0000 0.604122
\(275\) 8.00000 + 8.00000i 0.482418 + 0.482418i
\(276\) 0 0
\(277\) 10.1980 0.612741 0.306370 0.951912i \(-0.400885\pi\)
0.306370 + 0.951912i \(0.400885\pi\)
\(278\) −15.0000 15.0000i −0.899640 0.899640i
\(279\) 0 0
\(280\) −26.0000 + 26.0000i −1.55380 + 1.55380i
\(281\) −16.0000 + 16.0000i −0.954480 + 0.954480i −0.999008 0.0445282i \(-0.985822\pi\)
0.0445282 + 0.999008i \(0.485822\pi\)
\(282\) 0 0
\(283\) 16.0000i 0.951101i 0.879688 + 0.475551i \(0.157751\pi\)
−0.879688 + 0.475551i \(0.842249\pi\)
\(284\) −15.2971 15.2971i −0.907713 0.907713i
\(285\) 0 0
\(286\) −5.09902 + 5.09902i −0.301511 + 0.301511i
\(287\) 30.5941i 1.80591i
\(288\) 0 0
\(289\) 8.00000 0.470588
\(290\) 26.0000i 1.52677i
\(291\) 0 0
\(292\) −12.0000 12.0000i −0.702247 0.702247i
\(293\) 12.7475 + 12.7475i 0.744720 + 0.744720i 0.973482 0.228763i \(-0.0734679\pi\)
−0.228763 + 0.973482i \(0.573468\pi\)
\(294\) 0 0
\(295\) 40.7922i 2.37501i
\(296\) 10.1980 0.592749
\(297\) 0 0
\(298\) −20.3961 −1.18151
\(299\) −13.0000 + 13.0000i −0.751809 + 0.751809i
\(300\) 0 0
\(301\) 2.54951 2.54951i 0.146951 0.146951i
\(302\) 15.2971i 0.880247i
\(303\) 0 0
\(304\) −8.00000 8.00000i −0.458831 0.458831i
\(305\) 0 0
\(306\) 0 0
\(307\) −10.0000 + 10.0000i −0.570730 + 0.570730i −0.932332 0.361602i \(-0.882230\pi\)
0.361602 + 0.932332i \(0.382230\pi\)
\(308\) 10.1980i 0.581087i
\(309\) 0 0
\(310\) 26.0000 26.0000i 1.47670 1.47670i
\(311\) 10.1980 0.578278 0.289139 0.957287i \(-0.406631\pi\)
0.289139 + 0.957287i \(0.406631\pi\)
\(312\) 0 0
\(313\) −31.0000 −1.75222 −0.876112 0.482108i \(-0.839871\pi\)
−0.876112 + 0.482108i \(0.839871\pi\)
\(314\) −10.1980 + 10.1980i −0.575509 + 0.575509i
\(315\) 0 0
\(316\) −10.1980 −0.573685
\(317\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(318\) 0 0
\(319\) 5.09902 + 5.09902i 0.285490 + 0.285490i
\(320\) 20.3961 + 20.3961i 1.14018 + 1.14018i
\(321\) 0 0
\(322\) 26.0000i 1.44892i
\(323\) 6.00000 6.00000i 0.333849 0.333849i
\(324\) 0 0
\(325\) −20.3961 20.3961i −1.13137 1.13137i
\(326\) 18.0000 0.996928
\(327\) 0 0
\(328\) 24.0000 1.32518
\(329\) 13.0000i 0.716713i
\(330\) 0 0
\(331\) 21.0000 + 21.0000i 1.15426 + 1.15426i 0.985689 + 0.168576i \(0.0539168\pi\)
0.168576 + 0.985689i \(0.446083\pi\)
\(332\) 10.0000 10.0000i 0.548821 0.548821i
\(333\) 0 0
\(334\) 30.5941i 1.67404i
\(335\) −15.2971 −0.835768
\(336\) 0 0
\(337\) 17.0000i 0.926049i −0.886345 0.463025i \(-0.846764\pi\)
0.886345 0.463025i \(-0.153236\pi\)
\(338\) 13.0000 13.0000i 0.707107 0.707107i
\(339\) 0 0
\(340\) −15.2971 + 15.2971i −0.829599 + 0.829599i
\(341\) 10.1980i 0.552255i
\(342\) 0 0
\(343\) −2.54951 + 2.54951i −0.137661 + 0.137661i
\(344\) −2.00000 2.00000i −0.107833 0.107833i
\(345\) 0 0
\(346\) −5.09902 5.09902i −0.274125 0.274125i
\(347\) 7.00000 0.375780 0.187890 0.982190i \(-0.439835\pi\)
0.187890 + 0.982190i \(0.439835\pi\)
\(348\) 0 0
\(349\) −22.9456 22.9456i −1.22825 1.22825i −0.964626 0.263624i \(-0.915082\pi\)
−0.263624 0.964626i \(-0.584918\pi\)
\(350\) −40.7922 −2.18043
\(351\) 0 0
\(352\) 8.00000 0.426401
\(353\) −5.00000 5.00000i −0.266123 0.266123i 0.561413 0.827536i \(-0.310258\pi\)
−0.827536 + 0.561413i \(0.810258\pi\)
\(354\) 0 0
\(355\) 39.0000i 2.06991i
\(356\) 4.00000 + 4.00000i 0.212000 + 0.212000i
\(357\) 0 0
\(358\) 9.00000 9.00000i 0.475665 0.475665i
\(359\) −15.2971 15.2971i −0.807348 0.807348i 0.176884 0.984232i \(-0.443398\pi\)
−0.984232 + 0.176884i \(0.943398\pi\)
\(360\) 0 0
\(361\) 11.0000i 0.578947i
\(362\) 15.2971 + 15.2971i 0.803996 + 0.803996i
\(363\) 0 0
\(364\) 26.0000i 1.36277i
\(365\) 30.5941i 1.60137i
\(366\) 0 0
\(367\) 15.2971i 0.798500i −0.916842 0.399250i \(-0.869271\pi\)
0.916842 0.399250i \(-0.130729\pi\)
\(368\) 20.3961 1.06322
\(369\) 0 0
\(370\) 13.0000 + 13.0000i 0.675838 + 0.675838i
\(371\) 13.0000 13.0000i 0.674926 0.674926i
\(372\) 0 0
\(373\) 20.3961i 1.05607i 0.849223 + 0.528034i \(0.177071\pi\)
−0.849223 + 0.528034i \(0.822929\pi\)
\(374\) 6.00000i 0.310253i
\(375\) 0 0
\(376\) −10.1980 −0.525924
\(377\) −13.0000 13.0000i −0.669534 0.669534i
\(378\) 0 0
\(379\) −23.0000 23.0000i −1.18143 1.18143i −0.979374 0.202057i \(-0.935237\pi\)
−0.202057 0.979374i \(-0.564763\pi\)
\(380\) 20.3961i 1.04630i
\(381\) 0 0
\(382\) 25.4951 25.4951i 1.30444 1.30444i
\(383\) 7.64853 7.64853i 0.390822 0.390822i −0.484159 0.874980i \(-0.660874\pi\)
0.874980 + 0.484159i \(0.160874\pi\)
\(384\) 0 0
\(385\) −13.0000 + 13.0000i −0.662541 + 0.662541i
\(386\) 18.0000 0.916176
\(387\) 0 0
\(388\) 14.0000 14.0000i 0.710742 0.710742i
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 15.2971i 0.773606i
\(392\) −12.0000 12.0000i −0.606092 0.606092i
\(393\) 0 0
\(394\) 25.4951 1.28442
\(395\) −13.0000 13.0000i −0.654101 0.654101i
\(396\) 0 0
\(397\) 10.1980 + 10.1980i 0.511825 + 0.511825i 0.915085 0.403260i \(-0.132123\pi\)
−0.403260 + 0.915085i \(0.632123\pi\)
\(398\) −25.4951 25.4951i −1.27795 1.27795i
\(399\) 0 0
\(400\) 32.0000i 1.60000i
\(401\) −1.00000 + 1.00000i −0.0499376 + 0.0499376i −0.731635 0.681697i \(-0.761242\pi\)
0.681697 + 0.731635i \(0.261242\pi\)
\(402\) 0 0
\(403\) 26.0000i 1.29515i
\(404\) 20.3961i 1.01474i
\(405\) 0 0
\(406\) −26.0000 −1.29036
\(407\) 5.09902 0.252749
\(408\) 0 0
\(409\) 27.0000 + 27.0000i 1.33506 + 1.33506i 0.900772 + 0.434292i \(0.143001\pi\)
0.434292 + 0.900772i \(0.356999\pi\)
\(410\) 30.5941 + 30.5941i 1.51094 + 1.51094i
\(411\) 0 0
\(412\) 10.1980i 0.502421i
\(413\) 40.7922 2.00725
\(414\) 0 0
\(415\) 25.4951 1.25151
\(416\) −20.3961 −1.00000
\(417\) 0 0
\(418\) −4.00000 4.00000i −0.195646 0.195646i
\(419\) −5.00000 −0.244266 −0.122133 0.992514i \(-0.538973\pi\)
−0.122133 + 0.992514i \(0.538973\pi\)
\(420\) 0 0
\(421\) 7.64853 7.64853i 0.372767 0.372767i −0.495717 0.868484i \(-0.665095\pi\)
0.868484 + 0.495717i \(0.165095\pi\)
\(422\) 7.00000 + 7.00000i 0.340755 + 0.340755i
\(423\) 0 0
\(424\) −10.1980 10.1980i −0.495261 0.495261i
\(425\) −24.0000 −1.16417
\(426\) 0 0
\(427\) 0 0
\(428\) 4.00000i 0.193347i
\(429\) 0 0
\(430\) 5.09902i 0.245897i
\(431\) −7.64853 + 7.64853i −0.368417 + 0.368417i −0.866900 0.498483i \(-0.833891\pi\)
0.498483 + 0.866900i \(0.333891\pi\)
\(432\) 0 0
\(433\) 19.0000i 0.913082i −0.889702 0.456541i \(-0.849088\pi\)
0.889702 0.456541i \(-0.150912\pi\)
\(434\) 26.0000 + 26.0000i 1.24804 + 1.24804i
\(435\) 0 0
\(436\) −5.09902 5.09902i −0.244199 0.244199i
\(437\) −10.1980 10.1980i −0.487838 0.487838i
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 10.1980 + 10.1980i 0.486172 + 0.486172i
\(441\) 0 0
\(442\) 15.2971i 0.727607i
\(443\) 31.0000 1.47285 0.736427 0.676517i \(-0.236511\pi\)
0.736427 + 0.676517i \(0.236511\pi\)
\(444\) 0 0
\(445\) 10.1980i 0.483433i
\(446\) −15.2971 −0.724337
\(447\) 0 0
\(448\) −20.3961 + 20.3961i −0.963624 + 0.963624i
\(449\) −3.00000 + 3.00000i −0.141579 + 0.141579i −0.774344 0.632765i \(-0.781920\pi\)
0.632765 + 0.774344i \(0.281920\pi\)
\(450\) 0 0
\(451\) 12.0000 0.565058
\(452\) 8.00000i 0.376288i
\(453\) 0 0
\(454\) 24.0000i 1.12638i
\(455\) 33.1436 33.1436i 1.55380 1.55380i
\(456\) 0 0
\(457\) −2.00000 2.00000i −0.0935561 0.0935561i 0.658780 0.752336i \(-0.271073\pi\)
−0.752336 + 0.658780i \(0.771073\pi\)
\(458\) 5.09902i 0.238262i
\(459\) 0 0
\(460\) 26.0000 + 26.0000i 1.21226 + 1.21226i
\(461\) 17.8466 17.8466i 0.831198 0.831198i −0.156483 0.987681i \(-0.550016\pi\)
0.987681 + 0.156483i \(0.0500157\pi\)
\(462\) 0 0
\(463\) −25.4951 25.4951i −1.18486 1.18486i −0.978470 0.206387i \(-0.933829\pi\)
−0.206387 0.978470i \(-0.566171\pi\)
\(464\) 20.3961i 0.946864i
\(465\) 0 0
\(466\) 11.0000 11.0000i 0.509565 0.509565i
\(467\) 2.00000i 0.0925490i 0.998929 + 0.0462745i \(0.0147349\pi\)
−0.998929 + 0.0462745i \(0.985265\pi\)
\(468\) 0 0
\(469\) 15.2971i 0.706353i
\(470\) −13.0000 13.0000i −0.599645 0.599645i
\(471\) 0 0
\(472\) 32.0000i 1.47292i
\(473\) −1.00000 1.00000i −0.0459800 0.0459800i
\(474\) 0 0
\(475\) 16.0000 16.0000i 0.734130 0.734130i
\(476\) −15.2971 15.2971i −0.701140 0.701140i
\(477\) 0 0
\(478\) 5.09902 0.233224
\(479\) −2.54951 2.54951i −0.116490 0.116490i 0.646459 0.762949i \(-0.276249\pi\)
−0.762949 + 0.646459i \(0.776249\pi\)
\(480\) 0 0
\(481\) −13.0000 −0.592749
\(482\) −28.0000 −1.27537
\(483\) 0 0
\(484\) −18.0000 −0.818182
\(485\) 35.6931 1.62074
\(486\) 0 0
\(487\) 25.4951 25.4951i 1.15529 1.15529i 0.169818 0.985476i \(-0.445682\pi\)
0.985476 0.169818i \(-0.0543179\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 30.5941i 1.38210i
\(491\) 5.00000i 0.225647i 0.993615 + 0.112823i \(0.0359894\pi\)
−0.993615 + 0.112823i \(0.964011\pi\)
\(492\) 0 0
\(493\) −15.2971 −0.688945
\(494\) 10.1980 + 10.1980i 0.458831 + 0.458831i
\(495\) 0 0
\(496\) 20.3961 20.3961i 0.915811 0.915811i
\(497\) 39.0000 1.74939
\(498\) 0 0
\(499\) 2.00000 + 2.00000i 0.0895323 + 0.0895323i 0.750454 0.660922i \(-0.229835\pi\)
−0.660922 + 0.750454i \(0.729835\pi\)
\(500\) −15.2971 + 15.2971i −0.684105 + 0.684105i
\(501\) 0 0
\(502\) −10.0000 + 10.0000i −0.446322 + 0.446322i
\(503\) 20.3961i 0.909416i −0.890641 0.454708i \(-0.849744\pi\)
0.890641 0.454708i \(-0.150256\pi\)
\(504\) 0 0
\(505\) −26.0000 + 26.0000i −1.15698 + 1.15698i
\(506\) 10.1980 0.453358
\(507\) 0 0
\(508\) 30.5941i 1.35739i
\(509\) −10.1980 + 10.1980i −0.452020 + 0.452020i −0.896025 0.444004i \(-0.853557\pi\)
0.444004 + 0.896025i \(0.353557\pi\)
\(510\) 0 0
\(511\) 30.5941 1.35340
\(512\) 16.0000 + 16.0000i 0.707107 + 0.707107i
\(513\) 0 0
\(514\) 3.00000 3.00000i 0.132324 0.132324i
\(515\) −13.0000 + 13.0000i −0.572848 + 0.572848i
\(516\) 0 0
\(517\) −5.09902 −0.224255
\(518\) −13.0000 + 13.0000i −0.571187 + 0.571187i
\(519\) 0 0
\(520\) −26.0000 26.0000i −1.14018 1.14018i
\(521\) 3.00000 0.131432 0.0657162 0.997838i \(-0.479067\pi\)
0.0657162 + 0.997838i \(0.479067\pi\)
\(522\) 0 0
\(523\) −6.00000 −0.262362 −0.131181 0.991358i \(-0.541877\pi\)
−0.131181 + 0.991358i \(0.541877\pi\)
\(524\) 14.0000i 0.611593i
\(525\) 0 0
\(526\) 20.3961 20.3961i 0.889311 0.889311i
\(527\) 15.2971 + 15.2971i 0.666350 + 0.666350i
\(528\) 0 0
\(529\) 3.00000 0.130435
\(530\) 26.0000i 1.12937i
\(531\) 0 0
\(532\) 20.3961 0.884282
\(533\) −30.5941 −1.32518
\(534\) 0 0
\(535\) −5.09902 + 5.09902i −0.220450 + 0.220450i
\(536\) −12.0000 −0.518321
\(537\) 0 0
\(538\) −20.3961 + 20.3961i −0.879337 + 0.879337i
\(539\) −6.00000 6.00000i −0.258438 0.258438i
\(540\) 0 0
\(541\) −17.8466 17.8466i −0.767284 0.767284i 0.210344 0.977628i \(-0.432542\pi\)
−0.977628 + 0.210344i \(0.932542\pi\)
\(542\) 15.2971i 0.657065i
\(543\) 0 0
\(544\) −12.0000 + 12.0000i −0.514496 + 0.514496i
\(545\) 13.0000i 0.556859i
\(546\) 0 0
\(547\) 23.0000 0.983409 0.491704 0.870762i \(-0.336374\pi\)
0.491704 + 0.870762i \(0.336374\pi\)
\(548\) 10.0000 + 10.0000i 0.427179 + 0.427179i
\(549\) 0 0
\(550\) 16.0000i 0.682242i
\(551\) 10.1980 10.1980i 0.434451 0.434451i
\(552\) 0 0
\(553\) 13.0000 13.0000i 0.552816 0.552816i
\(554\) 10.1980 + 10.1980i 0.433273 + 0.433273i
\(555\) 0 0
\(556\) 30.0000i 1.27228i
\(557\) −22.9456 22.9456i −0.972236 0.972236i 0.0273891 0.999625i \(-0.491281\pi\)
−0.999625 + 0.0273891i \(0.991281\pi\)
\(558\) 0 0
\(559\) 2.54951 + 2.54951i 0.107833 + 0.107833i
\(560\) −52.0000 −2.19740
\(561\) 0 0
\(562\) −32.0000 −1.34984
\(563\) 9.00000i 0.379305i 0.981851 + 0.189652i \(0.0607361\pi\)
−0.981851 + 0.189652i \(0.939264\pi\)
\(564\) 0 0
\(565\) 10.1980 10.1980i 0.429035 0.429035i
\(566\) −16.0000 + 16.0000i −0.672530 + 0.672530i
\(567\) 0 0
\(568\) 30.5941i 1.28370i
\(569\) 31.0000i 1.29959i 0.760111 + 0.649794i \(0.225145\pi\)
−0.760111 + 0.649794i \(0.774855\pi\)
\(570\) 0 0
\(571\) 15.0000i 0.627730i −0.949468 0.313865i \(-0.898376\pi\)
0.949468 0.313865i \(-0.101624\pi\)
\(572\) −10.1980 −0.426401
\(573\) 0 0
\(574\) −30.5941 + 30.5941i −1.27697 + 1.27697i
\(575\) 40.7922i 1.70115i
\(576\) 0 0
\(577\) 18.0000 + 18.0000i 0.749350 + 0.749350i 0.974357 0.225007i \(-0.0722406\pi\)
−0.225007 + 0.974357i \(0.572241\pi\)
\(578\) 8.00000 + 8.00000i 0.332756 + 0.332756i
\(579\) 0 0
\(580\) −26.0000 + 26.0000i −1.07959 + 1.07959i
\(581\) 25.4951i 1.05771i
\(582\) 0 0
\(583\) −5.09902 5.09902i −0.211180 0.211180i
\(584\) 24.0000i 0.993127i
\(585\) 0 0
\(586\) 25.4951i 1.05319i
\(587\) 7.00000 + 7.00000i 0.288921 + 0.288921i 0.836653 0.547733i \(-0.184509\pi\)
−0.547733 + 0.836653i \(0.684509\pi\)
\(588\) 0 0
\(589\) −20.3961 −0.840406
\(590\) 40.7922 40.7922i 1.67939 1.67939i
\(591\) 0 0
\(592\) 10.1980 + 10.1980i 0.419137 + 0.419137i
\(593\) −29.0000 + 29.0000i −1.19089 + 1.19089i −0.214069 + 0.976819i \(0.568672\pi\)
−0.976819 + 0.214069i \(0.931328\pi\)
\(594\) 0 0
\(595\) 39.0000i 1.59884i
\(596\) −20.3961 20.3961i −0.835456 0.835456i
\(597\) 0 0
\(598\) −26.0000 −1.06322
\(599\) 30.5941i 1.25004i −0.780608 0.625021i \(-0.785090\pi\)
0.780608 0.625021i \(-0.214910\pi\)
\(600\) 0 0
\(601\) 37.0000 1.50926 0.754631 0.656150i \(-0.227816\pi\)
0.754631 + 0.656150i \(0.227816\pi\)
\(602\) 5.09902 0.207821
\(603\) 0 0
\(604\) −15.2971 + 15.2971i −0.622428 + 0.622428i
\(605\) −22.9456 22.9456i −0.932871 0.932871i
\(606\) 0 0
\(607\) 10.1980i 0.413926i 0.978349 + 0.206963i \(0.0663579\pi\)
−0.978349 + 0.206963i \(0.933642\pi\)
\(608\) 16.0000i 0.648886i
\(609\) 0 0
\(610\) 0 0
\(611\) 13.0000 0.525924
\(612\) 0 0
\(613\) 5.09902 5.09902i 0.205947 0.205947i −0.596595 0.802542i \(-0.703480\pi\)
0.802542 + 0.596595i \(0.203480\pi\)
\(614\) −20.0000 −0.807134
\(615\) 0 0
\(616\) −10.1980 + 10.1980i −0.410891 + 0.410891i
\(617\) 12.0000 + 12.0000i 0.483102 + 0.483102i 0.906121 0.423019i \(-0.139030\pi\)
−0.423019 + 0.906121i \(0.639030\pi\)
\(618\) 0 0
\(619\) −22.0000 + 22.0000i −0.884255 + 0.884255i −0.993964 0.109709i \(-0.965008\pi\)
0.109709 + 0.993964i \(0.465008\pi\)
\(620\) 52.0000 2.08837
\(621\) 0 0
\(622\) 10.1980 + 10.1980i 0.408904 + 0.408904i
\(623\) −10.1980 −0.408576
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −31.0000 31.0000i −1.23901 1.23901i
\(627\) 0 0
\(628\) −20.3961 −0.813892
\(629\) −7.64853 + 7.64853i −0.304967 + 0.304967i
\(630\) 0 0
\(631\) −17.8466 17.8466i −0.710461 0.710461i 0.256171 0.966632i \(-0.417539\pi\)
−0.966632 + 0.256171i \(0.917539\pi\)
\(632\) −10.1980 10.1980i −0.405656 0.405656i
\(633\) 0 0
\(634\) 0 0
\(635\) 39.0000 39.0000i 1.54767 1.54767i
\(636\) 0 0
\(637\) 15.2971 + 15.2971i 0.606092 + 0.606092i
\(638\) 10.1980i 0.403744i
\(639\) 0 0
\(640\) 40.7922i 1.61245i
\(641\) 40.0000i 1.57991i −0.613168 0.789953i \(-0.710105\pi\)
0.613168 0.789953i \(-0.289895\pi\)
\(642\) 0 0
\(643\) 15.0000 + 15.0000i 0.591542 + 0.591542i 0.938048 0.346506i \(-0.112632\pi\)
−0.346506 + 0.938048i \(0.612632\pi\)
\(644\) −26.0000 + 26.0000i −1.02454 + 1.02454i
\(645\) 0 0
\(646\) 12.0000 0.472134
\(647\) −10.1980 −0.400926 −0.200463 0.979701i \(-0.564245\pi\)
−0.200463 + 0.979701i \(0.564245\pi\)
\(648\) 0 0
\(649\) 16.0000i 0.628055i
\(650\) 40.7922i 1.60000i
\(651\) 0 0
\(652\) 18.0000 + 18.0000i 0.704934 + 0.704934i
\(653\) 30.5941i 1.19724i 0.801033 + 0.598620i \(0.204284\pi\)
−0.801033 + 0.598620i \(0.795716\pi\)
\(654\) 0 0
\(655\) 17.8466 17.8466i 0.697323 0.697323i
\(656\) 24.0000 + 24.0000i 0.937043 + 0.937043i
\(657\) 0 0
\(658\) 13.0000 13.0000i 0.506793 0.506793i
\(659\) −30.0000 −1.16863 −0.584317 0.811525i \(-0.698638\pi\)
−0.584317 + 0.811525i \(0.698638\pi\)
\(660\) 0 0
\(661\) −5.09902 5.09902i −0.198329 0.198329i 0.600954 0.799283i \(-0.294787\pi\)
−0.799283 + 0.600954i \(0.794787\pi\)
\(662\) 42.0000i 1.63238i
\(663\) 0 0
\(664\) 20.0000 0.776151
\(665\) 26.0000 + 26.0000i 1.00824 + 1.00824i
\(666\) 0 0
\(667\) 26.0000i 1.00672i
\(668\) −30.5941 + 30.5941i −1.18372 + 1.18372i
\(669\) 0 0
\(670\) −15.2971 15.2971i −0.590977 0.590977i
\(671\) 0 0
\(672\) 0 0
\(673\) 21.0000i 0.809491i 0.914429 + 0.404745i \(0.132640\pi\)
−0.914429 + 0.404745i \(0.867360\pi\)
\(674\) 17.0000 17.0000i 0.654816 0.654816i
\(675\) 0 0
\(676\) 26.0000 1.00000
\(677\) 15.2971i 0.587914i 0.955819 + 0.293957i \(0.0949722\pi\)
−0.955819 + 0.293957i \(0.905028\pi\)
\(678\) 0 0
\(679\) 35.6931i 1.36978i
\(680\) −30.5941 −1.17323
\(681\) 0 0
\(682\) 10.1980 10.1980i 0.390503 0.390503i
\(683\) −29.0000 + 29.0000i −1.10965 + 1.10965i −0.116459 + 0.993196i \(0.537154\pi\)
−0.993196 + 0.116459i \(0.962846\pi\)
\(684\) 0 0
\(685\) 25.4951i 0.974118i
\(686\) −5.09902 −0.194681
\(687\) 0 0
\(688\) 4.00000i 0.152499i
\(689\) 13.0000 + 13.0000i 0.495261 + 0.495261i
\(690\) 0 0
\(691\) 6.00000 + 6.00000i 0.228251 + 0.228251i 0.811962 0.583711i \(-0.198400\pi\)
−0.583711 + 0.811962i \(0.698400\pi\)
\(692\) 10.1980i 0.387671i
\(693\) 0 0
\(694\) 7.00000 + 7.00000i 0.265716 + 0.265716i
\(695\) 38.2426 38.2426i 1.45063 1.45063i
\(696\) 0 0
\(697\) −18.0000 + 18.0000i −0.681799 + 0.681799i
\(698\) 45.8912i 1.73701i
\(699\) 0 0
\(700\) −40.7922 40.7922i −1.54180 1.54180i
\(701\) −15.2971 −0.577762 −0.288881 0.957365i \(-0.593283\pi\)
−0.288881 + 0.957365i \(0.593283\pi\)
\(702\) 0 0
\(703\) 10.1980i 0.384626i
\(704\) 8.00000 + 8.00000i 0.301511 + 0.301511i
\(705\) 0 0
\(706\) 10.0000i 0.376355i
\(707\) −26.0000 26.0000i −0.977831 0.977831i
\(708\) 0 0
\(709\) −10.1980 10.1980i −0.382995 0.382995i 0.489185 0.872180i \(-0.337294\pi\)
−0.872180 + 0.489185i \(0.837294\pi\)
\(710\) 39.0000 39.0000i 1.46364 1.46364i
\(711\) 0 0
\(712\) 8.00000i 0.299813i
\(713\) 26.0000 26.0000i 0.973708 0.973708i
\(714\) 0 0
\(715\) −13.0000 13.0000i −0.486172 0.486172i
\(716\) 18.0000 0.672692
\(717\) 0 0
\(718\) 30.5941i 1.14176i
\(719\) −25.4951 −0.950807 −0.475403 0.879768i \(-0.657698\pi\)
−0.475403 + 0.879768i \(0.657698\pi\)
\(720\) 0 0
\(721\) −13.0000 13.0000i −0.484145 0.484145i
\(722\) 11.0000 11.0000i 0.409378 0.409378i
\(723\) 0 0
\(724\) 30.5941i 1.13702i
\(725\) −40.7922 −1.51498
\(726\) 0 0
\(727\) −15.2971 −0.567336 −0.283668 0.958922i \(-0.591551\pi\)
−0.283668 + 0.958922i \(0.591551\pi\)
\(728\) 26.0000 26.0000i 0.963624 0.963624i
\(729\) 0 0
\(730\) 30.5941 30.5941i 1.13234 1.13234i
\(731\) 3.00000 0.110959
\(732\) 0 0
\(733\) −33.1436 + 33.1436i −1.22419 + 1.22419i −0.258058 + 0.966129i \(0.583083\pi\)
−0.966129 + 0.258058i \(0.916917\pi\)
\(734\) 15.2971 15.2971i 0.564625 0.564625i
\(735\) 0 0
\(736\) 20.3961 + 20.3961i 0.751809 + 0.751809i
\(737\) −6.00000 −0.221013
\(738\) 0 0
\(739\) −2.00000 + 2.00000i −0.0735712 + 0.0735712i −0.742935 0.669364i \(-0.766567\pi\)
0.669364 + 0.742935i \(0.266567\pi\)
\(740\) 26.0000i 0.955779i
\(741\) 0 0
\(742\) 26.0000 0.954490
\(743\) 7.64853 7.64853i 0.280597 0.280597i −0.552750 0.833347i \(-0.686422\pi\)
0.833347 + 0.552750i \(0.186422\pi\)
\(744\) 0 0
\(745\) 52.0000i 1.90513i
\(746\) −20.3961 + 20.3961i −0.746753 + 0.746753i
\(747\) 0 0
\(748\) −6.00000 + 6.00000i −0.219382 + 0.219382i
\(749\) −5.09902 5.09902i −0.186314 0.186314i
\(750\) 0 0
\(751\) −10.1980 −0.372132 −0.186066 0.982537i \(-0.559574\pi\)
−0.186066 + 0.982537i \(0.559574\pi\)
\(752\) −10.1980 10.1980i −0.371884 0.371884i
\(753\) 0 0
\(754\) 26.0000i 0.946864i
\(755\) −39.0000 −1.41936
\(756\) 0 0
\(757\) 35.6931i 1.29729i 0.761091 + 0.648645i \(0.224664\pi\)
−0.761091 + 0.648645i \(0.775336\pi\)
\(758\) 46.0000i 1.67080i
\(759\) 0 0
\(760\) 20.3961 20.3961i 0.739844 0.739844i
\(761\) 4.00000 4.00000i 0.145000 0.145000i −0.630880 0.775880i \(-0.717306\pi\)
0.775880 + 0.630880i \(0.217306\pi\)
\(762\) 0 0
\(763\) 13.0000 0.470632
\(764\) 50.9902 1.84476
\(765\) 0 0
\(766\) 15.2971 0.552705
\(767\) 40.7922i 1.47292i
\(768\) 0 0
\(769\) −8.00000 8.00000i −0.288487 0.288487i 0.547995 0.836482i \(-0.315391\pi\)
−0.836482 + 0.547995i \(0.815391\pi\)
\(770\) −26.0000 −0.936975
\(771\) 0 0
\(772\) 18.0000 + 18.0000i 0.647834 + 0.647834i
\(773\) 7.64853 7.64853i 0.275098 0.275098i −0.556050 0.831149i \(-0.687684\pi\)
0.831149 + 0.556050i \(0.187684\pi\)
\(774\) 0 0
\(775\) 40.7922 + 40.7922i 1.46530 + 1.46530i
\(776\) 28.0000 1.00514
\(777\) 0 0
\(778\) 0 0
\(779\) 24.0000i 0.859889i
\(780\) 0 0
\(781\) 15.2971i 0.547372i
\(782\) −15.2971 + 15.2971i −0.547022 + 0.547022i
\(783\) 0 0
\(784\) 24.0000i 0.857143i
\(785\) −26.0000 26.0000i −0.927980 0.927980i
\(786\) 0 0