Properties

Label 936.2.m
Level $936$
Weight $2$
Character orbit 936.m
Rep. character $\chi_{936}(181,\cdot)$
Character field $\Q$
Dimension $68$
Newform subspaces $9$
Sturm bound $336$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.m (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 104 \)
Character field: \(\Q\)
Newform subspaces: \( 9 \)
Sturm bound: \(336\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(936, [\chi])\).

Total New Old
Modular forms 176 72 104
Cusp forms 160 68 92
Eisenstein series 16 4 12

Trace form

\( 68 q - 2 q^{4} + O(q^{10}) \) \( 68 q - 2 q^{4} - 2 q^{10} - 10 q^{14} - 14 q^{16} - 4 q^{22} - 8 q^{23} + 52 q^{25} + 14 q^{26} - 4 q^{38} + 14 q^{40} - 76 q^{49} + 4 q^{52} - 24 q^{55} - 6 q^{56} + 48 q^{62} - 14 q^{64} + 24 q^{65} - 38 q^{68} + 34 q^{74} + 16 q^{79} + 48 q^{82} - 80 q^{88} + 48 q^{92} - 30 q^{94} + 96 q^{95} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(936, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
936.2.m.a 936.m 104.e $2$ $7.474$ \(\Q(\sqrt{-1}) \) None 312.2.m.a \(-2\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(i-1)q^{2}-2 i q^{4}-2 q^{5}+(2 i+2)q^{8}+\cdots\)
936.2.m.b 936.m 104.e $2$ $7.474$ \(\Q(\sqrt{-1}) \) None 104.2.e.a \(-2\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(i-1)q^{2}-2 i q^{4}+q^{5}+3 i q^{7}+\cdots\)
936.2.m.c 936.m 104.e $2$ $7.474$ \(\Q(\sqrt{-1}) \) None 104.2.e.a \(2\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-i+1)q^{2}-2 i q^{4}-q^{5}-3 i q^{7}+\cdots\)
936.2.m.d 936.m 104.e $2$ $7.474$ \(\Q(\sqrt{-1}) \) None 312.2.m.a \(2\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-i+1)q^{2}-2 i q^{4}+2 q^{5}+(-2 i-2)q^{8}+\cdots\)
936.2.m.e 936.m 104.e $4$ $7.474$ \(\Q(\sqrt{-2}, \sqrt{13})\) \(\Q(\sqrt{-78}) \) 936.2.m.e \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta _{2}q^{2}-2q^{4}-2\beta _{2}q^{8}-\beta _{3}q^{13}+\cdots\)
936.2.m.f 936.m 104.e $8$ $7.474$ 8.0.4521217600.1 None 104.2.e.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}+\beta _{2}q^{4}-\beta _{6}q^{5}+(\beta _{1}-\beta _{4}+\cdots)q^{7}+\cdots\)
936.2.m.g 936.m 104.e $8$ $7.474$ 8.0.\(\cdots\).21 \(\Q(\sqrt{-39}) \) 936.2.m.g \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta _{5}q^{2}+(-\beta _{2}-\beta _{4})q^{4}+(\beta _{1}+\beta _{3}+\cdots)q^{5}+\cdots\)
936.2.m.h 936.m 104.e $16$ $7.474$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 936.2.m.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{10}q^{2}+\beta _{3}q^{4}+\beta _{14}q^{5}-\beta _{5}q^{7}+\cdots\)
936.2.m.i 936.m 104.e $24$ $7.474$ None 312.2.m.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{2}^{\mathrm{old}}(936, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(936, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(312, [\chi])\)\(^{\oplus 2}\)