Properties

Label 936.2.m.b.181.1
Level $936$
Weight $2$
Character 936.181
Analytic conductor $7.474$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [936,2,Mod(181,936)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(936, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("936.181");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 936.181
Dual form 936.2.m.b.181.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.00000i) q^{2} +2.00000i q^{4} +1.00000 q^{5} -3.00000i q^{7} +(2.00000 - 2.00000i) q^{8} +O(q^{10})\) \(q+(-1.00000 - 1.00000i) q^{2} +2.00000i q^{4} +1.00000 q^{5} -3.00000i q^{7} +(2.00000 - 2.00000i) q^{8} +(-1.00000 - 1.00000i) q^{10} +2.00000 q^{11} +(3.00000 - 2.00000i) q^{13} +(-3.00000 + 3.00000i) q^{14} -4.00000 q^{16} -3.00000 q^{17} +2.00000i q^{20} +(-2.00000 - 2.00000i) q^{22} +6.00000 q^{23} -4.00000 q^{25} +(-5.00000 - 1.00000i) q^{26} +6.00000 q^{28} +6.00000i q^{29} +(4.00000 + 4.00000i) q^{32} +(3.00000 + 3.00000i) q^{34} -3.00000i q^{35} -3.00000 q^{37} +(2.00000 - 2.00000i) q^{40} -10.0000i q^{41} -9.00000i q^{43} +4.00000i q^{44} +(-6.00000 - 6.00000i) q^{46} -7.00000i q^{47} -2.00000 q^{49} +(4.00000 + 4.00000i) q^{50} +(4.00000 + 6.00000i) q^{52} -6.00000i q^{53} +2.00000 q^{55} +(-6.00000 - 6.00000i) q^{56} +(6.00000 - 6.00000i) q^{58} +10.0000 q^{59} +10.0000i q^{61} -8.00000i q^{64} +(3.00000 - 2.00000i) q^{65} +12.0000 q^{67} -6.00000i q^{68} +(-3.00000 + 3.00000i) q^{70} -5.00000i q^{71} -6.00000i q^{73} +(3.00000 + 3.00000i) q^{74} -6.00000i q^{77} -4.00000 q^{80} +(-10.0000 + 10.0000i) q^{82} -16.0000 q^{83} -3.00000 q^{85} +(-9.00000 + 9.00000i) q^{86} +(4.00000 - 4.00000i) q^{88} +4.00000i q^{89} +(-6.00000 - 9.00000i) q^{91} +12.0000i q^{92} +(-7.00000 + 7.00000i) q^{94} -18.0000i q^{97} +(2.00000 + 2.00000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{5} + 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} + 2 q^{5} + 4 q^{8} - 2 q^{10} + 4 q^{11} + 6 q^{13} - 6 q^{14} - 8 q^{16} - 6 q^{17} - 4 q^{22} + 12 q^{23} - 8 q^{25} - 10 q^{26} + 12 q^{28} + 8 q^{32} + 6 q^{34} - 6 q^{37} + 4 q^{40} - 12 q^{46} - 4 q^{49} + 8 q^{50} + 8 q^{52} + 4 q^{55} - 12 q^{56} + 12 q^{58} + 20 q^{59} + 6 q^{65} + 24 q^{67} - 6 q^{70} + 6 q^{74} - 8 q^{80} - 20 q^{82} - 32 q^{83} - 6 q^{85} - 18 q^{86} + 8 q^{88} - 12 q^{91} - 14 q^{94} + 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.00000i −0.707107 0.707107i
\(3\) 0 0
\(4\) 2.00000i 1.00000i
\(5\) 1.00000 0.447214 0.223607 0.974679i \(-0.428217\pi\)
0.223607 + 0.974679i \(0.428217\pi\)
\(6\) 0 0
\(7\) 3.00000i 1.13389i −0.823754 0.566947i \(-0.808125\pi\)
0.823754 0.566947i \(-0.191875\pi\)
\(8\) 2.00000 2.00000i 0.707107 0.707107i
\(9\) 0 0
\(10\) −1.00000 1.00000i −0.316228 0.316228i
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) 3.00000 2.00000i 0.832050 0.554700i
\(14\) −3.00000 + 3.00000i −0.801784 + 0.801784i
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 2.00000i 0.447214i
\(21\) 0 0
\(22\) −2.00000 2.00000i −0.426401 0.426401i
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) −5.00000 1.00000i −0.980581 0.196116i
\(27\) 0 0
\(28\) 6.00000 1.13389
\(29\) 6.00000i 1.11417i 0.830455 + 0.557086i \(0.188081\pi\)
−0.830455 + 0.557086i \(0.811919\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 4.00000 + 4.00000i 0.707107 + 0.707107i
\(33\) 0 0
\(34\) 3.00000 + 3.00000i 0.514496 + 0.514496i
\(35\) 3.00000i 0.507093i
\(36\) 0 0
\(37\) −3.00000 −0.493197 −0.246598 0.969118i \(-0.579313\pi\)
−0.246598 + 0.969118i \(0.579313\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 2.00000 2.00000i 0.316228 0.316228i
\(41\) 10.0000i 1.56174i −0.624695 0.780869i \(-0.714777\pi\)
0.624695 0.780869i \(-0.285223\pi\)
\(42\) 0 0
\(43\) 9.00000i 1.37249i −0.727372 0.686244i \(-0.759258\pi\)
0.727372 0.686244i \(-0.240742\pi\)
\(44\) 4.00000i 0.603023i
\(45\) 0 0
\(46\) −6.00000 6.00000i −0.884652 0.884652i
\(47\) 7.00000i 1.02105i −0.859861 0.510527i \(-0.829450\pi\)
0.859861 0.510527i \(-0.170550\pi\)
\(48\) 0 0
\(49\) −2.00000 −0.285714
\(50\) 4.00000 + 4.00000i 0.565685 + 0.565685i
\(51\) 0 0
\(52\) 4.00000 + 6.00000i 0.554700 + 0.832050i
\(53\) 6.00000i 0.824163i −0.911147 0.412082i \(-0.864802\pi\)
0.911147 0.412082i \(-0.135198\pi\)
\(54\) 0 0
\(55\) 2.00000 0.269680
\(56\) −6.00000 6.00000i −0.801784 0.801784i
\(57\) 0 0
\(58\) 6.00000 6.00000i 0.787839 0.787839i
\(59\) 10.0000 1.30189 0.650945 0.759125i \(-0.274373\pi\)
0.650945 + 0.759125i \(0.274373\pi\)
\(60\) 0 0
\(61\) 10.0000i 1.28037i 0.768221 + 0.640184i \(0.221142\pi\)
−0.768221 + 0.640184i \(0.778858\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) 3.00000 2.00000i 0.372104 0.248069i
\(66\) 0 0
\(67\) 12.0000 1.46603 0.733017 0.680211i \(-0.238112\pi\)
0.733017 + 0.680211i \(0.238112\pi\)
\(68\) 6.00000i 0.727607i
\(69\) 0 0
\(70\) −3.00000 + 3.00000i −0.358569 + 0.358569i
\(71\) 5.00000i 0.593391i −0.954972 0.296695i \(-0.904115\pi\)
0.954972 0.296695i \(-0.0958846\pi\)
\(72\) 0 0
\(73\) 6.00000i 0.702247i −0.936329 0.351123i \(-0.885800\pi\)
0.936329 0.351123i \(-0.114200\pi\)
\(74\) 3.00000 + 3.00000i 0.348743 + 0.348743i
\(75\) 0 0
\(76\) 0 0
\(77\) 6.00000i 0.683763i
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) −4.00000 −0.447214
\(81\) 0 0
\(82\) −10.0000 + 10.0000i −1.10432 + 1.10432i
\(83\) −16.0000 −1.75623 −0.878114 0.478451i \(-0.841198\pi\)
−0.878114 + 0.478451i \(0.841198\pi\)
\(84\) 0 0
\(85\) −3.00000 −0.325396
\(86\) −9.00000 + 9.00000i −0.970495 + 0.970495i
\(87\) 0 0
\(88\) 4.00000 4.00000i 0.426401 0.426401i
\(89\) 4.00000i 0.423999i 0.977270 + 0.212000i \(0.0679975\pi\)
−0.977270 + 0.212000i \(0.932002\pi\)
\(90\) 0 0
\(91\) −6.00000 9.00000i −0.628971 0.943456i
\(92\) 12.0000i 1.25109i
\(93\) 0 0
\(94\) −7.00000 + 7.00000i −0.721995 + 0.721995i
\(95\) 0 0
\(96\) 0 0
\(97\) 18.0000i 1.82762i −0.406138 0.913812i \(-0.633125\pi\)
0.406138 0.913812i \(-0.366875\pi\)
\(98\) 2.00000 + 2.00000i 0.202031 + 0.202031i
\(99\) 0 0
\(100\) 8.00000i 0.800000i
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 2.00000 10.0000i 0.196116 0.980581i
\(105\) 0 0
\(106\) −6.00000 + 6.00000i −0.582772 + 0.582772i
\(107\) 12.0000i 1.16008i 0.814587 + 0.580042i \(0.196964\pi\)
−0.814587 + 0.580042i \(0.803036\pi\)
\(108\) 0 0
\(109\) −15.0000 −1.43674 −0.718370 0.695662i \(-0.755111\pi\)
−0.718370 + 0.695662i \(0.755111\pi\)
\(110\) −2.00000 2.00000i −0.190693 0.190693i
\(111\) 0 0
\(112\) 12.0000i 1.13389i
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 0 0
\(115\) 6.00000 0.559503
\(116\) −12.0000 −1.11417
\(117\) 0 0
\(118\) −10.0000 10.0000i −0.920575 0.920575i
\(119\) 9.00000i 0.825029i
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 10.0000 10.0000i 0.905357 0.905357i
\(123\) 0 0
\(124\) 0 0
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) 18.0000 1.59724 0.798621 0.601834i \(-0.205563\pi\)
0.798621 + 0.601834i \(0.205563\pi\)
\(128\) −8.00000 + 8.00000i −0.707107 + 0.707107i
\(129\) 0 0
\(130\) −5.00000 1.00000i −0.438529 0.0877058i
\(131\) 15.0000i 1.31056i −0.755388 0.655278i \(-0.772551\pi\)
0.755388 0.655278i \(-0.227449\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −12.0000 12.0000i −1.03664 1.03664i
\(135\) 0 0
\(136\) −6.00000 + 6.00000i −0.514496 + 0.514496i
\(137\) 2.00000i 0.170872i −0.996344 0.0854358i \(-0.972772\pi\)
0.996344 0.0854358i \(-0.0272282\pi\)
\(138\) 0 0
\(139\) 9.00000i 0.763370i 0.924292 + 0.381685i \(0.124656\pi\)
−0.924292 + 0.381685i \(0.875344\pi\)
\(140\) 6.00000 0.507093
\(141\) 0 0
\(142\) −5.00000 + 5.00000i −0.419591 + 0.419591i
\(143\) 6.00000 4.00000i 0.501745 0.334497i
\(144\) 0 0
\(145\) 6.00000i 0.498273i
\(146\) −6.00000 + 6.00000i −0.496564 + 0.496564i
\(147\) 0 0
\(148\) 6.00000i 0.493197i
\(149\) −10.0000 −0.819232 −0.409616 0.912258i \(-0.634337\pi\)
−0.409616 + 0.912258i \(0.634337\pi\)
\(150\) 0 0
\(151\) 15.0000i 1.22068i 0.792139 + 0.610341i \(0.208968\pi\)
−0.792139 + 0.610341i \(0.791032\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −6.00000 + 6.00000i −0.483494 + 0.483494i
\(155\) 0 0
\(156\) 0 0
\(157\) 18.0000i 1.43656i 0.695756 + 0.718278i \(0.255069\pi\)
−0.695756 + 0.718278i \(0.744931\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 4.00000 + 4.00000i 0.316228 + 0.316228i
\(161\) 18.0000i 1.41860i
\(162\) 0 0
\(163\) 6.00000 0.469956 0.234978 0.972001i \(-0.424498\pi\)
0.234978 + 0.972001i \(0.424498\pi\)
\(164\) 20.0000 1.56174
\(165\) 0 0
\(166\) 16.0000 + 16.0000i 1.24184 + 1.24184i
\(167\) 8.00000i 0.619059i 0.950890 + 0.309529i \(0.100171\pi\)
−0.950890 + 0.309529i \(0.899829\pi\)
\(168\) 0 0
\(169\) 5.00000 12.0000i 0.384615 0.923077i
\(170\) 3.00000 + 3.00000i 0.230089 + 0.230089i
\(171\) 0 0
\(172\) 18.0000 1.37249
\(173\) 24.0000i 1.82469i 0.409426 + 0.912343i \(0.365729\pi\)
−0.409426 + 0.912343i \(0.634271\pi\)
\(174\) 0 0
\(175\) 12.0000i 0.907115i
\(176\) −8.00000 −0.603023
\(177\) 0 0
\(178\) 4.00000 4.00000i 0.299813 0.299813i
\(179\) 9.00000i 0.672692i −0.941739 0.336346i \(-0.890809\pi\)
0.941739 0.336346i \(-0.109191\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) −3.00000 + 15.0000i −0.222375 + 1.11187i
\(183\) 0 0
\(184\) 12.0000 12.0000i 0.884652 0.884652i
\(185\) −3.00000 −0.220564
\(186\) 0 0
\(187\) −6.00000 −0.438763
\(188\) 14.0000 1.02105
\(189\) 0 0
\(190\) 0 0
\(191\) 18.0000 1.30243 0.651217 0.758891i \(-0.274259\pi\)
0.651217 + 0.758891i \(0.274259\pi\)
\(192\) 0 0
\(193\) 24.0000i 1.72756i 0.503871 + 0.863779i \(0.331909\pi\)
−0.503871 + 0.863779i \(0.668091\pi\)
\(194\) −18.0000 + 18.0000i −1.29232 + 1.29232i
\(195\) 0 0
\(196\) 4.00000i 0.285714i
\(197\) 23.0000 1.63868 0.819341 0.573306i \(-0.194340\pi\)
0.819341 + 0.573306i \(0.194340\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) −8.00000 + 8.00000i −0.565685 + 0.565685i
\(201\) 0 0
\(202\) 0 0
\(203\) 18.0000 1.26335
\(204\) 0 0
\(205\) 10.0000i 0.698430i
\(206\) −4.00000 4.00000i −0.278693 0.278693i
\(207\) 0 0
\(208\) −12.0000 + 8.00000i −0.832050 + 0.554700i
\(209\) 0 0
\(210\) 0 0
\(211\) 5.00000i 0.344214i −0.985078 0.172107i \(-0.944942\pi\)
0.985078 0.172107i \(-0.0550575\pi\)
\(212\) 12.0000 0.824163
\(213\) 0 0
\(214\) 12.0000 12.0000i 0.820303 0.820303i
\(215\) 9.00000i 0.613795i
\(216\) 0 0
\(217\) 0 0
\(218\) 15.0000 + 15.0000i 1.01593 + 1.01593i
\(219\) 0 0
\(220\) 4.00000i 0.269680i
\(221\) −9.00000 + 6.00000i −0.605406 + 0.403604i
\(222\) 0 0
\(223\) 21.0000i 1.40626i −0.711059 0.703132i \(-0.751784\pi\)
0.711059 0.703132i \(-0.248216\pi\)
\(224\) 12.0000 12.0000i 0.801784 0.801784i
\(225\) 0 0
\(226\) −6.00000 6.00000i −0.399114 0.399114i
\(227\) −2.00000 −0.132745 −0.0663723 0.997795i \(-0.521143\pi\)
−0.0663723 + 0.997795i \(0.521143\pi\)
\(228\) 0 0
\(229\) 15.0000 0.991228 0.495614 0.868543i \(-0.334943\pi\)
0.495614 + 0.868543i \(0.334943\pi\)
\(230\) −6.00000 6.00000i −0.395628 0.395628i
\(231\) 0 0
\(232\) 12.0000 + 12.0000i 0.787839 + 0.787839i
\(233\) −9.00000 −0.589610 −0.294805 0.955557i \(-0.595255\pi\)
−0.294805 + 0.955557i \(0.595255\pi\)
\(234\) 0 0
\(235\) 7.00000i 0.456630i
\(236\) 20.0000i 1.30189i
\(237\) 0 0
\(238\) 9.00000 9.00000i 0.583383 0.583383i
\(239\) 19.0000i 1.22901i 0.788914 + 0.614504i \(0.210644\pi\)
−0.788914 + 0.614504i \(0.789356\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 7.00000 + 7.00000i 0.449977 + 0.449977i
\(243\) 0 0
\(244\) −20.0000 −1.28037
\(245\) −2.00000 −0.127775
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 9.00000 + 9.00000i 0.569210 + 0.569210i
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 12.0000 0.754434
\(254\) −18.0000 18.0000i −1.12942 1.12942i
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) −3.00000 −0.187135 −0.0935674 0.995613i \(-0.529827\pi\)
−0.0935674 + 0.995613i \(0.529827\pi\)
\(258\) 0 0
\(259\) 9.00000i 0.559233i
\(260\) 4.00000 + 6.00000i 0.248069 + 0.372104i
\(261\) 0 0
\(262\) −15.0000 + 15.0000i −0.926703 + 0.926703i
\(263\) 6.00000 0.369976 0.184988 0.982741i \(-0.440775\pi\)
0.184988 + 0.982741i \(0.440775\pi\)
\(264\) 0 0
\(265\) 6.00000i 0.368577i
\(266\) 0 0
\(267\) 0 0
\(268\) 24.0000i 1.46603i
\(269\) 6.00000i 0.365826i 0.983129 + 0.182913i \(0.0585527\pi\)
−0.983129 + 0.182913i \(0.941447\pi\)
\(270\) 0 0
\(271\) 15.0000i 0.911185i 0.890188 + 0.455593i \(0.150573\pi\)
−0.890188 + 0.455593i \(0.849427\pi\)
\(272\) 12.0000 0.727607
\(273\) 0 0
\(274\) −2.00000 + 2.00000i −0.120824 + 0.120824i
\(275\) −8.00000 −0.482418
\(276\) 0 0
\(277\) 18.0000i 1.08152i 0.841178 + 0.540758i \(0.181862\pi\)
−0.841178 + 0.540758i \(0.818138\pi\)
\(278\) 9.00000 9.00000i 0.539784 0.539784i
\(279\) 0 0
\(280\) −6.00000 6.00000i −0.358569 0.358569i
\(281\) 20.0000i 1.19310i 0.802576 + 0.596550i \(0.203462\pi\)
−0.802576 + 0.596550i \(0.796538\pi\)
\(282\) 0 0
\(283\) 4.00000i 0.237775i −0.992908 0.118888i \(-0.962067\pi\)
0.992908 0.118888i \(-0.0379328\pi\)
\(284\) 10.0000 0.593391
\(285\) 0 0
\(286\) −10.0000 2.00000i −0.591312 0.118262i
\(287\) −30.0000 −1.77084
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 6.00000 6.00000i 0.352332 0.352332i
\(291\) 0 0
\(292\) 12.0000 0.702247
\(293\) −1.00000 −0.0584206 −0.0292103 0.999573i \(-0.509299\pi\)
−0.0292103 + 0.999573i \(0.509299\pi\)
\(294\) 0 0
\(295\) 10.0000 0.582223
\(296\) −6.00000 + 6.00000i −0.348743 + 0.348743i
\(297\) 0 0
\(298\) 10.0000 + 10.0000i 0.579284 + 0.579284i
\(299\) 18.0000 12.0000i 1.04097 0.693978i
\(300\) 0 0
\(301\) −27.0000 −1.55625
\(302\) 15.0000 15.0000i 0.863153 0.863153i
\(303\) 0 0
\(304\) 0 0
\(305\) 10.0000i 0.572598i
\(306\) 0 0
\(307\) −18.0000 −1.02731 −0.513657 0.857996i \(-0.671710\pi\)
−0.513657 + 0.857996i \(0.671710\pi\)
\(308\) 12.0000 0.683763
\(309\) 0 0
\(310\) 0 0
\(311\) −12.0000 −0.680458 −0.340229 0.940343i \(-0.610505\pi\)
−0.340229 + 0.940343i \(0.610505\pi\)
\(312\) 0 0
\(313\) 9.00000 0.508710 0.254355 0.967111i \(-0.418137\pi\)
0.254355 + 0.967111i \(0.418137\pi\)
\(314\) 18.0000 18.0000i 1.01580 1.01580i
\(315\) 0 0
\(316\) 0 0
\(317\) −2.00000 −0.112331 −0.0561656 0.998421i \(-0.517887\pi\)
−0.0561656 + 0.998421i \(0.517887\pi\)
\(318\) 0 0
\(319\) 12.0000i 0.671871i
\(320\) 8.00000i 0.447214i
\(321\) 0 0
\(322\) −18.0000 + 18.0000i −1.00310 + 1.00310i
\(323\) 0 0
\(324\) 0 0
\(325\) −12.0000 + 8.00000i −0.665640 + 0.443760i
\(326\) −6.00000 6.00000i −0.332309 0.332309i
\(327\) 0 0
\(328\) −20.0000 20.0000i −1.10432 1.10432i
\(329\) −21.0000 −1.15777
\(330\) 0 0
\(331\) −12.0000 −0.659580 −0.329790 0.944054i \(-0.606978\pi\)
−0.329790 + 0.944054i \(0.606978\pi\)
\(332\) 32.0000i 1.75623i
\(333\) 0 0
\(334\) 8.00000 8.00000i 0.437741 0.437741i
\(335\) 12.0000 0.655630
\(336\) 0 0
\(337\) −27.0000 −1.47078 −0.735392 0.677642i \(-0.763002\pi\)
−0.735392 + 0.677642i \(0.763002\pi\)
\(338\) −17.0000 + 7.00000i −0.924678 + 0.380750i
\(339\) 0 0
\(340\) 6.00000i 0.325396i
\(341\) 0 0
\(342\) 0 0
\(343\) 15.0000i 0.809924i
\(344\) −18.0000 18.0000i −0.970495 0.970495i
\(345\) 0 0
\(346\) 24.0000 24.0000i 1.29025 1.29025i
\(347\) 27.0000i 1.44944i 0.689046 + 0.724718i \(0.258030\pi\)
−0.689046 + 0.724718i \(0.741970\pi\)
\(348\) 0 0
\(349\) 15.0000 0.802932 0.401466 0.915874i \(-0.368501\pi\)
0.401466 + 0.915874i \(0.368501\pi\)
\(350\) 12.0000 12.0000i 0.641427 0.641427i
\(351\) 0 0
\(352\) 8.00000 + 8.00000i 0.426401 + 0.426401i
\(353\) 16.0000i 0.851594i 0.904819 + 0.425797i \(0.140006\pi\)
−0.904819 + 0.425797i \(0.859994\pi\)
\(354\) 0 0
\(355\) 5.00000i 0.265372i
\(356\) −8.00000 −0.423999
\(357\) 0 0
\(358\) −9.00000 + 9.00000i −0.475665 + 0.475665i
\(359\) 4.00000i 0.211112i 0.994413 + 0.105556i \(0.0336622\pi\)
−0.994413 + 0.105556i \(0.966338\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 18.0000 12.0000i 0.943456 0.628971i
\(365\) 6.00000i 0.314054i
\(366\) 0 0
\(367\) 28.0000 1.46159 0.730794 0.682598i \(-0.239150\pi\)
0.730794 + 0.682598i \(0.239150\pi\)
\(368\) −24.0000 −1.25109
\(369\) 0 0
\(370\) 3.00000 + 3.00000i 0.155963 + 0.155963i
\(371\) −18.0000 −0.934513
\(372\) 0 0
\(373\) 4.00000i 0.207112i −0.994624 0.103556i \(-0.966978\pi\)
0.994624 0.103556i \(-0.0330221\pi\)
\(374\) 6.00000 + 6.00000i 0.310253 + 0.310253i
\(375\) 0 0
\(376\) −14.0000 14.0000i −0.721995 0.721995i
\(377\) 12.0000 + 18.0000i 0.618031 + 0.927047i
\(378\) 0 0
\(379\) 30.0000 1.54100 0.770498 0.637442i \(-0.220007\pi\)
0.770498 + 0.637442i \(0.220007\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −18.0000 18.0000i −0.920960 0.920960i
\(383\) 1.00000i 0.0510976i 0.999674 + 0.0255488i \(0.00813332\pi\)
−0.999674 + 0.0255488i \(0.991867\pi\)
\(384\) 0 0
\(385\) 6.00000i 0.305788i
\(386\) 24.0000 24.0000i 1.22157 1.22157i
\(387\) 0 0
\(388\) 36.0000 1.82762
\(389\) 6.00000i 0.304212i 0.988364 + 0.152106i \(0.0486055\pi\)
−0.988364 + 0.152106i \(0.951394\pi\)
\(390\) 0 0
\(391\) −18.0000 −0.910299
\(392\) −4.00000 + 4.00000i −0.202031 + 0.202031i
\(393\) 0 0
\(394\) −23.0000 23.0000i −1.15872 1.15872i
\(395\) 0 0
\(396\) 0 0
\(397\) −18.0000 −0.903394 −0.451697 0.892171i \(-0.649181\pi\)
−0.451697 + 0.892171i \(0.649181\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 16.0000 0.800000
\(401\) 10.0000i 0.499376i −0.968326 0.249688i \(-0.919672\pi\)
0.968326 0.249688i \(-0.0803281\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) −18.0000 18.0000i −0.893325 0.893325i
\(407\) −6.00000 −0.297409
\(408\) 0 0
\(409\) 6.00000i 0.296681i 0.988936 + 0.148340i \(0.0473931\pi\)
−0.988936 + 0.148340i \(0.952607\pi\)
\(410\) −10.0000 + 10.0000i −0.493865 + 0.493865i
\(411\) 0 0
\(412\) 8.00000i 0.394132i
\(413\) 30.0000i 1.47620i
\(414\) 0 0
\(415\) −16.0000 −0.785409
\(416\) 20.0000 + 4.00000i 0.980581 + 0.196116i
\(417\) 0 0
\(418\) 0 0
\(419\) 9.00000i 0.439679i −0.975536 0.219839i \(-0.929447\pi\)
0.975536 0.219839i \(-0.0705533\pi\)
\(420\) 0 0
\(421\) 3.00000 0.146211 0.0731055 0.997324i \(-0.476709\pi\)
0.0731055 + 0.997324i \(0.476709\pi\)
\(422\) −5.00000 + 5.00000i −0.243396 + 0.243396i
\(423\) 0 0
\(424\) −12.0000 12.0000i −0.582772 0.582772i
\(425\) 12.0000 0.582086
\(426\) 0 0
\(427\) 30.0000 1.45180
\(428\) −24.0000 −1.16008
\(429\) 0 0
\(430\) −9.00000 + 9.00000i −0.434019 + 0.434019i
\(431\) 5.00000i 0.240842i −0.992723 0.120421i \(-0.961576\pi\)
0.992723 0.120421i \(-0.0384244\pi\)
\(432\) 0 0
\(433\) 9.00000 0.432512 0.216256 0.976337i \(-0.430615\pi\)
0.216256 + 0.976337i \(0.430615\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 30.0000i 1.43674i
\(437\) 0 0
\(438\) 0 0
\(439\) −10.0000 −0.477274 −0.238637 0.971109i \(-0.576701\pi\)
−0.238637 + 0.971109i \(0.576701\pi\)
\(440\) 4.00000 4.00000i 0.190693 0.190693i
\(441\) 0 0
\(442\) 15.0000 + 3.00000i 0.713477 + 0.142695i
\(443\) 9.00000i 0.427603i 0.976877 + 0.213801i \(0.0685846\pi\)
−0.976877 + 0.213801i \(0.931415\pi\)
\(444\) 0 0
\(445\) 4.00000i 0.189618i
\(446\) −21.0000 + 21.0000i −0.994379 + 0.994379i
\(447\) 0 0
\(448\) −24.0000 −1.13389
\(449\) 14.0000i 0.660701i 0.943858 + 0.330350i \(0.107167\pi\)
−0.943858 + 0.330350i \(0.892833\pi\)
\(450\) 0 0
\(451\) 20.0000i 0.941763i
\(452\) 12.0000i 0.564433i
\(453\) 0 0
\(454\) 2.00000 + 2.00000i 0.0938647 + 0.0938647i
\(455\) −6.00000 9.00000i −0.281284 0.421927i
\(456\) 0 0
\(457\) 12.0000i 0.561336i 0.959805 + 0.280668i \(0.0905560\pi\)
−0.959805 + 0.280668i \(0.909444\pi\)
\(458\) −15.0000 15.0000i −0.700904 0.700904i
\(459\) 0 0
\(460\) 12.0000i 0.559503i
\(461\) 7.00000 0.326023 0.163011 0.986624i \(-0.447879\pi\)
0.163011 + 0.986624i \(0.447879\pi\)
\(462\) 0 0
\(463\) 24.0000i 1.11537i 0.830051 + 0.557687i \(0.188311\pi\)
−0.830051 + 0.557687i \(0.811689\pi\)
\(464\) 24.0000i 1.11417i
\(465\) 0 0
\(466\) 9.00000 + 9.00000i 0.416917 + 0.416917i
\(467\) 12.0000i 0.555294i 0.960683 + 0.277647i \(0.0895545\pi\)
−0.960683 + 0.277647i \(0.910445\pi\)
\(468\) 0 0
\(469\) 36.0000i 1.66233i
\(470\) −7.00000 + 7.00000i −0.322886 + 0.322886i
\(471\) 0 0
\(472\) 20.0000 20.0000i 0.920575 0.920575i
\(473\) 18.0000i 0.827641i
\(474\) 0 0
\(475\) 0 0
\(476\) −18.0000 −0.825029
\(477\) 0 0
\(478\) 19.0000 19.0000i 0.869040 0.869040i
\(479\) 29.0000i 1.32504i 0.749043 + 0.662522i \(0.230514\pi\)
−0.749043 + 0.662522i \(0.769486\pi\)
\(480\) 0 0
\(481\) −9.00000 + 6.00000i −0.410365 + 0.273576i
\(482\) 0 0
\(483\) 0 0
\(484\) 14.0000i 0.636364i
\(485\) 18.0000i 0.817338i
\(486\) 0 0
\(487\) 12.0000i 0.543772i 0.962329 + 0.271886i \(0.0876473\pi\)
−0.962329 + 0.271886i \(0.912353\pi\)
\(488\) 20.0000 + 20.0000i 0.905357 + 0.905357i
\(489\) 0 0
\(490\) 2.00000 + 2.00000i 0.0903508 + 0.0903508i
\(491\) 15.0000i 0.676941i −0.940977 0.338470i \(-0.890091\pi\)
0.940977 0.338470i \(-0.109909\pi\)
\(492\) 0 0
\(493\) 18.0000i 0.810679i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −15.0000 −0.672842
\(498\) 0 0
\(499\) −30.0000 −1.34298 −0.671492 0.741012i \(-0.734346\pi\)
−0.671492 + 0.741012i \(0.734346\pi\)
\(500\) 18.0000i 0.804984i
\(501\) 0 0
\(502\) 0 0
\(503\) −24.0000 −1.07011 −0.535054 0.844818i \(-0.679709\pi\)
−0.535054 + 0.844818i \(0.679709\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −12.0000 12.0000i −0.533465 0.533465i
\(507\) 0 0
\(508\) 36.0000i 1.59724i
\(509\) −10.0000 −0.443242 −0.221621 0.975133i \(-0.571135\pi\)
−0.221621 + 0.975133i \(0.571135\pi\)
\(510\) 0 0
\(511\) −18.0000 −0.796273
\(512\) −16.0000 16.0000i −0.707107 0.707107i
\(513\) 0 0
\(514\) 3.00000 + 3.00000i 0.132324 + 0.132324i
\(515\) 4.00000 0.176261
\(516\) 0 0
\(517\) 14.0000i 0.615719i
\(518\) 9.00000 9.00000i 0.395437 0.395437i
\(519\) 0 0
\(520\) 2.00000 10.0000i 0.0877058 0.438529i
\(521\) 3.00000 0.131432 0.0657162 0.997838i \(-0.479067\pi\)
0.0657162 + 0.997838i \(0.479067\pi\)
\(522\) 0 0
\(523\) 36.0000i 1.57417i 0.616844 + 0.787085i \(0.288411\pi\)
−0.616844 + 0.787085i \(0.711589\pi\)
\(524\) 30.0000 1.31056
\(525\) 0 0
\(526\) −6.00000 6.00000i −0.261612 0.261612i
\(527\) 0 0
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) −6.00000 + 6.00000i −0.260623 + 0.260623i
\(531\) 0 0
\(532\) 0 0
\(533\) −20.0000 30.0000i −0.866296 1.29944i
\(534\) 0 0
\(535\) 12.0000i 0.518805i
\(536\) 24.0000 24.0000i 1.03664 1.03664i
\(537\) 0 0
\(538\) 6.00000 6.00000i 0.258678 0.258678i
\(539\) −4.00000 −0.172292
\(540\) 0 0
\(541\) 33.0000 1.41878 0.709390 0.704816i \(-0.248970\pi\)
0.709390 + 0.704816i \(0.248970\pi\)
\(542\) 15.0000 15.0000i 0.644305 0.644305i
\(543\) 0 0
\(544\) −12.0000 12.0000i −0.514496 0.514496i
\(545\) −15.0000 −0.642529
\(546\) 0 0
\(547\) 27.0000i 1.15444i −0.816590 0.577218i \(-0.804138\pi\)
0.816590 0.577218i \(-0.195862\pi\)
\(548\) 4.00000 0.170872
\(549\) 0 0
\(550\) 8.00000 + 8.00000i 0.341121 + 0.341121i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 18.0000 18.0000i 0.764747 0.764747i
\(555\) 0 0
\(556\) −18.0000 −0.763370
\(557\) 23.0000 0.974541 0.487271 0.873251i \(-0.337993\pi\)
0.487271 + 0.873251i \(0.337993\pi\)
\(558\) 0 0
\(559\) −18.0000 27.0000i −0.761319 1.14198i
\(560\) 12.0000i 0.507093i
\(561\) 0 0
\(562\) 20.0000 20.0000i 0.843649 0.843649i
\(563\) 21.0000i 0.885044i −0.896758 0.442522i \(-0.854084\pi\)
0.896758 0.442522i \(-0.145916\pi\)
\(564\) 0 0
\(565\) 6.00000 0.252422
\(566\) −4.00000 + 4.00000i −0.168133 + 0.168133i
\(567\) 0 0
\(568\) −10.0000 10.0000i −0.419591 0.419591i
\(569\) −15.0000 −0.628833 −0.314416 0.949285i \(-0.601809\pi\)
−0.314416 + 0.949285i \(0.601809\pi\)
\(570\) 0 0
\(571\) 5.00000i 0.209243i 0.994512 + 0.104622i \(0.0333632\pi\)
−0.994512 + 0.104622i \(0.966637\pi\)
\(572\) 8.00000 + 12.0000i 0.334497 + 0.501745i
\(573\) 0 0
\(574\) 30.0000 + 30.0000i 1.25218 + 1.25218i
\(575\) −24.0000 −1.00087
\(576\) 0 0
\(577\) 18.0000i 0.749350i −0.927156 0.374675i \(-0.877754\pi\)
0.927156 0.374675i \(-0.122246\pi\)
\(578\) 8.00000 + 8.00000i 0.332756 + 0.332756i
\(579\) 0 0
\(580\) −12.0000 −0.498273
\(581\) 48.0000i 1.99138i
\(582\) 0 0
\(583\) 12.0000i 0.496989i
\(584\) −12.0000 12.0000i −0.496564 0.496564i
\(585\) 0 0
\(586\) 1.00000 + 1.00000i 0.0413096 + 0.0413096i
\(587\) −2.00000 −0.0825488 −0.0412744 0.999148i \(-0.513142\pi\)
−0.0412744 + 0.999148i \(0.513142\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −10.0000 10.0000i −0.411693 0.411693i
\(591\) 0 0
\(592\) 12.0000 0.493197
\(593\) 14.0000i 0.574911i −0.957794 0.287456i \(-0.907191\pi\)
0.957794 0.287456i \(-0.0928094\pi\)
\(594\) 0 0
\(595\) 9.00000i 0.368964i
\(596\) 20.0000i 0.819232i
\(597\) 0 0
\(598\) −30.0000 6.00000i −1.22679 0.245358i
\(599\) 30.0000 1.22577 0.612883 0.790173i \(-0.290010\pi\)
0.612883 + 0.790173i \(0.290010\pi\)
\(600\) 0 0
\(601\) 27.0000 1.10135 0.550676 0.834719i \(-0.314370\pi\)
0.550676 + 0.834719i \(0.314370\pi\)
\(602\) 27.0000 + 27.0000i 1.10044 + 1.10044i
\(603\) 0 0
\(604\) −30.0000 −1.22068
\(605\) −7.00000 −0.284590
\(606\) 0 0
\(607\) −22.0000 −0.892952 −0.446476 0.894795i \(-0.647321\pi\)
−0.446476 + 0.894795i \(0.647321\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 10.0000 10.0000i 0.404888 0.404888i
\(611\) −14.0000 21.0000i −0.566379 0.849569i
\(612\) 0 0
\(613\) 6.00000 0.242338 0.121169 0.992632i \(-0.461336\pi\)
0.121169 + 0.992632i \(0.461336\pi\)
\(614\) 18.0000 + 18.0000i 0.726421 + 0.726421i
\(615\) 0 0
\(616\) −12.0000 12.0000i −0.483494 0.483494i
\(617\) 8.00000i 0.322068i 0.986949 + 0.161034i \(0.0514829\pi\)
−0.986949 + 0.161034i \(0.948517\pi\)
\(618\) 0 0
\(619\) 30.0000 1.20580 0.602901 0.797816i \(-0.294011\pi\)
0.602901 + 0.797816i \(0.294011\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 12.0000 + 12.0000i 0.481156 + 0.481156i
\(623\) 12.0000 0.480770
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) −9.00000 9.00000i −0.359712 0.359712i
\(627\) 0 0
\(628\) −36.0000 −1.43656
\(629\) 9.00000 0.358854
\(630\) 0 0
\(631\) 45.0000i 1.79142i −0.444637 0.895711i \(-0.646667\pi\)
0.444637 0.895711i \(-0.353333\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 2.00000 + 2.00000i 0.0794301 + 0.0794301i
\(635\) 18.0000 0.714308
\(636\) 0 0
\(637\) −6.00000 + 4.00000i −0.237729 + 0.158486i
\(638\) 12.0000 12.0000i 0.475085 0.475085i
\(639\) 0 0
\(640\) −8.00000 + 8.00000i −0.316228 + 0.316228i
\(641\) 18.0000 0.710957 0.355479 0.934684i \(-0.384318\pi\)
0.355479 + 0.934684i \(0.384318\pi\)
\(642\) 0 0
\(643\) −24.0000 −0.946468 −0.473234 0.880937i \(-0.656913\pi\)
−0.473234 + 0.880937i \(0.656913\pi\)
\(644\) 36.0000 1.41860
\(645\) 0 0
\(646\) 0 0
\(647\) −18.0000 −0.707653 −0.353827 0.935311i \(-0.615120\pi\)
−0.353827 + 0.935311i \(0.615120\pi\)
\(648\) 0 0
\(649\) 20.0000 0.785069
\(650\) 20.0000 + 4.00000i 0.784465 + 0.156893i
\(651\) 0 0
\(652\) 12.0000i 0.469956i
\(653\) 24.0000i 0.939193i 0.882881 + 0.469596i \(0.155601\pi\)
−0.882881 + 0.469596i \(0.844399\pi\)
\(654\) 0 0
\(655\) 15.0000i 0.586098i
\(656\) 40.0000i 1.56174i
\(657\) 0 0
\(658\) 21.0000 + 21.0000i 0.818665 + 0.818665i
\(659\) 36.0000i 1.40236i 0.712984 + 0.701180i \(0.247343\pi\)
−0.712984 + 0.701180i \(0.752657\pi\)
\(660\) 0 0
\(661\) 18.0000 0.700119 0.350059 0.936727i \(-0.386161\pi\)
0.350059 + 0.936727i \(0.386161\pi\)
\(662\) 12.0000 + 12.0000i 0.466393 + 0.466393i
\(663\) 0 0
\(664\) −32.0000 + 32.0000i −1.24184 + 1.24184i
\(665\) 0 0
\(666\) 0 0
\(667\) 36.0000i 1.39393i
\(668\) −16.0000 −0.619059
\(669\) 0 0
\(670\) −12.0000 12.0000i −0.463600 0.463600i
\(671\) 20.0000i 0.772091i
\(672\) 0 0
\(673\) 19.0000 0.732396 0.366198 0.930537i \(-0.380659\pi\)
0.366198 + 0.930537i \(0.380659\pi\)
\(674\) 27.0000 + 27.0000i 1.04000 + 1.04000i
\(675\) 0 0
\(676\) 24.0000 + 10.0000i 0.923077 + 0.384615i
\(677\) 12.0000i 0.461197i 0.973049 + 0.230599i \(0.0740685\pi\)
−0.973049 + 0.230599i \(0.925932\pi\)
\(678\) 0 0
\(679\) −54.0000 −2.07233
\(680\) −6.00000 + 6.00000i −0.230089 + 0.230089i
\(681\) 0 0
\(682\) 0 0
\(683\) 4.00000 0.153056 0.0765279 0.997067i \(-0.475617\pi\)
0.0765279 + 0.997067i \(0.475617\pi\)
\(684\) 0 0
\(685\) 2.00000i 0.0764161i
\(686\) −15.0000 + 15.0000i −0.572703 + 0.572703i
\(687\) 0 0
\(688\) 36.0000i 1.37249i
\(689\) −12.0000 18.0000i −0.457164 0.685745i
\(690\) 0 0
\(691\) −12.0000 −0.456502 −0.228251 0.973602i \(-0.573301\pi\)
−0.228251 + 0.973602i \(0.573301\pi\)
\(692\) −48.0000 −1.82469
\(693\) 0 0
\(694\) 27.0000 27.0000i 1.02491 1.02491i
\(695\) 9.00000i 0.341389i
\(696\) 0 0
\(697\) 30.0000i 1.13633i
\(698\) −15.0000 15.0000i −0.567758 0.567758i
\(699\) 0 0
\(700\) −24.0000 −0.907115
\(701\) 30.0000i 1.13308i −0.824033 0.566542i \(-0.808281\pi\)
0.824033 0.566542i \(-0.191719\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 16.0000i 0.603023i
\(705\) 0 0
\(706\) 16.0000 16.0000i 0.602168 0.602168i
\(707\) 0 0
\(708\) 0 0
\(709\) −30.0000 −1.12667 −0.563337 0.826227i \(-0.690483\pi\)
−0.563337 + 0.826227i \(0.690483\pi\)
\(710\) −5.00000 + 5.00000i −0.187647 + 0.187647i
\(711\) 0 0
\(712\) 8.00000 + 8.00000i 0.299813 + 0.299813i
\(713\) 0 0
\(714\) 0 0
\(715\) 6.00000 4.00000i 0.224387 0.149592i
\(716\) 18.0000 0.672692
\(717\) 0 0
\(718\) 4.00000 4.00000i 0.149279 0.149279i
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 12.0000i 0.446903i
\(722\) 19.0000 + 19.0000i 0.707107 + 0.707107i
\(723\) 0 0
\(724\) 0 0
\(725\) 24.0000i 0.891338i
\(726\) 0 0
\(727\) 18.0000 0.667583 0.333792 0.942647i \(-0.391672\pi\)
0.333792 + 0.942647i \(0.391672\pi\)
\(728\) −30.0000 6.00000i −1.11187 0.222375i
\(729\) 0 0
\(730\) −6.00000 + 6.00000i −0.222070 + 0.222070i
\(731\) 27.0000i 0.998631i
\(732\) 0 0
\(733\) 51.0000 1.88373 0.941864 0.335994i \(-0.109072\pi\)
0.941864 + 0.335994i \(0.109072\pi\)
\(734\) −28.0000 28.0000i −1.03350 1.03350i
\(735\) 0 0
\(736\) 24.0000 + 24.0000i 0.884652 + 0.884652i
\(737\) 24.0000 0.884051
\(738\) 0 0
\(739\) −30.0000 −1.10357 −0.551784 0.833987i \(-0.686053\pi\)
−0.551784 + 0.833987i \(0.686053\pi\)
\(740\) 6.00000i 0.220564i
\(741\) 0 0
\(742\) 18.0000 + 18.0000i 0.660801 + 0.660801i
\(743\) 19.0000i 0.697042i −0.937301 0.348521i \(-0.886684\pi\)
0.937301 0.348521i \(-0.113316\pi\)
\(744\) 0 0
\(745\) −10.0000 −0.366372
\(746\) −4.00000 + 4.00000i −0.146450 + 0.146450i
\(747\) 0 0
\(748\) 12.0000i 0.438763i
\(749\) 36.0000 1.31541
\(750\) 0 0
\(751\) 22.0000 0.802791 0.401396 0.915905i \(-0.368525\pi\)
0.401396 + 0.915905i \(0.368525\pi\)
\(752\) 28.0000i 1.02105i
\(753\) 0 0
\(754\) 6.00000 30.0000i 0.218507 1.09254i
\(755\) 15.0000i 0.545906i
\(756\) 0 0
\(757\) 38.0000i 1.38113i 0.723269 + 0.690567i \(0.242639\pi\)
−0.723269 + 0.690567i \(0.757361\pi\)
\(758\) −30.0000 30.0000i −1.08965 1.08965i
\(759\) 0 0
\(760\) 0 0
\(761\) 10.0000i 0.362500i 0.983437 + 0.181250i \(0.0580143\pi\)
−0.983437 + 0.181250i \(0.941986\pi\)
\(762\) 0 0
\(763\) 45.0000i 1.62911i
\(764\) 36.0000i 1.30243i
\(765\) 0 0
\(766\) 1.00000 1.00000i 0.0361315 0.0361315i
\(767\) 30.0000 20.0000i 1.08324 0.722158i
\(768\) 0 0
\(769\) 36.0000i 1.29819i 0.760706 + 0.649097i \(0.224853\pi\)
−0.760706 + 0.649097i \(0.775147\pi\)
\(770\) −6.00000 + 6.00000i −0.216225 + 0.216225i
\(771\) 0 0
\(772\) −48.0000 −1.72756
\(773\) 49.0000 1.76241 0.881204 0.472737i \(-0.156734\pi\)
0.881204 + 0.472737i \(0.156734\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −36.0000 36.0000i −1.29232 1.29232i
\(777\) 0 0
\(778\) 6.00000 6.00000i 0.215110 0.215110i
\(779\) 0 0
\(780\) 0 0
\(781\) 10.0000i 0.357828i
\(782\) 18.0000 + 18.0000i 0.643679 + 0.643679i
\(783\) 0 0
\(784\) 8.00000 0.285714
\(785\) 18.0000i 0.642448i
\(786\) 0 0
\(787\) −18.0000 −0.641631 −0.320815 0.947142i \(-0.603957\pi\)
−0.320815 + 0.947142i \(0.603957\pi\)
\(788\) 46.0000i 1.63868i
\(789\) 0 0
\(790\) 0