Properties

Label 936.2.g.f.469.19
Level $936$
Weight $2$
Character 936.469
Analytic conductor $7.474$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(469,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.469"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 469.19
Character \(\chi\) \(=\) 936.469
Dual form 936.2.g.f.469.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.21070 - 0.730889i) q^{2} +(0.931601 - 1.76978i) q^{4} -2.32782i q^{5} -4.85152 q^{7} +(-0.165621 - 2.82357i) q^{8} +(-1.70138 - 2.81830i) q^{10} +3.45836i q^{11} -1.00000i q^{13} +(-5.87375 + 3.54592i) q^{14} +(-2.26424 - 3.29746i) q^{16} +0.641186 q^{17} -5.60660i q^{19} +(-4.11973 - 2.16860i) q^{20} +(2.52768 + 4.18704i) q^{22} -9.37422 q^{23} -0.418756 q^{25} +(-0.730889 - 1.21070i) q^{26} +(-4.51968 + 8.58612i) q^{28} -5.01794i q^{29} +2.89128 q^{31} +(-5.15140 - 2.33733i) q^{32} +(0.776285 - 0.468636i) q^{34} +11.2935i q^{35} +5.74279i q^{37} +(-4.09780 - 6.78792i) q^{38} +(-6.57278 + 0.385537i) q^{40} +2.69012 q^{41} -0.307649i q^{43} +(6.12053 + 3.22181i) q^{44} +(-11.3494 + 6.85152i) q^{46} -8.30199 q^{47} +16.5372 q^{49} +(-0.506988 + 0.306064i) q^{50} +(-1.76978 - 0.931601i) q^{52} +1.60785i q^{53} +8.05044 q^{55} +(0.803515 + 13.6986i) q^{56} +(-3.66756 - 6.07523i) q^{58} -0.256735i q^{59} -11.1218i q^{61} +(3.50047 - 2.11320i) q^{62} +(-7.94514 + 0.935288i) q^{64} -2.32782 q^{65} -9.58901i q^{67} +(0.597329 - 1.13476i) q^{68} +(8.25428 + 13.6730i) q^{70} +11.6411 q^{71} +5.74279 q^{73} +(4.19735 + 6.95282i) q^{74} +(-9.92244 - 5.22311i) q^{76} -16.7783i q^{77} +8.80552 q^{79} +(-7.67589 + 5.27074i) q^{80} +(3.25693 - 1.96618i) q^{82} -13.4617i q^{83} -1.49257i q^{85} +(-0.224858 - 0.372472i) q^{86} +(9.76493 - 0.572778i) q^{88} -3.75972 q^{89} +4.85152i q^{91} +(-8.73303 + 16.5903i) q^{92} +(-10.0512 + 6.06784i) q^{94} -13.0512 q^{95} -1.98241 q^{97} +(20.0217 - 12.0869i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{4} - 8 q^{7} + 12 q^{10} - 4 q^{16} + 4 q^{22} - 24 q^{25} + 8 q^{28} + 40 q^{31} - 16 q^{34} - 36 q^{40} - 24 q^{46} + 24 q^{49} - 4 q^{52} - 16 q^{55} - 24 q^{58} + 8 q^{64} - 16 q^{70} - 16 q^{76}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.21070 0.730889i 0.856096 0.516817i
\(3\) 0 0
\(4\) 0.931601 1.76978i 0.465801 0.884890i
\(5\) 2.32782i 1.04103i −0.853851 0.520517i \(-0.825739\pi\)
0.853851 0.520517i \(-0.174261\pi\)
\(6\) 0 0
\(7\) −4.85152 −1.83370 −0.916851 0.399230i \(-0.869278\pi\)
−0.916851 + 0.399230i \(0.869278\pi\)
\(8\) −0.165621 2.82357i −0.0585560 0.998284i
\(9\) 0 0
\(10\) −1.70138 2.81830i −0.538024 0.891225i
\(11\) 3.45836i 1.04273i 0.853332 + 0.521367i \(0.174578\pi\)
−0.853332 + 0.521367i \(0.825422\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) −5.87375 + 3.54592i −1.56982 + 0.947688i
\(15\) 0 0
\(16\) −2.26424 3.29746i −0.566060 0.824364i
\(17\) 0.641186 0.155510 0.0777552 0.996972i \(-0.475225\pi\)
0.0777552 + 0.996972i \(0.475225\pi\)
\(18\) 0 0
\(19\) 5.60660i 1.28624i −0.765765 0.643121i \(-0.777639\pi\)
0.765765 0.643121i \(-0.222361\pi\)
\(20\) −4.11973 2.16860i −0.921200 0.484914i
\(21\) 0 0
\(22\) 2.52768 + 4.18704i 0.538903 + 0.892681i
\(23\) −9.37422 −1.95466 −0.977330 0.211722i \(-0.932093\pi\)
−0.977330 + 0.211722i \(0.932093\pi\)
\(24\) 0 0
\(25\) −0.418756 −0.0837511
\(26\) −0.730889 1.21070i −0.143339 0.237438i
\(27\) 0 0
\(28\) −4.51968 + 8.58612i −0.854139 + 1.62262i
\(29\) 5.01794i 0.931808i −0.884835 0.465904i \(-0.845729\pi\)
0.884835 0.465904i \(-0.154271\pi\)
\(30\) 0 0
\(31\) 2.89128 0.519288 0.259644 0.965704i \(-0.416395\pi\)
0.259644 + 0.965704i \(0.416395\pi\)
\(32\) −5.15140 2.33733i −0.910647 0.413186i
\(33\) 0 0
\(34\) 0.776285 0.468636i 0.133132 0.0803704i
\(35\) 11.2935i 1.90895i
\(36\) 0 0
\(37\) 5.74279i 0.944110i 0.881569 + 0.472055i \(0.156488\pi\)
−0.881569 + 0.472055i \(0.843512\pi\)
\(38\) −4.09780 6.78792i −0.664751 1.10115i
\(39\) 0 0
\(40\) −6.57278 + 0.385537i −1.03925 + 0.0609587i
\(41\) 2.69012 0.420126 0.210063 0.977688i \(-0.432633\pi\)
0.210063 + 0.977688i \(0.432633\pi\)
\(42\) 0 0
\(43\) 0.307649i 0.0469161i −0.999725 0.0234580i \(-0.992532\pi\)
0.999725 0.0234580i \(-0.00746761\pi\)
\(44\) 6.12053 + 3.22181i 0.922705 + 0.485706i
\(45\) 0 0
\(46\) −11.3494 + 6.85152i −1.67338 + 1.01020i
\(47\) −8.30199 −1.21097 −0.605485 0.795857i \(-0.707021\pi\)
−0.605485 + 0.795857i \(0.707021\pi\)
\(48\) 0 0
\(49\) 16.5372 2.36246
\(50\) −0.506988 + 0.306064i −0.0716990 + 0.0432840i
\(51\) 0 0
\(52\) −1.76978 0.931601i −0.245424 0.129190i
\(53\) 1.60785i 0.220855i 0.993884 + 0.110428i \(0.0352221\pi\)
−0.993884 + 0.110428i \(0.964778\pi\)
\(54\) 0 0
\(55\) 8.05044 1.08552
\(56\) 0.803515 + 13.6986i 0.107374 + 1.83056i
\(57\) 0 0
\(58\) −3.66756 6.07523i −0.481574 0.797717i
\(59\) 0.256735i 0.0334241i −0.999860 0.0167120i \(-0.994680\pi\)
0.999860 0.0167120i \(-0.00531985\pi\)
\(60\) 0 0
\(61\) 11.1218i 1.42400i −0.702180 0.712000i \(-0.747790\pi\)
0.702180 0.712000i \(-0.252210\pi\)
\(62\) 3.50047 2.11320i 0.444561 0.268377i
\(63\) 0 0
\(64\) −7.94514 + 0.935288i −0.993142 + 0.116911i
\(65\) −2.32782 −0.288731
\(66\) 0 0
\(67\) 9.58901i 1.17148i −0.810498 0.585742i \(-0.800803\pi\)
0.810498 0.585742i \(-0.199197\pi\)
\(68\) 0.597329 1.13476i 0.0724368 0.137610i
\(69\) 0 0
\(70\) 8.25428 + 13.6730i 0.986575 + 1.63424i
\(71\) 11.6411 1.38155 0.690773 0.723072i \(-0.257271\pi\)
0.690773 + 0.723072i \(0.257271\pi\)
\(72\) 0 0
\(73\) 5.74279 0.672143 0.336072 0.941836i \(-0.390902\pi\)
0.336072 + 0.941836i \(0.390902\pi\)
\(74\) 4.19735 + 6.95282i 0.487932 + 0.808248i
\(75\) 0 0
\(76\) −9.92244 5.22311i −1.13818 0.599132i
\(77\) 16.7783i 1.91206i
\(78\) 0 0
\(79\) 8.80552 0.990699 0.495349 0.868694i \(-0.335040\pi\)
0.495349 + 0.868694i \(0.335040\pi\)
\(80\) −7.67589 + 5.27074i −0.858191 + 0.589287i
\(81\) 0 0
\(82\) 3.25693 1.96618i 0.359668 0.217128i
\(83\) 13.4617i 1.47762i −0.673916 0.738808i \(-0.735389\pi\)
0.673916 0.738808i \(-0.264611\pi\)
\(84\) 0 0
\(85\) 1.49257i 0.161892i
\(86\) −0.224858 0.372472i −0.0242470 0.0401647i
\(87\) 0 0
\(88\) 9.76493 0.572778i 1.04095 0.0610583i
\(89\) −3.75972 −0.398530 −0.199265 0.979946i \(-0.563855\pi\)
−0.199265 + 0.979946i \(0.563855\pi\)
\(90\) 0 0
\(91\) 4.85152i 0.508577i
\(92\) −8.73303 + 16.5903i −0.910482 + 1.72966i
\(93\) 0 0
\(94\) −10.0512 + 6.06784i −1.03671 + 0.625850i
\(95\) −13.0512 −1.33902
\(96\) 0 0
\(97\) −1.98241 −0.201283 −0.100641 0.994923i \(-0.532090\pi\)
−0.100641 + 0.994923i \(0.532090\pi\)
\(98\) 20.0217 12.0869i 2.02249 1.22096i
\(99\) 0 0
\(100\) −0.390113 + 0.741105i −0.0390113 + 0.0741105i
\(101\) 7.54587i 0.750842i 0.926854 + 0.375421i \(0.122502\pi\)
−0.926854 + 0.375421i \(0.877498\pi\)
\(102\) 0 0
\(103\) 14.2185 1.40099 0.700495 0.713657i \(-0.252962\pi\)
0.700495 + 0.713657i \(0.252962\pi\)
\(104\) −2.82357 + 0.165621i −0.276874 + 0.0162405i
\(105\) 0 0
\(106\) 1.17516 + 1.94663i 0.114142 + 0.189073i
\(107\) 9.87361i 0.954518i 0.878763 + 0.477259i \(0.158370\pi\)
−0.878763 + 0.477259i \(0.841630\pi\)
\(108\) 0 0
\(109\) 20.0611i 1.92151i −0.277402 0.960754i \(-0.589473\pi\)
0.277402 0.960754i \(-0.410527\pi\)
\(110\) 9.74669 5.88398i 0.929311 0.561016i
\(111\) 0 0
\(112\) 10.9850 + 15.9977i 1.03798 + 1.51164i
\(113\) 0.200024 0.0188167 0.00940835 0.999956i \(-0.497005\pi\)
0.00940835 + 0.999956i \(0.497005\pi\)
\(114\) 0 0
\(115\) 21.8215i 2.03487i
\(116\) −8.88065 4.67472i −0.824548 0.434037i
\(117\) 0 0
\(118\) −0.187645 0.310830i −0.0172741 0.0286142i
\(119\) −3.11072 −0.285160
\(120\) 0 0
\(121\) −0.960244 −0.0872949
\(122\) −8.12880 13.4652i −0.735947 1.21908i
\(123\) 0 0
\(124\) 2.69352 5.11692i 0.241885 0.459513i
\(125\) 10.6643i 0.953846i
\(126\) 0 0
\(127\) 3.57016 0.316801 0.158400 0.987375i \(-0.449366\pi\)
0.158400 + 0.987375i \(0.449366\pi\)
\(128\) −8.93561 + 6.93937i −0.789804 + 0.613360i
\(129\) 0 0
\(130\) −2.81830 + 1.70138i −0.247181 + 0.149221i
\(131\) 4.37676i 0.382399i 0.981551 + 0.191199i \(0.0612377\pi\)
−0.981551 + 0.191199i \(0.938762\pi\)
\(132\) 0 0
\(133\) 27.2005i 2.35858i
\(134\) −7.00850 11.6094i −0.605442 1.00290i
\(135\) 0 0
\(136\) −0.106194 1.81043i −0.00910606 0.155244i
\(137\) −17.1279 −1.46334 −0.731669 0.681661i \(-0.761258\pi\)
−0.731669 + 0.681661i \(0.761258\pi\)
\(138\) 0 0
\(139\) 8.84820i 0.750494i −0.926925 0.375247i \(-0.877558\pi\)
0.926925 0.375247i \(-0.122442\pi\)
\(140\) 19.9870 + 10.5210i 1.68921 + 0.889188i
\(141\) 0 0
\(142\) 14.0939 8.50836i 1.18274 0.714006i
\(143\) 3.45836 0.289202
\(144\) 0 0
\(145\) −11.6809 −0.970044
\(146\) 6.95282 4.19735i 0.575419 0.347375i
\(147\) 0 0
\(148\) 10.1635 + 5.34999i 0.835433 + 0.439767i
\(149\) 10.0600i 0.824150i −0.911150 0.412075i \(-0.864804\pi\)
0.911150 0.412075i \(-0.135196\pi\)
\(150\) 0 0
\(151\) −16.0647 −1.30733 −0.653664 0.756785i \(-0.726769\pi\)
−0.653664 + 0.756785i \(0.726769\pi\)
\(152\) −15.8306 + 0.928572i −1.28403 + 0.0753171i
\(153\) 0 0
\(154\) −12.2631 20.3135i −0.988187 1.63691i
\(155\) 6.73037i 0.540597i
\(156\) 0 0
\(157\) 4.34163i 0.346500i 0.984878 + 0.173250i \(0.0554268\pi\)
−0.984878 + 0.173250i \(0.944573\pi\)
\(158\) 10.6609 6.43586i 0.848133 0.512010i
\(159\) 0 0
\(160\) −5.44089 + 11.9915i −0.430140 + 0.948014i
\(161\) 45.4792 3.58426
\(162\) 0 0
\(163\) 17.8171i 1.39554i −0.716322 0.697770i \(-0.754176\pi\)
0.716322 0.697770i \(-0.245824\pi\)
\(164\) 2.50612 4.76092i 0.195695 0.371765i
\(165\) 0 0
\(166\) −9.83904 16.2981i −0.763657 1.26498i
\(167\) 17.1464 1.32683 0.663414 0.748252i \(-0.269107\pi\)
0.663414 + 0.748252i \(0.269107\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) −1.09090 1.80705i −0.0836683 0.138595i
\(171\) 0 0
\(172\) −0.544471 0.286606i −0.0415155 0.0218535i
\(173\) 25.0119i 1.90162i 0.309771 + 0.950811i \(0.399748\pi\)
−0.309771 + 0.950811i \(0.600252\pi\)
\(174\) 0 0
\(175\) 2.03160 0.153575
\(176\) 11.4038 7.83055i 0.859593 0.590250i
\(177\) 0 0
\(178\) −4.55190 + 2.74794i −0.341180 + 0.205967i
\(179\) 13.5506i 1.01282i 0.862294 + 0.506408i \(0.169027\pi\)
−0.862294 + 0.506408i \(0.830973\pi\)
\(180\) 0 0
\(181\) 1.85179i 0.137642i −0.997629 0.0688212i \(-0.978076\pi\)
0.997629 0.0688212i \(-0.0219238\pi\)
\(182\) 3.54592 + 5.87375i 0.262841 + 0.435391i
\(183\) 0 0
\(184\) 1.55257 + 26.4688i 0.114457 + 1.95131i
\(185\) 13.3682 0.982850
\(186\) 0 0
\(187\) 2.21745i 0.162156i
\(188\) −7.73415 + 14.6927i −0.564071 + 1.07157i
\(189\) 0 0
\(190\) −15.8011 + 9.53896i −1.14633 + 0.692029i
\(191\) 2.04057 0.147651 0.0738253 0.997271i \(-0.476479\pi\)
0.0738253 + 0.997271i \(0.476479\pi\)
\(192\) 0 0
\(193\) 13.8109 0.994130 0.497065 0.867713i \(-0.334411\pi\)
0.497065 + 0.867713i \(0.334411\pi\)
\(194\) −2.40011 + 1.44892i −0.172318 + 0.104026i
\(195\) 0 0
\(196\) 15.4061 29.2673i 1.10044 2.09052i
\(197\) 1.51068i 0.107632i −0.998551 0.0538158i \(-0.982862\pi\)
0.998551 0.0538158i \(-0.0171384\pi\)
\(198\) 0 0
\(199\) 18.5086 1.31204 0.656019 0.754745i \(-0.272239\pi\)
0.656019 + 0.754745i \(0.272239\pi\)
\(200\) 0.0693548 + 1.18239i 0.00490413 + 0.0836074i
\(201\) 0 0
\(202\) 5.51520 + 9.13580i 0.388048 + 0.642793i
\(203\) 24.3446i 1.70866i
\(204\) 0 0
\(205\) 6.26212i 0.437365i
\(206\) 17.2144 10.3922i 1.19938 0.724056i
\(207\) 0 0
\(208\) −3.29746 + 2.26424i −0.228638 + 0.156997i
\(209\) 19.3896 1.34121
\(210\) 0 0
\(211\) 6.32310i 0.435300i 0.976027 + 0.217650i \(0.0698391\pi\)
−0.976027 + 0.217650i \(0.930161\pi\)
\(212\) 2.84554 + 1.49788i 0.195433 + 0.102875i
\(213\) 0 0
\(214\) 7.21652 + 11.9540i 0.493311 + 0.817159i
\(215\) −0.716153 −0.0488412
\(216\) 0 0
\(217\) −14.0271 −0.952220
\(218\) −14.6625 24.2881i −0.993068 1.64500i
\(219\) 0 0
\(220\) 7.49980 14.2475i 0.505637 0.960567i
\(221\) 0.641186i 0.0431308i
\(222\) 0 0
\(223\) −19.6426 −1.31537 −0.657684 0.753294i \(-0.728464\pi\)
−0.657684 + 0.753294i \(0.728464\pi\)
\(224\) 24.9921 + 11.3396i 1.66985 + 0.757659i
\(225\) 0 0
\(226\) 0.242170 0.146196i 0.0161089 0.00972479i
\(227\) 24.5929i 1.63229i 0.577847 + 0.816145i \(0.303893\pi\)
−0.577847 + 0.816145i \(0.696107\pi\)
\(228\) 0 0
\(229\) 12.3978i 0.819273i −0.912249 0.409636i \(-0.865656\pi\)
0.912249 0.409636i \(-0.134344\pi\)
\(230\) 15.9491 + 26.4194i 1.05165 + 1.74204i
\(231\) 0 0
\(232\) −14.1685 + 0.831078i −0.930209 + 0.0545629i
\(233\) 11.2290 0.735636 0.367818 0.929898i \(-0.380105\pi\)
0.367818 + 0.929898i \(0.380105\pi\)
\(234\) 0 0
\(235\) 19.3256i 1.26066i
\(236\) −0.454365 0.239175i −0.0295766 0.0155690i
\(237\) 0 0
\(238\) −3.76616 + 2.27360i −0.244124 + 0.147375i
\(239\) −26.1610 −1.69221 −0.846107 0.533014i \(-0.821059\pi\)
−0.846107 + 0.533014i \(0.821059\pi\)
\(240\) 0 0
\(241\) −5.90801 −0.380568 −0.190284 0.981729i \(-0.560941\pi\)
−0.190284 + 0.981729i \(0.560941\pi\)
\(242\) −1.16257 + 0.701832i −0.0747328 + 0.0451155i
\(243\) 0 0
\(244\) −19.6831 10.3611i −1.26008 0.663300i
\(245\) 38.4957i 2.45940i
\(246\) 0 0
\(247\) −5.60660 −0.356739
\(248\) −0.478857 8.16373i −0.0304074 0.518397i
\(249\) 0 0
\(250\) −7.79444 12.9113i −0.492964 0.816584i
\(251\) 6.60905i 0.417160i 0.978005 + 0.208580i \(0.0668841\pi\)
−0.978005 + 0.208580i \(0.933116\pi\)
\(252\) 0 0
\(253\) 32.4194i 2.03819i
\(254\) 4.32240 2.60939i 0.271212 0.163728i
\(255\) 0 0
\(256\) −5.74645 + 14.9325i −0.359153 + 0.933279i
\(257\) 0.441161 0.0275189 0.0137594 0.999905i \(-0.495620\pi\)
0.0137594 + 0.999905i \(0.495620\pi\)
\(258\) 0 0
\(259\) 27.8613i 1.73122i
\(260\) −2.16860 + 4.11973i −0.134491 + 0.255495i
\(261\) 0 0
\(262\) 3.19892 + 5.29895i 0.197630 + 0.327370i
\(263\) 10.7552 0.663195 0.331598 0.943421i \(-0.392412\pi\)
0.331598 + 0.943421i \(0.392412\pi\)
\(264\) 0 0
\(265\) 3.74279 0.229918
\(266\) 19.8806 + 32.9317i 1.21896 + 2.01917i
\(267\) 0 0
\(268\) −16.9704 8.93313i −1.03663 0.545678i
\(269\) 18.4754i 1.12646i −0.826299 0.563232i \(-0.809558\pi\)
0.826299 0.563232i \(-0.190442\pi\)
\(270\) 0 0
\(271\) 0.185849 0.0112895 0.00564477 0.999984i \(-0.498203\pi\)
0.00564477 + 0.999984i \(0.498203\pi\)
\(272\) −1.45180 2.11428i −0.0880281 0.128197i
\(273\) 0 0
\(274\) −20.7368 + 12.5186i −1.25276 + 0.756277i
\(275\) 1.44821i 0.0873302i
\(276\) 0 0
\(277\) 25.5315i 1.53404i 0.641623 + 0.767021i \(0.278262\pi\)
−0.641623 + 0.767021i \(0.721738\pi\)
\(278\) −6.46705 10.7125i −0.387868 0.642495i
\(279\) 0 0
\(280\) 31.8880 1.87044i 1.90567 0.111780i
\(281\) −16.0583 −0.957959 −0.478980 0.877826i \(-0.658993\pi\)
−0.478980 + 0.877826i \(0.658993\pi\)
\(282\) 0 0
\(283\) 18.8655i 1.12144i 0.828006 + 0.560720i \(0.189475\pi\)
−0.828006 + 0.560720i \(0.810525\pi\)
\(284\) 10.8449 20.6022i 0.643525 1.22252i
\(285\) 0 0
\(286\) 4.18704 2.52768i 0.247585 0.149465i
\(287\) −13.0512 −0.770386
\(288\) 0 0
\(289\) −16.5889 −0.975817
\(290\) −14.1421 + 8.53743i −0.830451 + 0.501335i
\(291\) 0 0
\(292\) 5.34999 10.1635i 0.313085 0.594773i
\(293\) 32.3450i 1.88961i −0.327630 0.944806i \(-0.606250\pi\)
0.327630 0.944806i \(-0.393750\pi\)
\(294\) 0 0
\(295\) −0.597634 −0.0347956
\(296\) 16.2152 0.951129i 0.942490 0.0552832i
\(297\) 0 0
\(298\) −7.35277 12.1797i −0.425935 0.705551i
\(299\) 9.37422i 0.542125i
\(300\) 0 0
\(301\) 1.49257i 0.0860301i
\(302\) −19.4496 + 11.7415i −1.11920 + 0.675649i
\(303\) 0 0
\(304\) −18.4875 + 12.6947i −1.06033 + 0.728090i
\(305\) −25.8896 −1.48243
\(306\) 0 0
\(307\) 0.888356i 0.0507012i −0.999679 0.0253506i \(-0.991930\pi\)
0.999679 0.0253506i \(-0.00807021\pi\)
\(308\) −29.6939 15.6307i −1.69197 0.890640i
\(309\) 0 0
\(310\) −4.91916 8.14848i −0.279389 0.462803i
\(311\) 20.3848 1.15592 0.577958 0.816066i \(-0.303850\pi\)
0.577958 + 0.816066i \(0.303850\pi\)
\(312\) 0 0
\(313\) 12.7182 0.718878 0.359439 0.933169i \(-0.382968\pi\)
0.359439 + 0.933169i \(0.382968\pi\)
\(314\) 3.17325 + 5.25642i 0.179077 + 0.296637i
\(315\) 0 0
\(316\) 8.20324 15.5838i 0.461468 0.876659i
\(317\) 14.1169i 0.792887i 0.918059 + 0.396443i \(0.129756\pi\)
−0.918059 + 0.396443i \(0.870244\pi\)
\(318\) 0 0
\(319\) 17.3538 0.971628
\(320\) 2.17718 + 18.4949i 0.121708 + 1.03389i
\(321\) 0 0
\(322\) 55.0618 33.2403i 3.06847 1.85241i
\(323\) 3.59487i 0.200024i
\(324\) 0 0
\(325\) 0.418756i 0.0232284i
\(326\) −13.0223 21.5712i −0.721239 1.19472i
\(327\) 0 0
\(328\) −0.445541 7.59575i −0.0246009 0.419405i
\(329\) 40.2773 2.22056
\(330\) 0 0
\(331\) 10.0151i 0.550478i −0.961376 0.275239i \(-0.911243\pi\)
0.961376 0.275239i \(-0.0887569\pi\)
\(332\) −23.8243 12.5410i −1.30753 0.688275i
\(333\) 0 0
\(334\) 20.7592 12.5321i 1.13589 0.685727i
\(335\) −22.3215 −1.21955
\(336\) 0 0
\(337\) −7.43522 −0.405022 −0.202511 0.979280i \(-0.564910\pi\)
−0.202511 + 0.979280i \(0.564910\pi\)
\(338\) −1.21070 + 0.730889i −0.0658535 + 0.0397551i
\(339\) 0 0
\(340\) −2.64151 1.39048i −0.143256 0.0754092i
\(341\) 9.99907i 0.541480i
\(342\) 0 0
\(343\) −46.2701 −2.49835
\(344\) −0.868670 + 0.0509532i −0.0468356 + 0.00274721i
\(345\) 0 0
\(346\) 18.2810 + 30.2820i 0.982791 + 1.62797i
\(347\) 2.98167i 0.160065i −0.996792 0.0800323i \(-0.974498\pi\)
0.996792 0.0800323i \(-0.0255023\pi\)
\(348\) 0 0
\(349\) 18.9038i 1.01189i 0.862564 + 0.505947i \(0.168857\pi\)
−0.862564 + 0.505947i \(0.831143\pi\)
\(350\) 2.45966 1.48488i 0.131475 0.0793699i
\(351\) 0 0
\(352\) 8.08333 17.8154i 0.430843 0.949563i
\(353\) −8.51716 −0.453323 −0.226661 0.973974i \(-0.572781\pi\)
−0.226661 + 0.973974i \(0.572781\pi\)
\(354\) 0 0
\(355\) 27.0984i 1.43824i
\(356\) −3.50256 + 6.65388i −0.185635 + 0.352655i
\(357\) 0 0
\(358\) 9.90396 + 16.4057i 0.523440 + 0.867068i
\(359\) −13.5572 −0.715520 −0.357760 0.933814i \(-0.616459\pi\)
−0.357760 + 0.933814i \(0.616459\pi\)
\(360\) 0 0
\(361\) −12.4339 −0.654418
\(362\) −1.35345 2.24197i −0.0711359 0.117835i
\(363\) 0 0
\(364\) 8.58612 + 4.51968i 0.450035 + 0.236896i
\(365\) 13.3682i 0.699724i
\(366\) 0 0
\(367\) −12.1678 −0.635154 −0.317577 0.948233i \(-0.602869\pi\)
−0.317577 + 0.948233i \(0.602869\pi\)
\(368\) 21.2255 + 30.9111i 1.10645 + 1.61135i
\(369\) 0 0
\(370\) 16.1849 9.77068i 0.841414 0.507953i
\(371\) 7.80053i 0.404983i
\(372\) 0 0
\(373\) 22.9957i 1.19067i 0.803476 + 0.595337i \(0.202982\pi\)
−0.803476 + 0.595337i \(0.797018\pi\)
\(374\) 1.62071 + 2.68467i 0.0838049 + 0.138821i
\(375\) 0 0
\(376\) 1.37499 + 23.4413i 0.0709095 + 1.20889i
\(377\) −5.01794 −0.258437
\(378\) 0 0
\(379\) 29.0303i 1.49118i 0.666402 + 0.745592i \(0.267833\pi\)
−0.666402 + 0.745592i \(0.732167\pi\)
\(380\) −12.1585 + 23.0977i −0.623717 + 1.18489i
\(381\) 0 0
\(382\) 2.47053 1.49143i 0.126403 0.0763083i
\(383\) 11.8113 0.603528 0.301764 0.953383i \(-0.402425\pi\)
0.301764 + 0.953383i \(0.402425\pi\)
\(384\) 0 0
\(385\) −39.0569 −1.99052
\(386\) 16.7209 10.0942i 0.851071 0.513783i
\(387\) 0 0
\(388\) −1.84681 + 3.50842i −0.0937577 + 0.178113i
\(389\) 15.5223i 0.787014i −0.919322 0.393507i \(-0.871262\pi\)
0.919322 0.393507i \(-0.128738\pi\)
\(390\) 0 0
\(391\) −6.01061 −0.303970
\(392\) −2.73892 46.6941i −0.138336 2.35841i
\(393\) 0 0
\(394\) −1.10414 1.82899i −0.0556259 0.0921430i
\(395\) 20.4977i 1.03135i
\(396\) 0 0
\(397\) 29.5094i 1.48103i 0.672038 + 0.740516i \(0.265419\pi\)
−0.672038 + 0.740516i \(0.734581\pi\)
\(398\) 22.4084 13.5277i 1.12323 0.678083i
\(399\) 0 0
\(400\) 0.948162 + 1.38083i 0.0474081 + 0.0690414i
\(401\) −31.3317 −1.56463 −0.782315 0.622883i \(-0.785961\pi\)
−0.782315 + 0.622883i \(0.785961\pi\)
\(402\) 0 0
\(403\) 2.89128i 0.144025i
\(404\) 13.3545 + 7.02974i 0.664412 + 0.349743i
\(405\) 0 0
\(406\) 17.7932 + 29.4741i 0.883064 + 1.46278i
\(407\) −19.8606 −0.984455
\(408\) 0 0
\(409\) 30.0717 1.48695 0.743476 0.668763i \(-0.233176\pi\)
0.743476 + 0.668763i \(0.233176\pi\)
\(410\) −4.57692 7.58156i −0.226038 0.374427i
\(411\) 0 0
\(412\) 13.2460 25.1636i 0.652582 1.23972i
\(413\) 1.24556i 0.0612898i
\(414\) 0 0
\(415\) −31.3365 −1.53825
\(416\) −2.33733 + 5.15140i −0.114597 + 0.252568i
\(417\) 0 0
\(418\) 23.4751 14.1717i 1.14820 0.693159i
\(419\) 18.5621i 0.906818i 0.891303 + 0.453409i \(0.149792\pi\)
−0.891303 + 0.453409i \(0.850208\pi\)
\(420\) 0 0
\(421\) 17.5208i 0.853910i −0.904273 0.426955i \(-0.859586\pi\)
0.904273 0.426955i \(-0.140414\pi\)
\(422\) 4.62149 + 7.65539i 0.224970 + 0.372659i
\(423\) 0 0
\(424\) 4.53989 0.266294i 0.220477 0.0129324i
\(425\) −0.268500 −0.0130242
\(426\) 0 0
\(427\) 53.9576i 2.61119i
\(428\) 17.4741 + 9.19827i 0.844643 + 0.444615i
\(429\) 0 0
\(430\) −0.867048 + 0.523428i −0.0418128 + 0.0252420i
\(431\) −24.5625 −1.18313 −0.591567 0.806256i \(-0.701491\pi\)
−0.591567 + 0.806256i \(0.701491\pi\)
\(432\) 0 0
\(433\) −9.65650 −0.464062 −0.232031 0.972708i \(-0.574537\pi\)
−0.232031 + 0.972708i \(0.574537\pi\)
\(434\) −16.9826 + 10.2522i −0.815192 + 0.492123i
\(435\) 0 0
\(436\) −35.5038 18.6890i −1.70032 0.895039i
\(437\) 52.5575i 2.51417i
\(438\) 0 0
\(439\) 2.89778 0.138303 0.0691517 0.997606i \(-0.477971\pi\)
0.0691517 + 0.997606i \(0.477971\pi\)
\(440\) −1.33332 22.7310i −0.0635637 1.08366i
\(441\) 0 0
\(442\) −0.468636 0.776285i −0.0222907 0.0369241i
\(443\) 28.2220i 1.34087i −0.741969 0.670434i \(-0.766108\pi\)
0.741969 0.670434i \(-0.233892\pi\)
\(444\) 0 0
\(445\) 8.75196i 0.414883i
\(446\) −23.7814 + 14.3566i −1.12608 + 0.679805i
\(447\) 0 0
\(448\) 38.5460 4.53757i 1.82113 0.214380i
\(449\) 25.7865 1.21694 0.608471 0.793576i \(-0.291783\pi\)
0.608471 + 0.793576i \(0.291783\pi\)
\(450\) 0 0
\(451\) 9.30340i 0.438080i
\(452\) 0.186343 0.353999i 0.00876483 0.0166507i
\(453\) 0 0
\(454\) 17.9747 + 29.7747i 0.843595 + 1.39740i
\(455\) 11.2935 0.529446
\(456\) 0 0
\(457\) 1.90289 0.0890137 0.0445068 0.999009i \(-0.485828\pi\)
0.0445068 + 0.999009i \(0.485828\pi\)
\(458\) −9.06146 15.0101i −0.423414 0.701376i
\(459\) 0 0
\(460\) 38.6193 + 20.3290i 1.80063 + 0.947842i
\(461\) 36.9540i 1.72112i 0.509349 + 0.860560i \(0.329886\pi\)
−0.509349 + 0.860560i \(0.670114\pi\)
\(462\) 0 0
\(463\) 2.01877 0.0938202 0.0469101 0.998899i \(-0.485063\pi\)
0.0469101 + 0.998899i \(0.485063\pi\)
\(464\) −16.5464 + 11.3618i −0.768149 + 0.527459i
\(465\) 0 0
\(466\) 13.5950 8.20716i 0.629775 0.380189i
\(467\) 19.8606i 0.919041i −0.888167 0.459520i \(-0.848021\pi\)
0.888167 0.459520i \(-0.151979\pi\)
\(468\) 0 0
\(469\) 46.5212i 2.14815i
\(470\) 14.1248 + 23.3975i 0.651531 + 1.07925i
\(471\) 0 0
\(472\) −0.724911 + 0.0425208i −0.0333667 + 0.00195718i
\(473\) 1.06396 0.0489210
\(474\) 0 0
\(475\) 2.34779i 0.107724i
\(476\) −2.89795 + 5.50530i −0.132828 + 0.252335i
\(477\) 0 0
\(478\) −31.6732 + 19.1208i −1.44870 + 0.874564i
\(479\) 28.3272 1.29430 0.647151 0.762362i \(-0.275961\pi\)
0.647151 + 0.762362i \(0.275961\pi\)
\(480\) 0 0
\(481\) 5.74279 0.261849
\(482\) −7.15284 + 4.31810i −0.325803 + 0.196684i
\(483\) 0 0
\(484\) −0.894564 + 1.69942i −0.0406620 + 0.0772463i
\(485\) 4.61469i 0.209542i
\(486\) 0 0
\(487\) −0.908676 −0.0411760 −0.0205880 0.999788i \(-0.506554\pi\)
−0.0205880 + 0.999788i \(0.506554\pi\)
\(488\) −31.4032 + 1.84201i −1.42156 + 0.0833837i
\(489\) 0 0
\(490\) −28.1361 46.6069i −1.27106 2.10548i
\(491\) 30.1024i 1.35850i −0.733906 0.679251i \(-0.762305\pi\)
0.733906 0.679251i \(-0.237695\pi\)
\(492\) 0 0
\(493\) 3.21743i 0.144906i
\(494\) −6.78792 + 4.09780i −0.305403 + 0.184369i
\(495\) 0 0
\(496\) −6.54654 9.53386i −0.293948 0.428083i
\(497\) −56.4770 −2.53334
\(498\) 0 0
\(499\) 7.50251i 0.335859i 0.985799 + 0.167929i \(0.0537080\pi\)
−0.985799 + 0.167929i \(0.946292\pi\)
\(500\) −18.8735 9.93489i −0.844048 0.444302i
\(501\) 0 0
\(502\) 4.83049 + 8.00160i 0.215595 + 0.357129i
\(503\) 21.3770 0.953155 0.476578 0.879132i \(-0.341877\pi\)
0.476578 + 0.879132i \(0.341877\pi\)
\(504\) 0 0
\(505\) 17.5654 0.781652
\(506\) −23.6950 39.2503i −1.05337 1.74489i
\(507\) 0 0
\(508\) 3.32597 6.31840i 0.147566 0.280334i
\(509\) 17.2562i 0.764867i 0.923983 + 0.382434i \(0.124914\pi\)
−0.923983 + 0.382434i \(0.875086\pi\)
\(510\) 0 0
\(511\) −27.8613 −1.23251
\(512\) 3.95674 + 22.2788i 0.174865 + 0.984592i
\(513\) 0 0
\(514\) 0.534115 0.322440i 0.0235588 0.0142222i
\(515\) 33.0981i 1.45848i
\(516\) 0 0
\(517\) 28.7113i 1.26272i
\(518\) −20.3635 33.7317i −0.894721 1.48209i
\(519\) 0 0
\(520\) 0.385537 + 6.57278i 0.0169069 + 0.288235i
\(521\) −23.4875 −1.02901 −0.514503 0.857489i \(-0.672024\pi\)
−0.514503 + 0.857489i \(0.672024\pi\)
\(522\) 0 0
\(523\) 29.4495i 1.28774i −0.765136 0.643869i \(-0.777328\pi\)
0.765136 0.643869i \(-0.222672\pi\)
\(524\) 7.74589 + 4.07739i 0.338381 + 0.178122i
\(525\) 0 0
\(526\) 13.0214 7.86088i 0.567759 0.342751i
\(527\) 1.85384 0.0807547
\(528\) 0 0
\(529\) 64.8760 2.82070
\(530\) 4.53141 2.73557i 0.196832 0.118826i
\(531\) 0 0
\(532\) 48.1389 + 25.3400i 2.08709 + 1.09863i
\(533\) 2.69012i 0.116522i
\(534\) 0 0
\(535\) 22.9840 0.993685
\(536\) −27.0753 + 1.58814i −1.16947 + 0.0685973i
\(537\) 0 0
\(538\) −13.5035 22.3682i −0.582176 0.964362i
\(539\) 57.1917i 2.46342i
\(540\) 0 0
\(541\) 21.0811i 0.906348i −0.891422 0.453174i \(-0.850292\pi\)
0.891422 0.453174i \(-0.149708\pi\)
\(542\) 0.225008 0.135835i 0.00966493 0.00583462i
\(543\) 0 0
\(544\) −3.30300 1.49866i −0.141615 0.0642547i
\(545\) −46.6987 −2.00035
\(546\) 0 0
\(547\) 26.6432i 1.13918i −0.821928 0.569591i \(-0.807102\pi\)
0.821928 0.569591i \(-0.192898\pi\)
\(548\) −15.9564 + 30.3126i −0.681623 + 1.29489i
\(549\) 0 0
\(550\) −1.05848 1.75335i −0.0451337 0.0747630i
\(551\) −28.1336 −1.19853
\(552\) 0 0
\(553\) −42.7202 −1.81665
\(554\) 18.6607 + 30.9111i 0.792818 + 1.31329i
\(555\) 0 0
\(556\) −15.6594 8.24299i −0.664105 0.349581i
\(557\) 25.0383i 1.06091i −0.847714 0.530453i \(-0.822022\pi\)
0.847714 0.530453i \(-0.177978\pi\)
\(558\) 0 0
\(559\) −0.307649 −0.0130122
\(560\) 37.2397 25.5711i 1.57367 1.08058i
\(561\) 0 0
\(562\) −19.4419 + 11.7369i −0.820105 + 0.495089i
\(563\) 4.04508i 0.170480i −0.996360 0.0852400i \(-0.972834\pi\)
0.996360 0.0852400i \(-0.0271657\pi\)
\(564\) 0 0
\(565\) 0.465621i 0.0195888i
\(566\) 13.7886 + 22.8405i 0.579579 + 0.960060i
\(567\) 0 0
\(568\) −1.92801 32.8695i −0.0808977 1.37917i
\(569\) 8.42913 0.353367 0.176684 0.984268i \(-0.443463\pi\)
0.176684 + 0.984268i \(0.443463\pi\)
\(570\) 0 0
\(571\) 27.4502i 1.14875i −0.818591 0.574377i \(-0.805245\pi\)
0.818591 0.574377i \(-0.194755\pi\)
\(572\) 3.22181 6.12053i 0.134711 0.255912i
\(573\) 0 0
\(574\) −15.8011 + 9.53896i −0.659524 + 0.398148i
\(575\) 3.92551 0.163705
\(576\) 0 0
\(577\) −2.23961 −0.0932363 −0.0466182 0.998913i \(-0.514844\pi\)
−0.0466182 + 0.998913i \(0.514844\pi\)
\(578\) −20.0842 + 12.1246i −0.835393 + 0.504318i
\(579\) 0 0
\(580\) −10.8819 + 20.6726i −0.451847 + 0.858382i
\(581\) 65.3098i 2.70951i
\(582\) 0 0
\(583\) −5.56053 −0.230294
\(584\) −0.951129 16.2152i −0.0393580 0.670990i
\(585\) 0 0
\(586\) −23.6406 39.1601i −0.976584 1.61769i
\(587\) 9.30148i 0.383913i −0.981403 0.191957i \(-0.938517\pi\)
0.981403 0.191957i \(-0.0614833\pi\)
\(588\) 0 0
\(589\) 16.2102i 0.667930i
\(590\) −0.723557 + 0.436804i −0.0297884 + 0.0179829i
\(591\) 0 0
\(592\) 18.9366 13.0031i 0.778290 0.534422i
\(593\) 21.4386 0.880376 0.440188 0.897906i \(-0.354912\pi\)
0.440188 + 0.897906i \(0.354912\pi\)
\(594\) 0 0
\(595\) 7.24121i 0.296861i
\(596\) −17.8040 9.37194i −0.729282 0.383890i
\(597\) 0 0
\(598\) 6.85152 + 11.3494i 0.280179 + 0.464111i
\(599\) 9.89839 0.404437 0.202219 0.979340i \(-0.435185\pi\)
0.202219 + 0.979340i \(0.435185\pi\)
\(600\) 0 0
\(601\) −29.1142 −1.18759 −0.593797 0.804615i \(-0.702372\pi\)
−0.593797 + 0.804615i \(0.702372\pi\)
\(602\) 1.09090 + 1.80705i 0.0444618 + 0.0736500i
\(603\) 0 0
\(604\) −14.9659 + 28.4310i −0.608954 + 1.15684i
\(605\) 2.23528i 0.0908769i
\(606\) 0 0
\(607\) 19.0734 0.774166 0.387083 0.922045i \(-0.373483\pi\)
0.387083 + 0.922045i \(0.373483\pi\)
\(608\) −13.1045 + 28.8818i −0.531457 + 1.17131i
\(609\) 0 0
\(610\) −31.3445 + 18.9224i −1.26910 + 0.766146i
\(611\) 8.30199i 0.335863i
\(612\) 0 0
\(613\) 0.580305i 0.0234383i 0.999931 + 0.0117192i \(0.00373041\pi\)
−0.999931 + 0.0117192i \(0.996270\pi\)
\(614\) −0.649290 1.07554i −0.0262032 0.0434051i
\(615\) 0 0
\(616\) −47.3747 + 2.77884i −1.90878 + 0.111963i
\(617\) −26.4405 −1.06445 −0.532227 0.846602i \(-0.678645\pi\)
−0.532227 + 0.846602i \(0.678645\pi\)
\(618\) 0 0
\(619\) 0.0220395i 0.000885841i −1.00000 0.000442921i \(-0.999859\pi\)
1.00000 0.000442921i \(-0.000140986\pi\)
\(620\) −11.9113 6.27002i −0.478368 0.251810i
\(621\) 0 0
\(622\) 24.6799 14.8990i 0.989575 0.597397i
\(623\) 18.2404 0.730784
\(624\) 0 0
\(625\) −26.9184 −1.07674
\(626\) 15.3980 9.29563i 0.615428 0.371528i
\(627\) 0 0
\(628\) 7.68373 + 4.04467i 0.306614 + 0.161400i
\(629\) 3.68220i 0.146819i
\(630\) 0 0
\(631\) 21.2096 0.844341 0.422171 0.906516i \(-0.361268\pi\)
0.422171 + 0.906516i \(0.361268\pi\)
\(632\) −1.45838 24.8630i −0.0580113 0.988999i
\(633\) 0 0
\(634\) 10.3179 + 17.0914i 0.409777 + 0.678787i
\(635\) 8.31070i 0.329800i
\(636\) 0 0
\(637\) 16.5372i 0.655229i
\(638\) 21.0103 12.6837i 0.831807 0.502154i
\(639\) 0 0
\(640\) 16.1536 + 20.8005i 0.638528 + 0.822212i
\(641\) −17.2504 −0.681351 −0.340675 0.940181i \(-0.610656\pi\)
−0.340675 + 0.940181i \(0.610656\pi\)
\(642\) 0 0
\(643\) 30.5119i 1.20327i −0.798771 0.601636i \(-0.794516\pi\)
0.798771 0.601636i \(-0.205484\pi\)
\(644\) 42.3685 80.4882i 1.66955 3.17168i
\(645\) 0 0
\(646\) −2.62745 4.35232i −0.103376 0.171240i
\(647\) 29.9239 1.17643 0.588216 0.808704i \(-0.299831\pi\)
0.588216 + 0.808704i \(0.299831\pi\)
\(648\) 0 0
\(649\) 0.887882 0.0348524
\(650\) 0.306064 + 0.506988i 0.0120048 + 0.0198857i
\(651\) 0 0
\(652\) −31.5323 16.5984i −1.23490 0.650044i
\(653\) 25.1810i 0.985408i 0.870197 + 0.492704i \(0.163992\pi\)
−0.870197 + 0.492704i \(0.836008\pi\)
\(654\) 0 0
\(655\) 10.1883 0.398090
\(656\) −6.09107 8.87055i −0.237816 0.346337i
\(657\) 0 0
\(658\) 48.7638 29.4382i 1.90101 1.14762i
\(659\) 11.7183i 0.456480i −0.973605 0.228240i \(-0.926703\pi\)
0.973605 0.228240i \(-0.0732971\pi\)
\(660\) 0 0
\(661\) 20.3418i 0.791203i −0.918422 0.395602i \(-0.870536\pi\)
0.918422 0.395602i \(-0.129464\pi\)
\(662\) −7.31990 12.1253i −0.284496 0.471262i
\(663\) 0 0
\(664\) −38.0102 + 2.22955i −1.47508 + 0.0865233i
\(665\) 63.3180 2.45537
\(666\) 0 0
\(667\) 47.0393i 1.82137i
\(668\) 15.9736 30.3453i 0.618037 1.17410i
\(669\) 0 0
\(670\) −27.0247 + 16.3145i −1.04406 + 0.630286i
\(671\) 38.4631 1.48485
\(672\) 0 0
\(673\) 21.5020 0.828843 0.414422 0.910085i \(-0.363984\pi\)
0.414422 + 0.910085i \(0.363984\pi\)
\(674\) −9.00184 + 5.43432i −0.346738 + 0.209322i
\(675\) 0 0
\(676\) −0.931601 + 1.76978i −0.0358308 + 0.0680684i
\(677\) 30.2735i 1.16351i 0.813366 + 0.581753i \(0.197633\pi\)
−0.813366 + 0.581753i \(0.802367\pi\)
\(678\) 0 0
\(679\) 9.61769 0.369093
\(680\) −4.21437 + 0.247201i −0.161614 + 0.00947971i
\(681\) 0 0
\(682\) 7.30821 + 12.1059i 0.279846 + 0.463559i
\(683\) 30.0657i 1.15043i −0.818001 0.575216i \(-0.804918\pi\)
0.818001 0.575216i \(-0.195082\pi\)
\(684\) 0 0
\(685\) 39.8708i 1.52338i
\(686\) −56.0193 + 33.8183i −2.13883 + 1.29119i
\(687\) 0 0
\(688\) −1.01446 + 0.696591i −0.0386759 + 0.0265573i
\(689\) 1.60785 0.0612543
\(690\) 0 0
\(691\) 23.3134i 0.886884i 0.896303 + 0.443442i \(0.146243\pi\)
−0.896303 + 0.443442i \(0.853757\pi\)
\(692\) 44.2656 + 23.3011i 1.68273 + 0.885777i
\(693\) 0 0
\(694\) −2.17927 3.60992i −0.0827241 0.137031i
\(695\) −20.5970 −0.781290
\(696\) 0 0
\(697\) 1.72487 0.0653339
\(698\) 13.8166 + 22.8868i 0.522964 + 0.866279i
\(699\) 0 0
\(700\) 1.89264 3.59548i 0.0715351 0.135897i
\(701\) 45.8471i 1.73162i −0.500371 0.865811i \(-0.666803\pi\)
0.500371 0.865811i \(-0.333197\pi\)
\(702\) 0 0
\(703\) 32.1975 1.21435
\(704\) −3.23456 27.4771i −0.121907 1.03558i
\(705\) 0 0
\(706\) −10.3117 + 6.22510i −0.388088 + 0.234285i
\(707\) 36.6089i 1.37682i
\(708\) 0 0
\(709\) 20.5059i 0.770115i −0.922892 0.385058i \(-0.874182\pi\)
0.922892 0.385058i \(-0.125818\pi\)
\(710\) −19.8060 32.8081i −0.743304 1.23127i
\(711\) 0 0
\(712\) 0.622690 + 10.6158i 0.0233363 + 0.397846i
\(713\) −27.1035 −1.01503
\(714\) 0 0
\(715\) 8.05044i 0.301070i
\(716\) 23.9815 + 12.6237i 0.896230 + 0.471770i
\(717\) 0 0
\(718\) −16.4137 + 9.90879i −0.612554 + 0.369793i
\(719\) 6.80948 0.253951 0.126975 0.991906i \(-0.459473\pi\)
0.126975 + 0.991906i \(0.459473\pi\)
\(720\) 0 0
\(721\) −68.9813 −2.56900
\(722\) −15.0538 + 9.08784i −0.560245 + 0.338214i
\(723\) 0 0
\(724\) −3.27726 1.72513i −0.121798 0.0641139i
\(725\) 2.10129i 0.0780400i
\(726\) 0 0
\(727\) −9.00081 −0.333821 −0.166911 0.985972i \(-0.553379\pi\)
−0.166911 + 0.985972i \(0.553379\pi\)
\(728\) 13.6986 0.803515i 0.507705 0.0297802i
\(729\) 0 0
\(730\) −9.77068 16.1849i −0.361629 0.599031i
\(731\) 0.197260i 0.00729593i
\(732\) 0 0
\(733\) 37.1422i 1.37188i 0.727658 + 0.685940i \(0.240609\pi\)
−0.727658 + 0.685940i \(0.759391\pi\)
\(734\) −14.7316 + 8.89331i −0.543753 + 0.328258i
\(735\) 0 0
\(736\) 48.2903 + 21.9107i 1.78000 + 0.807638i
\(737\) 33.1622 1.22155
\(738\) 0 0
\(739\) 20.5071i 0.754366i −0.926139 0.377183i \(-0.876893\pi\)
0.926139 0.377183i \(-0.123107\pi\)
\(740\) 12.4538 23.6588i 0.457812 0.869714i
\(741\) 0 0
\(742\) −5.70132 9.44412i −0.209302 0.346704i
\(743\) −18.7137 −0.686541 −0.343270 0.939237i \(-0.611535\pi\)
−0.343270 + 0.939237i \(0.611535\pi\)
\(744\) 0 0
\(745\) −23.4180 −0.857968
\(746\) 16.8073 + 27.8410i 0.615361 + 1.01933i
\(747\) 0 0
\(748\) 3.92440 + 2.06578i 0.143490 + 0.0755323i
\(749\) 47.9020i 1.75030i
\(750\) 0 0
\(751\) −5.05601 −0.184497 −0.0922483 0.995736i \(-0.529405\pi\)
−0.0922483 + 0.995736i \(0.529405\pi\)
\(752\) 18.7977 + 27.3755i 0.685481 + 0.998280i
\(753\) 0 0
\(754\) −6.07523 + 3.66756i −0.221247 + 0.133565i
\(755\) 37.3958i 1.36097i
\(756\) 0 0
\(757\) 32.6509i 1.18672i −0.804938 0.593359i \(-0.797801\pi\)
0.804938 0.593359i \(-0.202199\pi\)
\(758\) 21.2179 + 35.1470i 0.770669 + 1.27660i
\(759\) 0 0
\(760\) 2.16155 + 36.8509i 0.0784076 + 1.33672i
\(761\) −9.57114 −0.346953 −0.173477 0.984838i \(-0.555500\pi\)
−0.173477 + 0.984838i \(0.555500\pi\)
\(762\) 0 0
\(763\) 97.3269i 3.52347i
\(764\) 1.90100 3.61136i 0.0687758 0.130655i
\(765\) 0 0
\(766\) 14.2999 8.63274i 0.516678 0.311914i
\(767\) −0.256735 −0.00927017
\(768\) 0 0
\(769\) 21.4464 0.773376 0.386688 0.922211i \(-0.373619\pi\)
0.386688 + 0.922211i \(0.373619\pi\)
\(770\) −47.2863 + 28.5463i −1.70408 + 1.02874i
\(771\) 0 0
\(772\) 12.8663 24.4423i 0.463067 0.879696i
\(773\) 13.4164i 0.482555i −0.970456 0.241278i \(-0.922434\pi\)
0.970456 0.241278i \(-0.0775664\pi\)
\(774\) 0 0
\(775\) −1.21074 −0.0434910
\(776\) 0.328329 + 5.59747i 0.0117863 + 0.200938i
\(777\) 0 0
\(778\) −11.3451 18.7929i −0.406742 0.673760i
\(779\) 15.0824i 0.540384i
\(780\) 0 0
\(781\) 40.2591i 1.44058i
\(782\) −7.27707 + 4.39309i −0.260227 + 0.157097i
\(783\) 0 0
\(784\) −37.4442 54.5308i −1.33729 1.94753i
\(785\) 10.1065 0.360718
\(786\) 0 0
\(787\) 21.1342i 0.753351i −0.926345 0.376676i \(-0.877067\pi\)
0.926345 0.376676i \(-0.122933\pi\)
\(788\) −2.67357 1.40735i −0.0952422 0.0501349i
\(789\) 0 0
\(790\) −14.9815 24.8166i −0.533019 0.882935i
\(791\) −0.970421 −0.0345042
\(792\) 0 0
\(793\) −11.1218 −0.394946
\(794\) 21.5681 + 35.7271i 0.765423 + 1.26791i
\(795\) 0 0
\(796\) 17.2426 32.7561i 0.611148 1.16101i
\(797\) 8.10762i 0.287187i 0.989637 + 0.143593i \(0.0458657\pi\)
−0.989637 + 0.143593i \(0.954134\pi\)
\(798\) 0 0
\(799\) −5.32312 −0.188318
\(800\) 2.15718 + 0.978771i 0.0762677 + 0.0346048i
\(801\) 0 0
\(802\) −37.9334 + 22.9000i −1.33947 + 0.808627i
\(803\) 19.8606i 0.700867i
\(804\) 0 0
\(805\) 105.867i 3.73134i
\(806\) −2.11320 3.50047i −0.0744344 0.123299i
\(807\) 0 0
\(808\) 21.3063 1.24976i 0.749554 0.0439663i
\(809\) −24.3604 −0.856466 −0.428233 0.903668i \(-0.640864\pi\)
−0.428233 + 0.903668i \(0.640864\pi\)
\(810\) 0 0
\(811\) 13.0002i 0.456499i −0.973603 0.228249i \(-0.926700\pi\)
0.973603 0.228249i \(-0.0733001\pi\)
\(812\) 43.0846 + 22.6795i 1.51197 + 0.795894i
\(813\) 0 0
\(814\) −24.0453 + 14.5159i −0.842788 + 0.508783i
\(815\) −41.4750 −1.45280
\(816\) 0 0
\(817\) −1.72487 −0.0603454
\(818\) 36.4079 21.9791i 1.27297 0.768482i
\(819\) 0 0
\(820\) −11.0826 5.83380i −0.387020 0.203725i
\(821\) 5.77192i 0.201441i −0.994915 0.100721i \(-0.967885\pi\)
0.994915 0.100721i \(-0.0321148\pi\)
\(822\) 0 0
\(823\) −16.5936 −0.578418 −0.289209 0.957266i \(-0.593392\pi\)
−0.289209 + 0.957266i \(0.593392\pi\)
\(824\) −2.35489 40.1470i −0.0820363 1.39859i
\(825\) 0 0
\(826\) 0.910363 + 1.50800i 0.0316756 + 0.0524699i
\(827\) 28.4866i 0.990577i −0.868728 0.495289i \(-0.835062\pi\)
0.868728 0.495289i \(-0.164938\pi\)
\(828\) 0 0
\(829\) 5.11118i 0.177519i −0.996053 0.0887593i \(-0.971710\pi\)
0.996053 0.0887593i \(-0.0282902\pi\)
\(830\) −37.9392 + 22.9035i −1.31689 + 0.794993i
\(831\) 0 0
\(832\) 0.935288 + 7.94514i 0.0324253 + 0.275448i
\(833\) 10.6034 0.367387
\(834\) 0 0
\(835\) 39.9138i 1.38127i
\(836\) 18.0634 34.3154i 0.624736 1.18682i
\(837\) 0 0
\(838\) 13.5668 + 22.4732i 0.468659 + 0.776323i
\(839\) 7.99678 0.276080 0.138040 0.990427i \(-0.455920\pi\)
0.138040 + 0.990427i \(0.455920\pi\)
\(840\) 0 0
\(841\) 3.82027 0.131733
\(842\) −12.8057 21.2124i −0.441315 0.731029i
\(843\) 0 0
\(844\) 11.1905 + 5.89061i 0.385193 + 0.202763i
\(845\) 2.32782i 0.0800795i
\(846\) 0 0
\(847\) 4.65864 0.160073
\(848\) 5.30182 3.64056i 0.182065 0.125017i
\(849\) 0 0
\(850\) −0.325074 + 0.196244i −0.0111499 + 0.00673111i
\(851\) 53.8342i 1.84541i
\(852\) 0 0
\(853\) 9.26357i 0.317178i −0.987345 0.158589i \(-0.949305\pi\)
0.987345 0.158589i \(-0.0506946\pi\)
\(854\) 39.4370 + 65.3266i 1.34951 + 2.23543i
\(855\) 0 0
\(856\) 27.8789 1.63528i 0.952880 0.0558927i
\(857\) 30.4342 1.03961 0.519807 0.854284i \(-0.326004\pi\)
0.519807 + 0.854284i \(0.326004\pi\)
\(858\) 0 0
\(859\) 26.7734i 0.913496i 0.889596 + 0.456748i \(0.150986\pi\)
−0.889596 + 0.456748i \(0.849014\pi\)
\(860\) −0.667169 + 1.26743i −0.0227503 + 0.0432191i
\(861\) 0 0
\(862\) −29.7379 + 17.9525i −1.01288 + 0.611464i
\(863\) −24.5043 −0.834136 −0.417068 0.908875i \(-0.636942\pi\)
−0.417068 + 0.908875i \(0.636942\pi\)
\(864\) 0 0
\(865\) 58.2233 1.97965
\(866\) −11.6912 + 7.05784i −0.397282 + 0.239835i
\(867\) 0 0
\(868\) −13.0676 + 24.8248i −0.443545 + 0.842610i
\(869\) 30.4527i 1.03304i
\(870\) 0 0
\(871\) −9.58901 −0.324911
\(872\) −56.6441 + 3.32255i −1.91821 + 0.112516i
\(873\) 0 0
\(874\) 38.4137 + 63.6315i 1.29936 + 2.15237i
\(875\) 51.7382i 1.74907i
\(876\) 0 0
\(877\) 11.7307i 0.396118i 0.980190 + 0.198059i \(0.0634637\pi\)
−0.980190 + 0.198059i \(0.936536\pi\)
\(878\) 3.50835 2.11796i 0.118401 0.0714776i
\(879\) 0 0
\(880\) −18.2281 26.5460i −0.614470 0.894865i
\(881\) −27.1663 −0.915255 −0.457628 0.889144i \(-0.651301\pi\)
−0.457628 + 0.889144i \(0.651301\pi\)
\(882\) 0 0
\(883\) 12.5347i 0.421827i −0.977505 0.210913i \(-0.932356\pi\)
0.977505 0.210913i \(-0.0676438\pi\)
\(884\) −1.13476 0.597329i −0.0381660 0.0200904i
\(885\) 0 0
\(886\) −20.6272 34.1684i −0.692983 1.14791i
\(887\) 25.4941 0.856007 0.428003 0.903777i \(-0.359217\pi\)
0.428003 + 0.903777i \(0.359217\pi\)
\(888\) 0 0
\(889\) −17.3207 −0.580918
\(890\) 6.39672 + 10.5960i 0.214418 + 0.355179i
\(891\) 0 0
\(892\) −18.2991 + 34.7631i −0.612700 + 1.16396i
\(893\) 46.5459i 1.55760i
\(894\) 0 0
\(895\) 31.5433 1.05438
\(896\) 43.3513 33.6665i 1.44826 1.12472i
\(897\) 0 0
\(898\) 31.2198 18.8471i 1.04182 0.628936i
\(899\) 14.5082i 0.483877i
\(900\) 0 0
\(901\) 1.03093i 0.0343453i
\(902\) 6.79975 + 11.2636i 0.226407 + 0.375038i
\(903\) 0 0
\(904\) −0.0331283 0.564783i −0.00110183 0.0187844i
\(905\) −4.31064 −0.143290
\(906\) 0 0
\(907\) 15.3279i 0.508954i 0.967079 + 0.254477i \(0.0819034\pi\)
−0.967079 + 0.254477i \(0.918097\pi\)
\(908\) 43.5241 + 22.9108i 1.44440 + 0.760322i
\(909\) 0 0
\(910\) 13.6730 8.25428i 0.453257 0.273627i
\(911\) 30.7673 1.01937 0.509684 0.860362i \(-0.329762\pi\)
0.509684 + 0.860362i \(0.329762\pi\)
\(912\) 0 0
\(913\) 46.5555 1.54076
\(914\) 2.30384 1.39081i 0.0762042 0.0460038i
\(915\) 0 0
\(916\) −21.9415 11.5499i −0.724966 0.381618i
\(917\) 21.2339i 0.701206i
\(918\) 0 0
\(919\) 44.6602 1.47320 0.736601 0.676327i \(-0.236429\pi\)
0.736601 + 0.676327i \(0.236429\pi\)
\(920\) 61.6147 3.61411i 2.03138 0.119154i
\(921\) 0 0
\(922\) 27.0093 + 44.7403i 0.889504 + 1.47344i
\(923\) 11.6411i 0.383172i
\(924\) 0 0
\(925\) 2.40483i 0.0790702i
\(926\) 2.44413 1.47550i 0.0803191 0.0484879i
\(927\) 0 0
\(928\) −11.7286 + 25.8494i −0.385010 + 0.848548i
\(929\) 44.5282 1.46092 0.730462 0.682953i \(-0.239305\pi\)
0.730462 + 0.682953i \(0.239305\pi\)
\(930\) 0 0
\(931\) 92.7176i 3.03870i
\(932\) 10.4609 19.8729i 0.342660 0.650957i
\(933\) 0 0
\(934\) −14.5159 24.0453i −0.474976 0.786787i
\(935\) 5.16183 0.168810
\(936\) 0 0
\(937\) 53.9513 1.76251 0.881257 0.472638i \(-0.156698\pi\)
0.881257 + 0.472638i \(0.156698\pi\)
\(938\) 34.0019 + 56.3234i 1.11020 + 1.83902i
\(939\) 0 0
\(940\) 34.2020 + 18.0037i 1.11555 + 0.587216i
\(941\) 55.4218i 1.80670i 0.428904 + 0.903350i \(0.358900\pi\)
−0.428904 + 0.903350i \(0.641100\pi\)
\(942\) 0 0
\(943\) −25.2178 −0.821203
\(944\) −0.846573 + 0.581310i −0.0275536 + 0.0189200i
\(945\) 0 0
\(946\) 1.28814 0.777638i 0.0418811 0.0252832i
\(947\) 16.6074i 0.539669i 0.962907 + 0.269834i \(0.0869689\pi\)
−0.962907 + 0.269834i \(0.913031\pi\)
\(948\) 0 0
\(949\) 5.74279i 0.186419i
\(950\) 1.71598 + 2.84248i 0.0556737 + 0.0922222i
\(951\) 0 0
\(952\) 0.515202 + 8.78336i 0.0166978 + 0.284670i
\(953\) −7.51944 −0.243579 −0.121789 0.992556i \(-0.538863\pi\)
−0.121789 + 0.992556i \(0.538863\pi\)
\(954\) 0 0
\(955\) 4.75009i 0.153709i
\(956\) −24.3716 + 46.2992i −0.788234 + 1.49742i
\(957\) 0 0
\(958\) 34.2958 20.7040i 1.10805 0.668917i
\(959\) 83.0964 2.68332
\(960\) 0 0
\(961\) −22.6405 −0.730340
\(962\) 6.95282 4.19735i 0.224168 0.135328i
\(963\) 0 0
\(964\) −5.50391 + 10.4559i −0.177269 + 0.336761i
\(965\) 32.1493i 1.03492i
\(966\) 0 0
\(967\) 52.0597 1.67413 0.837063 0.547107i \(-0.184271\pi\)
0.837063 + 0.547107i \(0.184271\pi\)
\(968\) 0.159037 + 2.71132i 0.00511163 + 0.0871451i
\(969\) 0 0
\(970\) 3.37283 + 5.58702i 0.108295 + 0.179388i
\(971\) 22.4547i 0.720606i −0.932835 0.360303i \(-0.882673\pi\)
0.932835 0.360303i \(-0.117327\pi\)
\(972\) 0 0
\(973\) 42.9272i 1.37618i
\(974\) −1.10014 + 0.664142i −0.0352506 + 0.0212805i
\(975\) 0 0
\(976\) −36.6736 + 25.1824i −1.17389 + 0.806069i
\(977\) −10.2681 −0.328504 −0.164252 0.986418i \(-0.552521\pi\)
−0.164252 + 0.986418i \(0.552521\pi\)
\(978\) 0 0
\(979\) 13.0025i 0.415560i
\(980\) −68.1290 35.8627i −2.17630 1.14559i
\(981\) 0 0
\(982\) −22.0015 36.4450i −0.702097 1.16301i
\(983\) 42.4380 1.35356 0.676782 0.736184i \(-0.263374\pi\)
0.676782 + 0.736184i \(0.263374\pi\)
\(984\) 0 0
\(985\) −3.51660 −0.112048
\(986\) −2.35159 3.89535i −0.0748898 0.124053i
\(987\) 0 0
\(988\) −5.22311 + 9.92244i −0.166169 + 0.315675i
\(989\) 2.88397i 0.0917050i
\(990\) 0 0
\(991\) 5.40792 0.171788 0.0858941 0.996304i \(-0.472625\pi\)
0.0858941 + 0.996304i \(0.472625\pi\)
\(992\) −14.8941 6.75787i −0.472888 0.214563i
\(993\) 0 0
\(994\) −68.3769 + 41.2785i −2.16878 + 1.30927i
\(995\) 43.0846i 1.36587i
\(996\) 0 0
\(997\) 27.2901i 0.864285i 0.901805 + 0.432142i \(0.142242\pi\)
−0.901805 + 0.432142i \(0.857758\pi\)
\(998\) 5.48351 + 9.08331i 0.173577 + 0.287527i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.g.f.469.19 yes 24
3.2 odd 2 inner 936.2.g.f.469.6 yes 24
4.3 odd 2 3744.2.g.f.1873.7 24
8.3 odd 2 3744.2.g.f.1873.8 24
8.5 even 2 inner 936.2.g.f.469.20 yes 24
12.11 even 2 3744.2.g.f.1873.4 24
24.5 odd 2 inner 936.2.g.f.469.5 24
24.11 even 2 3744.2.g.f.1873.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.g.f.469.5 24 24.5 odd 2 inner
936.2.g.f.469.6 yes 24 3.2 odd 2 inner
936.2.g.f.469.19 yes 24 1.1 even 1 trivial
936.2.g.f.469.20 yes 24 8.5 even 2 inner
3744.2.g.f.1873.3 24 24.11 even 2
3744.2.g.f.1873.4 24 12.11 even 2
3744.2.g.f.1873.7 24 4.3 odd 2
3744.2.g.f.1873.8 24 8.3 odd 2