Properties

Label 936.2.m.c
Level $936$
Weight $2$
Character orbit 936.m
Analytic conductor $7.474$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(181,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.181"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.m (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - i + 1) q^{2} - 2 i q^{4} - q^{5} - 3 i q^{7} + ( - 2 i - 2) q^{8} + (i - 1) q^{10} - 2 q^{11} + (2 i - 3) q^{13} + ( - 3 i - 3) q^{14} - 4 q^{16} - 3 q^{17} + 2 i q^{20} + (2 i - 2) q^{22} + 6 q^{23} + \cdots + (2 i - 2) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 2 q^{5} - 4 q^{8} - 2 q^{10} - 4 q^{11} - 6 q^{13} - 6 q^{14} - 8 q^{16} - 6 q^{17} - 4 q^{22} + 12 q^{23} - 8 q^{25} - 2 q^{26} - 12 q^{28} - 8 q^{32} - 6 q^{34} + 6 q^{37} + 4 q^{40} + 12 q^{46}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
181.1
1.00000i
1.00000i
1.00000 1.00000i 0 2.00000i −1.00000 0 3.00000i −2.00000 2.00000i 0 −1.00000 + 1.00000i
181.2 1.00000 + 1.00000i 0 2.00000i −1.00000 0 3.00000i −2.00000 + 2.00000i 0 −1.00000 1.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
104.e even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 936.2.m.c 2
3.b odd 2 1 104.2.e.a 2
4.b odd 2 1 3744.2.m.b 2
8.b even 2 1 936.2.m.b 2
8.d odd 2 1 3744.2.m.c 2
12.b even 2 1 416.2.e.b 2
13.b even 2 1 936.2.m.b 2
24.f even 2 1 416.2.e.a 2
24.h odd 2 1 104.2.e.b yes 2
39.d odd 2 1 104.2.e.b yes 2
52.b odd 2 1 3744.2.m.c 2
104.e even 2 1 inner 936.2.m.c 2
104.h odd 2 1 3744.2.m.b 2
156.h even 2 1 416.2.e.a 2
312.b odd 2 1 104.2.e.a 2
312.h even 2 1 416.2.e.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
104.2.e.a 2 3.b odd 2 1
104.2.e.a 2 312.b odd 2 1
104.2.e.b yes 2 24.h odd 2 1
104.2.e.b yes 2 39.d odd 2 1
416.2.e.a 2 24.f even 2 1
416.2.e.a 2 156.h even 2 1
416.2.e.b 2 12.b even 2 1
416.2.e.b 2 312.h even 2 1
936.2.m.b 2 8.b even 2 1
936.2.m.b 2 13.b even 2 1
936.2.m.c 2 1.a even 1 1 trivial
936.2.m.c 2 104.e even 2 1 inner
3744.2.m.b 2 4.b odd 2 1
3744.2.m.b 2 104.h odd 2 1
3744.2.m.c 2 8.d odd 2 1
3744.2.m.c 2 52.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} + 1 \) acting on \(S_{2}^{\mathrm{new}}(936, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 9 \) Copy content Toggle raw display
$11$ \( (T + 2)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 6T + 13 \) Copy content Toggle raw display
$17$ \( (T + 3)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( (T - 6)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 36 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( (T - 3)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 100 \) Copy content Toggle raw display
$43$ \( T^{2} + 81 \) Copy content Toggle raw display
$47$ \( T^{2} + 49 \) Copy content Toggle raw display
$53$ \( T^{2} + 36 \) Copy content Toggle raw display
$59$ \( (T + 10)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 100 \) Copy content Toggle raw display
$67$ \( (T + 12)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 25 \) Copy content Toggle raw display
$73$ \( T^{2} + 36 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( (T - 16)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 16 \) Copy content Toggle raw display
$97$ \( T^{2} + 324 \) Copy content Toggle raw display
show more
show less