Properties

Label 936.2.g.f.469.13
Level $936$
Weight $2$
Character 936.469
Analytic conductor $7.474$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(469,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.469"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 469.13
Character \(\chi\) \(=\) 936.469
Dual form 936.2.g.f.469.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.229270 - 1.39551i) q^{2} +(-1.89487 - 0.639895i) q^{4} +1.61588i q^{5} -1.38556 q^{7} +(-1.32741 + 2.49759i) q^{8} +(2.25497 + 0.370474i) q^{10} -1.47970i q^{11} -1.00000i q^{13} +(-0.317667 + 1.93355i) q^{14} +(3.18107 + 2.42504i) q^{16} +7.02308 q^{17} +8.02537i q^{19} +(1.03400 - 3.06189i) q^{20} +(-2.06493 - 0.339252i) q^{22} -2.42604 q^{23} +2.38892 q^{25} +(-1.39551 - 0.229270i) q^{26} +(2.62545 + 0.886611i) q^{28} -7.74359i q^{29} +9.19604 q^{31} +(4.11348 - 3.88321i) q^{32} +(1.61018 - 9.80075i) q^{34} -2.23890i q^{35} +8.58159i q^{37} +(11.1995 + 1.83998i) q^{38} +(-4.03582 - 2.14495i) q^{40} +9.35947 q^{41} +8.19056i q^{43} +(-0.946855 + 2.80385i) q^{44} +(-0.556219 + 3.38556i) q^{46} +8.31410 q^{47} -5.08023 q^{49} +(0.547708 - 3.33375i) q^{50} +(-0.639895 + 1.89487i) q^{52} -4.07306i q^{53} +2.39103 q^{55} +(1.83921 - 3.46055i) q^{56} +(-10.8062 - 1.77537i) q^{58} +10.8609i q^{59} -1.38219i q^{61} +(2.10838 - 12.8331i) q^{62} +(-4.47594 - 6.63068i) q^{64} +1.61588 q^{65} -3.44800i q^{67} +(-13.3078 - 4.49404i) q^{68} +(-3.12439 - 0.513312i) q^{70} -13.4495 q^{71} +8.58159 q^{73} +(11.9757 + 1.96750i) q^{74} +(5.13540 - 15.2070i) q^{76} +2.05021i q^{77} -7.01990 q^{79} +(-3.91858 + 5.14024i) q^{80} +(2.14585 - 13.0612i) q^{82} -10.6471i q^{83} +11.3485i q^{85} +(11.4300 + 1.87785i) q^{86} +(3.69570 + 1.96418i) q^{88} +4.76398 q^{89} +1.38556i q^{91} +(4.59704 + 1.55241i) q^{92} +(1.90617 - 11.6024i) q^{94} -12.9681 q^{95} -9.47337 q^{97} +(-1.16475 + 7.08949i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{4} - 8 q^{7} + 12 q^{10} - 4 q^{16} + 4 q^{22} - 24 q^{25} + 8 q^{28} + 40 q^{31} - 16 q^{34} - 36 q^{40} - 24 q^{46} + 24 q^{49} - 4 q^{52} - 16 q^{55} - 24 q^{58} + 8 q^{64} - 16 q^{70} - 16 q^{76}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.229270 1.39551i 0.162118 0.986771i
\(3\) 0 0
\(4\) −1.89487 0.639895i −0.947435 0.319948i
\(5\) 1.61588i 0.722645i 0.932441 + 0.361323i \(0.117675\pi\)
−0.932441 + 0.361323i \(0.882325\pi\)
\(6\) 0 0
\(7\) −1.38556 −0.523691 −0.261845 0.965110i \(-0.584331\pi\)
−0.261845 + 0.965110i \(0.584331\pi\)
\(8\) −1.32741 + 2.49759i −0.469312 + 0.883032i
\(9\) 0 0
\(10\) 2.25497 + 0.370474i 0.713086 + 0.117154i
\(11\) 1.47970i 0.446147i −0.974802 0.223074i \(-0.928391\pi\)
0.974802 0.223074i \(-0.0716090\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) −0.317667 + 1.93355i −0.0849000 + 0.516763i
\(15\) 0 0
\(16\) 3.18107 + 2.42504i 0.795267 + 0.606259i
\(17\) 7.02308 1.70335 0.851674 0.524073i \(-0.175588\pi\)
0.851674 + 0.524073i \(0.175588\pi\)
\(18\) 0 0
\(19\) 8.02537i 1.84115i 0.390570 + 0.920573i \(0.372278\pi\)
−0.390570 + 0.920573i \(0.627722\pi\)
\(20\) 1.03400 3.06189i 0.231209 0.684660i
\(21\) 0 0
\(22\) −2.06493 0.339252i −0.440245 0.0723287i
\(23\) −2.42604 −0.505865 −0.252932 0.967484i \(-0.581395\pi\)
−0.252932 + 0.967484i \(0.581395\pi\)
\(24\) 0 0
\(25\) 2.38892 0.477784
\(26\) −1.39551 0.229270i −0.273681 0.0449636i
\(27\) 0 0
\(28\) 2.62545 + 0.886611i 0.496163 + 0.167554i
\(29\) 7.74359i 1.43795i −0.695037 0.718974i \(-0.744612\pi\)
0.695037 0.718974i \(-0.255388\pi\)
\(30\) 0 0
\(31\) 9.19604 1.65166 0.825828 0.563922i \(-0.190708\pi\)
0.825828 + 0.563922i \(0.190708\pi\)
\(32\) 4.11348 3.88321i 0.727167 0.686461i
\(33\) 0 0
\(34\) 1.61018 9.80075i 0.276144 1.68081i
\(35\) 2.23890i 0.378443i
\(36\) 0 0
\(37\) 8.58159i 1.41080i 0.708807 + 0.705402i \(0.249234\pi\)
−0.708807 + 0.705402i \(0.750766\pi\)
\(38\) 11.1995 + 1.83998i 1.81679 + 0.298484i
\(39\) 0 0
\(40\) −4.03582 2.14495i −0.638119 0.339146i
\(41\) 9.35947 1.46170 0.730852 0.682536i \(-0.239123\pi\)
0.730852 + 0.682536i \(0.239123\pi\)
\(42\) 0 0
\(43\) 8.19056i 1.24905i 0.781005 + 0.624525i \(0.214707\pi\)
−0.781005 + 0.624525i \(0.785293\pi\)
\(44\) −0.946855 + 2.80385i −0.142744 + 0.422696i
\(45\) 0 0
\(46\) −0.556219 + 3.38556i −0.0820100 + 0.499173i
\(47\) 8.31410 1.21274 0.606368 0.795184i \(-0.292626\pi\)
0.606368 + 0.795184i \(0.292626\pi\)
\(48\) 0 0
\(49\) −5.08023 −0.725748
\(50\) 0.547708 3.33375i 0.0774576 0.471463i
\(51\) 0 0
\(52\) −0.639895 + 1.89487i −0.0887375 + 0.262771i
\(53\) 4.07306i 0.559478i −0.960076 0.279739i \(-0.909752\pi\)
0.960076 0.279739i \(-0.0902479\pi\)
\(54\) 0 0
\(55\) 2.39103 0.322406
\(56\) 1.83921 3.46055i 0.245774 0.462436i
\(57\) 0 0
\(58\) −10.8062 1.77537i −1.41893 0.233118i
\(59\) 10.8609i 1.41397i 0.707228 + 0.706986i \(0.249946\pi\)
−0.707228 + 0.706986i \(0.750054\pi\)
\(60\) 0 0
\(61\) 1.38219i 0.176972i −0.996077 0.0884859i \(-0.971797\pi\)
0.996077 0.0884859i \(-0.0282028\pi\)
\(62\) 2.10838 12.8331i 0.267764 1.62981i
\(63\) 0 0
\(64\) −4.47594 6.63068i −0.559493 0.828835i
\(65\) 1.61588 0.200426
\(66\) 0 0
\(67\) 3.44800i 0.421240i −0.977568 0.210620i \(-0.932452\pi\)
0.977568 0.210620i \(-0.0675483\pi\)
\(68\) −13.3078 4.49404i −1.61381 0.544982i
\(69\) 0 0
\(70\) −3.12439 0.513312i −0.373437 0.0613526i
\(71\) −13.4495 −1.59616 −0.798079 0.602552i \(-0.794150\pi\)
−0.798079 + 0.602552i \(0.794150\pi\)
\(72\) 0 0
\(73\) 8.58159 1.00440 0.502200 0.864752i \(-0.332524\pi\)
0.502200 + 0.864752i \(0.332524\pi\)
\(74\) 11.9757 + 1.96750i 1.39214 + 0.228718i
\(75\) 0 0
\(76\) 5.13540 15.2070i 0.589071 1.74437i
\(77\) 2.05021i 0.233643i
\(78\) 0 0
\(79\) −7.01990 −0.789800 −0.394900 0.918724i \(-0.629221\pi\)
−0.394900 + 0.918724i \(0.629221\pi\)
\(80\) −3.91858 + 5.14024i −0.438111 + 0.574696i
\(81\) 0 0
\(82\) 2.14585 13.0612i 0.236969 1.44237i
\(83\) 10.6471i 1.16867i −0.811513 0.584334i \(-0.801356\pi\)
0.811513 0.584334i \(-0.198644\pi\)
\(84\) 0 0
\(85\) 11.3485i 1.23092i
\(86\) 11.4300 + 1.87785i 1.23253 + 0.202494i
\(87\) 0 0
\(88\) 3.69570 + 1.96418i 0.393962 + 0.209382i
\(89\) 4.76398 0.504981 0.252490 0.967599i \(-0.418750\pi\)
0.252490 + 0.967599i \(0.418750\pi\)
\(90\) 0 0
\(91\) 1.38556i 0.145246i
\(92\) 4.59704 + 1.55241i 0.479274 + 0.161850i
\(93\) 0 0
\(94\) 1.90617 11.6024i 0.196607 1.19669i
\(95\) −12.9681 −1.33050
\(96\) 0 0
\(97\) −9.47337 −0.961875 −0.480938 0.876755i \(-0.659704\pi\)
−0.480938 + 0.876755i \(0.659704\pi\)
\(98\) −1.16475 + 7.08949i −0.117657 + 0.716147i
\(99\) 0 0
\(100\) −4.52669 1.52866i −0.452669 0.152866i
\(101\) 6.74133i 0.670788i 0.942078 + 0.335394i \(0.108869\pi\)
−0.942078 + 0.335394i \(0.891131\pi\)
\(102\) 0 0
\(103\) −7.53160 −0.742110 −0.371055 0.928611i \(-0.621004\pi\)
−0.371055 + 0.928611i \(0.621004\pi\)
\(104\) 2.49759 + 1.32741i 0.244909 + 0.130164i
\(105\) 0 0
\(106\) −5.68398 0.933831i −0.552077 0.0907017i
\(107\) 1.76846i 0.170964i −0.996340 0.0854819i \(-0.972757\pi\)
0.996340 0.0854819i \(-0.0272430\pi\)
\(108\) 0 0
\(109\) 1.02842i 0.0985051i 0.998786 + 0.0492525i \(0.0156839\pi\)
−0.998786 + 0.0492525i \(0.984316\pi\)
\(110\) 0.548191 3.33669i 0.0522680 0.318141i
\(111\) 0 0
\(112\) −4.40755 3.36003i −0.416474 0.317493i
\(113\) −6.28028 −0.590799 −0.295400 0.955374i \(-0.595453\pi\)
−0.295400 + 0.955374i \(0.595453\pi\)
\(114\) 0 0
\(115\) 3.92020i 0.365561i
\(116\) −4.95509 + 14.6731i −0.460068 + 1.36236i
\(117\) 0 0
\(118\) 15.1565 + 2.49009i 1.39527 + 0.229231i
\(119\) −9.73087 −0.892027
\(120\) 0 0
\(121\) 8.81048 0.800953
\(122\) −1.92886 0.316896i −0.174631 0.0286904i
\(123\) 0 0
\(124\) −17.4253 5.88450i −1.56484 0.528444i
\(125\) 11.9396i 1.06791i
\(126\) 0 0
\(127\) −2.25301 −0.199922 −0.0999611 0.994991i \(-0.531872\pi\)
−0.0999611 + 0.994991i \(0.531872\pi\)
\(128\) −10.2794 + 4.72598i −0.908575 + 0.417722i
\(129\) 0 0
\(130\) 0.370474 2.25497i 0.0324927 0.197774i
\(131\) 0.720508i 0.0629510i 0.999505 + 0.0314755i \(0.0100206\pi\)
−0.999505 + 0.0314755i \(0.989979\pi\)
\(132\) 0 0
\(133\) 11.1196i 0.964192i
\(134\) −4.81170 0.790524i −0.415668 0.0682908i
\(135\) 0 0
\(136\) −9.32254 + 17.5408i −0.799401 + 1.50411i
\(137\) 18.6308 1.59174 0.795870 0.605468i \(-0.207014\pi\)
0.795870 + 0.605468i \(0.207014\pi\)
\(138\) 0 0
\(139\) 12.1973i 1.03456i 0.855816 + 0.517280i \(0.173056\pi\)
−0.855816 + 0.517280i \(0.826944\pi\)
\(140\) −1.43266 + 4.24242i −0.121082 + 0.358550i
\(141\) 0 0
\(142\) −3.08356 + 18.7688i −0.258767 + 1.57504i
\(143\) −1.47970 −0.123739
\(144\) 0 0
\(145\) 12.5127 1.03913
\(146\) 1.96750 11.9757i 0.162832 0.991112i
\(147\) 0 0
\(148\) 5.49132 16.2610i 0.451384 1.33665i
\(149\) 17.0258i 1.39481i −0.716679 0.697403i \(-0.754339\pi\)
0.716679 0.697403i \(-0.245661\pi\)
\(150\) 0 0
\(151\) 14.6652 1.19344 0.596718 0.802451i \(-0.296471\pi\)
0.596718 + 0.802451i \(0.296471\pi\)
\(152\) −20.0441 10.6530i −1.62579 0.864072i
\(153\) 0 0
\(154\) 2.86108 + 0.470052i 0.230552 + 0.0378779i
\(155\) 14.8597i 1.19356i
\(156\) 0 0
\(157\) 2.49714i 0.199293i 0.995023 + 0.0996466i \(0.0317712\pi\)
−0.995023 + 0.0996466i \(0.968229\pi\)
\(158\) −1.60945 + 9.79631i −0.128041 + 0.779352i
\(159\) 0 0
\(160\) 6.27481 + 6.64690i 0.496068 + 0.525484i
\(161\) 3.36142 0.264917
\(162\) 0 0
\(163\) 10.0942i 0.790641i −0.918543 0.395320i \(-0.870634\pi\)
0.918543 0.395320i \(-0.129366\pi\)
\(164\) −17.7350 5.98908i −1.38487 0.467669i
\(165\) 0 0
\(166\) −14.8581 2.44106i −1.15321 0.189463i
\(167\) −7.22273 −0.558912 −0.279456 0.960159i \(-0.590154\pi\)
−0.279456 + 0.960159i \(0.590154\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 15.8369 + 2.60187i 1.21463 + 0.199554i
\(171\) 0 0
\(172\) 5.24110 15.5201i 0.399630 1.18339i
\(173\) 2.45274i 0.186478i −0.995644 0.0932392i \(-0.970278\pi\)
0.995644 0.0932392i \(-0.0297221\pi\)
\(174\) 0 0
\(175\) −3.30998 −0.250211
\(176\) 3.58834 4.70703i 0.270481 0.354806i
\(177\) 0 0
\(178\) 1.09224 6.64815i 0.0818667 0.498300i
\(179\) 8.77357i 0.655767i 0.944718 + 0.327884i \(0.106335\pi\)
−0.944718 + 0.327884i \(0.893665\pi\)
\(180\) 0 0
\(181\) 20.3247i 1.51072i 0.655307 + 0.755362i \(0.272539\pi\)
−0.655307 + 0.755362i \(0.727461\pi\)
\(182\) 1.93355 + 0.317667i 0.143324 + 0.0235470i
\(183\) 0 0
\(184\) 3.22037 6.05927i 0.237408 0.446695i
\(185\) −13.8669 −1.01951
\(186\) 0 0
\(187\) 10.3921i 0.759944i
\(188\) −15.7541 5.32015i −1.14899 0.388012i
\(189\) 0 0
\(190\) −2.97319 + 18.0970i −0.215698 + 1.31290i
\(191\) 0.514593 0.0372347 0.0186173 0.999827i \(-0.494074\pi\)
0.0186173 + 0.999827i \(0.494074\pi\)
\(192\) 0 0
\(193\) −22.9585 −1.65259 −0.826294 0.563238i \(-0.809555\pi\)
−0.826294 + 0.563238i \(0.809555\pi\)
\(194\) −2.17196 + 13.2201i −0.155938 + 0.949151i
\(195\) 0 0
\(196\) 9.62639 + 3.25082i 0.687599 + 0.232201i
\(197\) 7.71400i 0.549600i 0.961501 + 0.274800i \(0.0886116\pi\)
−0.961501 + 0.274800i \(0.911388\pi\)
\(198\) 0 0
\(199\) −4.24879 −0.301189 −0.150594 0.988596i \(-0.548119\pi\)
−0.150594 + 0.988596i \(0.548119\pi\)
\(200\) −3.17109 + 5.96655i −0.224230 + 0.421898i
\(201\) 0 0
\(202\) 9.40757 + 1.54559i 0.661914 + 0.108747i
\(203\) 10.7292i 0.753040i
\(204\) 0 0
\(205\) 15.1238i 1.05629i
\(206\) −1.72677 + 10.5104i −0.120310 + 0.732293i
\(207\) 0 0
\(208\) 2.42504 3.18107i 0.168146 0.220567i
\(209\) 11.8752 0.821422
\(210\) 0 0
\(211\) 6.38535i 0.439585i 0.975547 + 0.219793i \(0.0705381\pi\)
−0.975547 + 0.219793i \(0.929462\pi\)
\(212\) −2.60633 + 7.71792i −0.179004 + 0.530069i
\(213\) 0 0
\(214\) −2.46790 0.405456i −0.168702 0.0277164i
\(215\) −13.2350 −0.902620
\(216\) 0 0
\(217\) −12.7416 −0.864958
\(218\) 1.43517 + 0.235787i 0.0972020 + 0.0159695i
\(219\) 0 0
\(220\) −4.53069 1.53001i −0.305459 0.103153i
\(221\) 7.02308i 0.472423i
\(222\) 0 0
\(223\) 17.3498 1.16183 0.580914 0.813965i \(-0.302695\pi\)
0.580914 + 0.813965i \(0.302695\pi\)
\(224\) −5.69945 + 5.38040i −0.380811 + 0.359493i
\(225\) 0 0
\(226\) −1.43988 + 8.76417i −0.0957795 + 0.582984i
\(227\) 8.84746i 0.587226i −0.955924 0.293613i \(-0.905142\pi\)
0.955924 0.293613i \(-0.0948578\pi\)
\(228\) 0 0
\(229\) 8.01094i 0.529378i −0.964334 0.264689i \(-0.914731\pi\)
0.964334 0.264689i \(-0.0852693\pi\)
\(230\) −5.47067 0.898786i −0.360725 0.0592642i
\(231\) 0 0
\(232\) 19.3403 + 10.2790i 1.26975 + 0.674846i
\(233\) 14.3800 0.942068 0.471034 0.882115i \(-0.343881\pi\)
0.471034 + 0.882115i \(0.343881\pi\)
\(234\) 0 0
\(235\) 13.4346i 0.876378i
\(236\) 6.94985 20.5800i 0.452397 1.33965i
\(237\) 0 0
\(238\) −2.23100 + 13.5795i −0.144614 + 0.880227i
\(239\) −25.4651 −1.64720 −0.823600 0.567172i \(-0.808038\pi\)
−0.823600 + 0.567172i \(0.808038\pi\)
\(240\) 0 0
\(241\) 18.8109 1.21172 0.605859 0.795572i \(-0.292830\pi\)
0.605859 + 0.795572i \(0.292830\pi\)
\(242\) 2.01998 12.2951i 0.129849 0.790357i
\(243\) 0 0
\(244\) −0.884459 + 2.61908i −0.0566217 + 0.167669i
\(245\) 8.20907i 0.524458i
\(246\) 0 0
\(247\) 8.02537 0.510642
\(248\) −12.2070 + 22.9680i −0.775142 + 1.45847i
\(249\) 0 0
\(250\) 16.6618 + 2.73740i 1.05379 + 0.173129i
\(251\) 20.0393i 1.26487i −0.774615 0.632434i \(-0.782056\pi\)
0.774615 0.632434i \(-0.217944\pi\)
\(252\) 0 0
\(253\) 3.58982i 0.225690i
\(254\) −0.516547 + 3.14408i −0.0324111 + 0.197277i
\(255\) 0 0
\(256\) 4.23838 + 15.4284i 0.264899 + 0.964276i
\(257\) 13.3034 0.829841 0.414920 0.909858i \(-0.363809\pi\)
0.414920 + 0.909858i \(0.363809\pi\)
\(258\) 0 0
\(259\) 11.8903i 0.738826i
\(260\) −3.06189 1.03400i −0.189890 0.0641258i
\(261\) 0 0
\(262\) 1.00547 + 0.165191i 0.0621183 + 0.0102055i
\(263\) −12.2893 −0.757790 −0.378895 0.925440i \(-0.623696\pi\)
−0.378895 + 0.925440i \(0.623696\pi\)
\(264\) 0 0
\(265\) 6.58159 0.404304
\(266\) −15.5175 2.54939i −0.951437 0.156313i
\(267\) 0 0
\(268\) −2.20636 + 6.53351i −0.134775 + 0.399098i
\(269\) 9.03003i 0.550570i −0.961363 0.275285i \(-0.911228\pi\)
0.961363 0.275285i \(-0.0887723\pi\)
\(270\) 0 0
\(271\) −7.08209 −0.430206 −0.215103 0.976591i \(-0.569009\pi\)
−0.215103 + 0.976591i \(0.569009\pi\)
\(272\) 22.3409 + 17.0312i 1.35462 + 1.03267i
\(273\) 0 0
\(274\) 4.27149 25.9994i 0.258050 1.57068i
\(275\) 3.53489i 0.213162i
\(276\) 0 0
\(277\) 25.6608i 1.54181i −0.636953 0.770903i \(-0.719805\pi\)
0.636953 0.770903i \(-0.280195\pi\)
\(278\) 17.0214 + 2.79647i 1.02087 + 0.167721i
\(279\) 0 0
\(280\) 5.59186 + 2.97195i 0.334177 + 0.177608i
\(281\) 4.50739 0.268888 0.134444 0.990921i \(-0.457075\pi\)
0.134444 + 0.990921i \(0.457075\pi\)
\(282\) 0 0
\(283\) 17.5489i 1.04318i 0.853197 + 0.521588i \(0.174660\pi\)
−0.853197 + 0.521588i \(0.825340\pi\)
\(284\) 25.4850 + 8.60625i 1.51226 + 0.510687i
\(285\) 0 0
\(286\) −0.339252 + 2.06493i −0.0200604 + 0.122102i
\(287\) −12.9681 −0.765481
\(288\) 0 0
\(289\) 32.3237 1.90139
\(290\) 2.86880 17.4616i 0.168462 1.02538i
\(291\) 0 0
\(292\) −16.2610 5.49132i −0.951603 0.321355i
\(293\) 30.7749i 1.79789i 0.438061 + 0.898945i \(0.355665\pi\)
−0.438061 + 0.898945i \(0.644335\pi\)
\(294\) 0 0
\(295\) −17.5500 −1.02180
\(296\) −21.4333 11.3913i −1.24579 0.662108i
\(297\) 0 0
\(298\) −23.7596 3.90350i −1.37635 0.226124i
\(299\) 2.42604i 0.140302i
\(300\) 0 0
\(301\) 11.3485i 0.654116i
\(302\) 3.36229 20.4653i 0.193478 1.17765i
\(303\) 0 0
\(304\) −19.4618 + 25.5293i −1.11621 + 1.46420i
\(305\) 2.23346 0.127888
\(306\) 0 0
\(307\) 22.1839i 1.26610i −0.774110 0.633051i \(-0.781802\pi\)
0.774110 0.633051i \(-0.218198\pi\)
\(308\) 1.31192 3.88488i 0.0747536 0.221362i
\(309\) 0 0
\(310\) 20.7368 + 3.40689i 1.17777 + 0.193498i
\(311\) 14.8795 0.843740 0.421870 0.906656i \(-0.361374\pi\)
0.421870 + 0.906656i \(0.361374\pi\)
\(312\) 0 0
\(313\) −22.2093 −1.25534 −0.627671 0.778479i \(-0.715992\pi\)
−0.627671 + 0.778479i \(0.715992\pi\)
\(314\) 3.48477 + 0.572519i 0.196657 + 0.0323091i
\(315\) 0 0
\(316\) 13.3018 + 4.49200i 0.748285 + 0.252695i
\(317\) 9.62245i 0.540451i 0.962797 + 0.270225i \(0.0870982\pi\)
−0.962797 + 0.270225i \(0.912902\pi\)
\(318\) 0 0
\(319\) −11.4582 −0.641537
\(320\) 10.7144 7.23260i 0.598954 0.404315i
\(321\) 0 0
\(322\) 0.770673 4.69088i 0.0429479 0.261412i
\(323\) 56.3628i 3.13611i
\(324\) 0 0
\(325\) 2.38892i 0.132513i
\(326\) −14.0865 2.31430i −0.780181 0.128177i
\(327\) 0 0
\(328\) −12.4239 + 23.3762i −0.685995 + 1.29073i
\(329\) −11.5196 −0.635099
\(330\) 0 0
\(331\) 3.02387i 0.166207i −0.996541 0.0831034i \(-0.973517\pi\)
0.996541 0.0831034i \(-0.0264832\pi\)
\(332\) −6.81302 + 20.1748i −0.373913 + 1.10724i
\(333\) 0 0
\(334\) −1.65596 + 10.0794i −0.0906099 + 0.551518i
\(335\) 5.57157 0.304407
\(336\) 0 0
\(337\) 7.68559 0.418661 0.209330 0.977845i \(-0.432872\pi\)
0.209330 + 0.977845i \(0.432872\pi\)
\(338\) −0.229270 + 1.39551i −0.0124707 + 0.0759055i
\(339\) 0 0
\(340\) 7.26184 21.5039i 0.393829 1.16621i
\(341\) 13.6074i 0.736882i
\(342\) 0 0
\(343\) 16.7378 0.903758
\(344\) −20.4567 10.8723i −1.10295 0.586194i
\(345\) 0 0
\(346\) −3.42281 0.562340i −0.184012 0.0302316i
\(347\) 32.9632i 1.76956i −0.466013 0.884778i \(-0.654310\pi\)
0.466013 0.884778i \(-0.345690\pi\)
\(348\) 0 0
\(349\) 20.4696i 1.09571i −0.836573 0.547856i \(-0.815444\pi\)
0.836573 0.547856i \(-0.184556\pi\)
\(350\) −0.758880 + 4.61910i −0.0405638 + 0.246901i
\(351\) 0 0
\(352\) −5.74599 6.08672i −0.306263 0.324423i
\(353\) −15.1387 −0.805753 −0.402877 0.915254i \(-0.631990\pi\)
−0.402877 + 0.915254i \(0.631990\pi\)
\(354\) 0 0
\(355\) 21.7328i 1.15346i
\(356\) −9.02712 3.04845i −0.478436 0.161567i
\(357\) 0 0
\(358\) 12.2436 + 2.01152i 0.647092 + 0.106312i
\(359\) −22.8971 −1.20846 −0.604230 0.796810i \(-0.706519\pi\)
−0.604230 + 0.796810i \(0.706519\pi\)
\(360\) 0 0
\(361\) −45.4066 −2.38982
\(362\) 28.3633 + 4.65985i 1.49074 + 0.244916i
\(363\) 0 0
\(364\) 0.886611 2.62545i 0.0464710 0.137611i
\(365\) 13.8669i 0.725825i
\(366\) 0 0
\(367\) −23.2970 −1.21609 −0.608046 0.793902i \(-0.708047\pi\)
−0.608046 + 0.793902i \(0.708047\pi\)
\(368\) −7.71741 5.88325i −0.402298 0.306685i
\(369\) 0 0
\(370\) −3.17926 + 19.3513i −0.165282 + 1.00602i
\(371\) 5.64345i 0.292993i
\(372\) 0 0
\(373\) 8.34133i 0.431898i 0.976405 + 0.215949i \(0.0692844\pi\)
−0.976405 + 0.215949i \(0.930716\pi\)
\(374\) −14.5022 2.38259i −0.749890 0.123201i
\(375\) 0 0
\(376\) −11.0363 + 20.7652i −0.569151 + 1.07088i
\(377\) −7.74359 −0.398815
\(378\) 0 0
\(379\) 5.95652i 0.305966i −0.988229 0.152983i \(-0.951112\pi\)
0.988229 0.152983i \(-0.0488880\pi\)
\(380\) 24.5728 + 8.29821i 1.26056 + 0.425689i
\(381\) 0 0
\(382\) 0.117981 0.718118i 0.00603643 0.0367421i
\(383\) 18.1470 0.927267 0.463634 0.886027i \(-0.346545\pi\)
0.463634 + 0.886027i \(0.346545\pi\)
\(384\) 0 0
\(385\) −3.31290 −0.168841
\(386\) −5.26370 + 32.0387i −0.267915 + 1.63073i
\(387\) 0 0
\(388\) 17.9508 + 6.06197i 0.911315 + 0.307750i
\(389\) 0.172915i 0.00876713i −0.999990 0.00438357i \(-0.998605\pi\)
0.999990 0.00438357i \(-0.00139534\pi\)
\(390\) 0 0
\(391\) −17.0383 −0.861664
\(392\) 6.74358 12.6884i 0.340602 0.640859i
\(393\) 0 0
\(394\) 10.7649 + 1.76859i 0.542329 + 0.0891002i
\(395\) 11.3433i 0.570746i
\(396\) 0 0
\(397\) 38.9446i 1.95457i −0.211920 0.977287i \(-0.567972\pi\)
0.211920 0.977287i \(-0.432028\pi\)
\(398\) −0.974120 + 5.92921i −0.0488282 + 0.297204i
\(399\) 0 0
\(400\) 7.59931 + 5.79322i 0.379966 + 0.289661i
\(401\) 5.51185 0.275249 0.137624 0.990485i \(-0.456053\pi\)
0.137624 + 0.990485i \(0.456053\pi\)
\(402\) 0 0
\(403\) 9.19604i 0.458087i
\(404\) 4.31375 12.7740i 0.214617 0.635528i
\(405\) 0 0
\(406\) 14.9726 + 2.45988i 0.743079 + 0.122082i
\(407\) 12.6982 0.629427
\(408\) 0 0
\(409\) 20.0099 0.989424 0.494712 0.869057i \(-0.335273\pi\)
0.494712 + 0.869057i \(0.335273\pi\)
\(410\) 21.1054 + 3.46744i 1.04232 + 0.171245i
\(411\) 0 0
\(412\) 14.2714 + 4.81943i 0.703101 + 0.237437i
\(413\) 15.0484i 0.740484i
\(414\) 0 0
\(415\) 17.2044 0.844533
\(416\) −3.88321 4.11348i −0.190390 0.201680i
\(417\) 0 0
\(418\) 2.72262 16.5719i 0.133168 0.810556i
\(419\) 7.04824i 0.344329i −0.985068 0.172164i \(-0.944924\pi\)
0.985068 0.172164i \(-0.0550760\pi\)
\(420\) 0 0
\(421\) 8.21644i 0.400445i −0.979750 0.200222i \(-0.935834\pi\)
0.979750 0.200222i \(-0.0641664\pi\)
\(422\) 8.91078 + 1.46397i 0.433770 + 0.0712649i
\(423\) 0 0
\(424\) 10.1728 + 5.40664i 0.494037 + 0.262570i
\(425\) 16.7776 0.813831
\(426\) 0 0
\(427\) 1.91511i 0.0926785i
\(428\) −1.13163 + 3.35101i −0.0546995 + 0.161977i
\(429\) 0 0
\(430\) −3.03439 + 18.4695i −0.146331 + 0.890679i
\(431\) 14.3766 0.692499 0.346249 0.938143i \(-0.387455\pi\)
0.346249 + 0.938143i \(0.387455\pi\)
\(432\) 0 0
\(433\) −17.3512 −0.833846 −0.416923 0.908942i \(-0.636891\pi\)
−0.416923 + 0.908942i \(0.636891\pi\)
\(434\) −2.92127 + 17.7810i −0.140226 + 0.853515i
\(435\) 0 0
\(436\) 0.658083 1.94873i 0.0315165 0.0933272i
\(437\) 19.4699i 0.931372i
\(438\) 0 0
\(439\) −15.4286 −0.736367 −0.368183 0.929753i \(-0.620020\pi\)
−0.368183 + 0.929753i \(0.620020\pi\)
\(440\) −3.17389 + 5.97182i −0.151309 + 0.284695i
\(441\) 0 0
\(442\) −9.80075 1.61018i −0.466174 0.0765886i
\(443\) 15.6442i 0.743278i −0.928377 0.371639i \(-0.878796\pi\)
0.928377 0.371639i \(-0.121204\pi\)
\(444\) 0 0
\(445\) 7.69803i 0.364922i
\(446\) 3.97779 24.2117i 0.188354 1.14646i
\(447\) 0 0
\(448\) 6.20167 + 9.18718i 0.293001 + 0.434054i
\(449\) −6.10007 −0.287880 −0.143940 0.989586i \(-0.545977\pi\)
−0.143940 + 0.989586i \(0.545977\pi\)
\(450\) 0 0
\(451\) 13.8492i 0.652135i
\(452\) 11.9003 + 4.01872i 0.559744 + 0.189025i
\(453\) 0 0
\(454\) −12.3467 2.02846i −0.579458 0.0952003i
\(455\) −2.23890 −0.104961
\(456\) 0 0
\(457\) −10.1476 −0.474684 −0.237342 0.971426i \(-0.576276\pi\)
−0.237342 + 0.971426i \(0.576276\pi\)
\(458\) −11.1793 1.83667i −0.522375 0.0858220i
\(459\) 0 0
\(460\) −2.50852 + 7.42828i −0.116960 + 0.346345i
\(461\) 19.8398i 0.924029i −0.886872 0.462015i \(-0.847127\pi\)
0.886872 0.462015i \(-0.152873\pi\)
\(462\) 0 0
\(463\) 28.1588 1.30865 0.654324 0.756214i \(-0.272953\pi\)
0.654324 + 0.756214i \(0.272953\pi\)
\(464\) 18.7785 24.6329i 0.871770 1.14355i
\(465\) 0 0
\(466\) 3.29691 20.0674i 0.152727 0.929605i
\(467\) 12.6982i 0.587603i 0.955866 + 0.293801i \(0.0949204\pi\)
−0.955866 + 0.293801i \(0.905080\pi\)
\(468\) 0 0
\(469\) 4.77740i 0.220600i
\(470\) 18.7481 + 3.08016i 0.864784 + 0.142077i
\(471\) 0 0
\(472\) −27.1262 14.4169i −1.24858 0.663594i
\(473\) 12.1196 0.557260
\(474\) 0 0
\(475\) 19.1720i 0.879670i
\(476\) 18.4387 + 6.22674i 0.845138 + 0.285402i
\(477\) 0 0
\(478\) −5.83838 + 35.5367i −0.267041 + 1.62541i
\(479\) 36.8272 1.68268 0.841339 0.540508i \(-0.181768\pi\)
0.841339 + 0.540508i \(0.181768\pi\)
\(480\) 0 0
\(481\) 8.58159 0.391287
\(482\) 4.31278 26.2507i 0.196442 1.19569i
\(483\) 0 0
\(484\) −16.6947 5.63779i −0.758851 0.256263i
\(485\) 15.3079i 0.695095i
\(486\) 0 0
\(487\) −0.484527 −0.0219560 −0.0109780 0.999940i \(-0.503494\pi\)
−0.0109780 + 0.999940i \(0.503494\pi\)
\(488\) 3.45216 + 1.83474i 0.156272 + 0.0830550i
\(489\) 0 0
\(490\) −11.4558 1.88209i −0.517520 0.0850244i
\(491\) 3.26565i 0.147377i 0.997281 + 0.0736883i \(0.0234770\pi\)
−0.997281 + 0.0736883i \(0.976523\pi\)
\(492\) 0 0
\(493\) 54.3838i 2.44932i
\(494\) 1.83998 11.1995i 0.0827845 0.503887i
\(495\) 0 0
\(496\) 29.2532 + 22.3007i 1.31351 + 1.00133i
\(497\) 18.6350 0.835894
\(498\) 0 0
\(499\) 0.338708i 0.0151627i 0.999971 + 0.00758133i \(0.00241323\pi\)
−0.999971 + 0.00758133i \(0.997587\pi\)
\(500\) 7.64012 22.6241i 0.341676 1.01178i
\(501\) 0 0
\(502\) −27.9649 4.59440i −1.24813 0.205058i
\(503\) −39.7613 −1.77287 −0.886435 0.462853i \(-0.846826\pi\)
−0.886435 + 0.462853i \(0.846826\pi\)
\(504\) 0 0
\(505\) −10.8932 −0.484742
\(506\) 5.00962 + 0.823039i 0.222705 + 0.0365886i
\(507\) 0 0
\(508\) 4.26916 + 1.44169i 0.189413 + 0.0639646i
\(509\) 33.4538i 1.48281i 0.671055 + 0.741407i \(0.265841\pi\)
−0.671055 + 0.741407i \(0.734159\pi\)
\(510\) 0 0
\(511\) −11.8903 −0.525995
\(512\) 22.5022 2.37741i 0.994465 0.105068i
\(513\) 0 0
\(514\) 3.05006 18.5649i 0.134533 0.818863i
\(515\) 12.1702i 0.536283i
\(516\) 0 0
\(517\) 12.3024i 0.541059i
\(518\) −16.5929 2.72609i −0.729052 0.119777i
\(519\) 0 0
\(520\) −2.14495 + 4.03582i −0.0940622 + 0.176982i
\(521\) −16.5479 −0.724979 −0.362489 0.931988i \(-0.618073\pi\)
−0.362489 + 0.931988i \(0.618073\pi\)
\(522\) 0 0
\(523\) 28.4449i 1.24381i −0.783093 0.621905i \(-0.786359\pi\)
0.783093 0.621905i \(-0.213641\pi\)
\(524\) 0.461050 1.36527i 0.0201410 0.0596420i
\(525\) 0 0
\(526\) −2.81757 + 17.1498i −0.122852 + 0.747765i
\(527\) 64.5845 2.81334
\(528\) 0 0
\(529\) −17.1143 −0.744101
\(530\) 1.50896 9.18465i 0.0655451 0.398956i
\(531\) 0 0
\(532\) −7.11538 + 21.0702i −0.308491 + 0.913509i
\(533\) 9.35947i 0.405404i
\(534\) 0 0
\(535\) 2.85763 0.123546
\(536\) 8.61170 + 4.57693i 0.371969 + 0.197693i
\(537\) 0 0
\(538\) −12.6014 2.07032i −0.543287 0.0892576i
\(539\) 7.51724i 0.323790i
\(540\) 0 0
\(541\) 13.0052i 0.559138i −0.960126 0.279569i \(-0.909808\pi\)
0.960126 0.279569i \(-0.0901916\pi\)
\(542\) −1.62371 + 9.88310i −0.0697444 + 0.424515i
\(543\) 0 0
\(544\) 28.8893 27.2721i 1.23862 1.16928i
\(545\) −1.66181 −0.0711842
\(546\) 0 0
\(547\) 23.3847i 0.999859i −0.866066 0.499930i \(-0.833359\pi\)
0.866066 0.499930i \(-0.166641\pi\)
\(548\) −35.3030 11.9218i −1.50807 0.509273i
\(549\) 0 0
\(550\) −4.93296 0.810445i −0.210342 0.0345575i
\(551\) 62.1452 2.64747
\(552\) 0 0
\(553\) 9.72646 0.413611
\(554\) −35.8097 5.88325i −1.52141 0.249955i
\(555\) 0 0
\(556\) 7.80499 23.1123i 0.331005 0.980179i
\(557\) 6.92263i 0.293321i −0.989187 0.146661i \(-0.953147\pi\)
0.989187 0.146661i \(-0.0468525\pi\)
\(558\) 0 0
\(559\) 8.19056 0.346424
\(560\) 5.42941 7.12209i 0.229435 0.300963i
\(561\) 0 0
\(562\) 1.03341 6.29008i 0.0435917 0.265331i
\(563\) 21.7430i 0.916360i −0.888859 0.458180i \(-0.848501\pi\)
0.888859 0.458180i \(-0.151499\pi\)
\(564\) 0 0
\(565\) 10.1482i 0.426938i
\(566\) 24.4897 + 4.02345i 1.02938 + 0.169118i
\(567\) 0 0
\(568\) 17.8530 33.5913i 0.749096 1.40946i
\(569\) −19.2824 −0.808362 −0.404181 0.914679i \(-0.632443\pi\)
−0.404181 + 0.914679i \(0.632443\pi\)
\(570\) 0 0
\(571\) 37.4334i 1.56654i 0.621683 + 0.783269i \(0.286449\pi\)
−0.621683 + 0.783269i \(0.713551\pi\)
\(572\) 2.80385 + 0.946855i 0.117235 + 0.0395900i
\(573\) 0 0
\(574\) −2.97319 + 18.0970i −0.124099 + 0.755355i
\(575\) −5.79562 −0.241694
\(576\) 0 0
\(577\) −6.89178 −0.286909 −0.143454 0.989657i \(-0.545821\pi\)
−0.143454 + 0.989657i \(0.545821\pi\)
\(578\) 7.41085 45.1078i 0.308251 1.87624i
\(579\) 0 0
\(580\) −23.7100 8.00685i −0.984505 0.332466i
\(581\) 14.7521i 0.612021i
\(582\) 0 0
\(583\) −6.02692 −0.249609
\(584\) −11.3913 + 21.4333i −0.471377 + 0.886917i
\(585\) 0 0
\(586\) 42.9466 + 7.05577i 1.77411 + 0.291471i
\(587\) 20.4244i 0.843007i −0.906827 0.421503i \(-0.861503\pi\)
0.906827 0.421503i \(-0.138497\pi\)
\(588\) 0 0
\(589\) 73.8016i 3.04094i
\(590\) −4.02369 + 24.4911i −0.165653 + 1.00828i
\(591\) 0 0
\(592\) −20.8107 + 27.2986i −0.855314 + 1.12197i
\(593\) 14.2116 0.583599 0.291799 0.956480i \(-0.405746\pi\)
0.291799 + 0.956480i \(0.405746\pi\)
\(594\) 0 0
\(595\) 15.7240i 0.644619i
\(596\) −10.8947 + 32.2616i −0.446265 + 1.32149i
\(597\) 0 0
\(598\) 3.38556 + 0.556219i 0.138446 + 0.0227455i
\(599\) 30.0038 1.22592 0.612960 0.790114i \(-0.289979\pi\)
0.612960 + 0.790114i \(0.289979\pi\)
\(600\) 0 0
\(601\) 4.34999 0.177440 0.0887199 0.996057i \(-0.471722\pi\)
0.0887199 + 0.996057i \(0.471722\pi\)
\(602\) −15.8369 2.60187i −0.645463 0.106044i
\(603\) 0 0
\(604\) −27.7886 9.38419i −1.13070 0.381837i
\(605\) 14.2367i 0.578805i
\(606\) 0 0
\(607\) −15.0209 −0.609681 −0.304841 0.952403i \(-0.598603\pi\)
−0.304841 + 0.952403i \(0.598603\pi\)
\(608\) 31.1642 + 33.0122i 1.26387 + 1.33882i
\(609\) 0 0
\(610\) 0.512067 3.11681i 0.0207330 0.126196i
\(611\) 8.31410i 0.336352i
\(612\) 0 0
\(613\) 2.19625i 0.0887055i −0.999016 0.0443528i \(-0.985877\pi\)
0.999016 0.0443528i \(-0.0141226\pi\)
\(614\) −30.9578 5.08611i −1.24935 0.205259i
\(615\) 0 0
\(616\) −5.12059 2.72148i −0.206315 0.109652i
\(617\) −35.3729 −1.42406 −0.712030 0.702149i \(-0.752224\pi\)
−0.712030 + 0.702149i \(0.752224\pi\)
\(618\) 0 0
\(619\) 25.4878i 1.02444i 0.858854 + 0.512221i \(0.171177\pi\)
−0.858854 + 0.512221i \(0.828823\pi\)
\(620\) 9.50867 28.1573i 0.381877 1.13082i
\(621\) 0 0
\(622\) 3.41143 20.7645i 0.136786 0.832579i
\(623\) −6.60076 −0.264454
\(624\) 0 0
\(625\) −7.34848 −0.293939
\(626\) −5.09192 + 30.9932i −0.203514 + 1.23874i
\(627\) 0 0
\(628\) 1.59791 4.73175i 0.0637634 0.188817i
\(629\) 60.2692i 2.40309i
\(630\) 0 0
\(631\) 3.58602 0.142757 0.0713786 0.997449i \(-0.477260\pi\)
0.0713786 + 0.997449i \(0.477260\pi\)
\(632\) 9.31832 17.5329i 0.370663 0.697419i
\(633\) 0 0
\(634\) 13.4282 + 2.20614i 0.533301 + 0.0876170i
\(635\) 3.64060i 0.144473i
\(636\) 0 0
\(637\) 5.08023i 0.201286i
\(638\) −2.62703 + 15.9900i −0.104005 + 0.633050i
\(639\) 0 0
\(640\) −7.63664 16.6102i −0.301865 0.656578i
\(641\) −40.1221 −1.58473 −0.792363 0.610050i \(-0.791149\pi\)
−0.792363 + 0.610050i \(0.791149\pi\)
\(642\) 0 0
\(643\) 25.3341i 0.999078i −0.866292 0.499539i \(-0.833503\pi\)
0.866292 0.499539i \(-0.166497\pi\)
\(644\) −6.36945 2.15096i −0.250992 0.0847595i
\(645\) 0 0
\(646\) 78.6546 + 12.9223i 3.09463 + 0.508422i
\(647\) −0.825159 −0.0324404 −0.0162202 0.999868i \(-0.505163\pi\)
−0.0162202 + 0.999868i \(0.505163\pi\)
\(648\) 0 0
\(649\) 16.0709 0.630839
\(650\) −3.33375 0.547708i −0.130760 0.0214829i
\(651\) 0 0
\(652\) −6.45925 + 19.1272i −0.252964 + 0.749081i
\(653\) 37.6019i 1.47148i −0.677265 0.735739i \(-0.736835\pi\)
0.677265 0.735739i \(-0.263165\pi\)
\(654\) 0 0
\(655\) −1.16426 −0.0454913
\(656\) 29.7731 + 22.6971i 1.16244 + 0.886172i
\(657\) 0 0
\(658\) −2.64111 + 16.0757i −0.102961 + 0.626697i
\(659\) 16.9728i 0.661165i −0.943777 0.330583i \(-0.892755\pi\)
0.943777 0.330583i \(-0.107245\pi\)
\(660\) 0 0
\(661\) 41.0591i 1.59701i 0.601985 + 0.798507i \(0.294377\pi\)
−0.601985 + 0.798507i \(0.705623\pi\)
\(662\) −4.21982 0.693282i −0.164008 0.0269452i
\(663\) 0 0
\(664\) 26.5921 + 14.1331i 1.03197 + 0.548470i
\(665\) 17.9680 0.696769
\(666\) 0 0
\(667\) 18.7863i 0.727408i
\(668\) 13.6861 + 4.62179i 0.529533 + 0.178823i
\(669\) 0 0
\(670\) 1.27739 7.77516i 0.0493501 0.300380i
\(671\) −2.04524 −0.0789554
\(672\) 0 0
\(673\) 14.8665 0.573062 0.286531 0.958071i \(-0.407498\pi\)
0.286531 + 0.958071i \(0.407498\pi\)
\(674\) 1.76208 10.7253i 0.0678726 0.413122i
\(675\) 0 0
\(676\) 1.89487 + 0.639895i 0.0728796 + 0.0246114i
\(677\) 24.2997i 0.933913i −0.884280 0.466957i \(-0.845350\pi\)
0.884280 0.466957i \(-0.154650\pi\)
\(678\) 0 0
\(679\) 13.1259 0.503725
\(680\) −28.3439 15.0641i −1.08694 0.577684i
\(681\) 0 0
\(682\) −18.9892 3.11977i −0.727134 0.119462i
\(683\) 5.98111i 0.228861i 0.993431 + 0.114430i \(0.0365043\pi\)
−0.993431 + 0.114430i \(0.963496\pi\)
\(684\) 0 0
\(685\) 30.1053i 1.15026i
\(686\) 3.83749 23.3577i 0.146516 0.891803i
\(687\) 0 0
\(688\) −19.8624 + 26.0547i −0.757248 + 0.993328i
\(689\) −4.07306 −0.155171
\(690\) 0 0
\(691\) 20.6198i 0.784414i −0.919877 0.392207i \(-0.871712\pi\)
0.919877 0.392207i \(-0.128288\pi\)
\(692\) −1.56950 + 4.64763i −0.0596634 + 0.176676i
\(693\) 0 0
\(694\) −46.0003 7.55747i −1.74615 0.286878i
\(695\) −19.7094 −0.747620
\(696\) 0 0
\(697\) 65.7323 2.48979
\(698\) −28.5654 4.69306i −1.08122 0.177635i
\(699\) 0 0
\(700\) 6.27198 + 2.11804i 0.237059 + 0.0800544i
\(701\) 11.9063i 0.449694i 0.974394 + 0.224847i \(0.0721882\pi\)
−0.974394 + 0.224847i \(0.927812\pi\)
\(702\) 0 0
\(703\) −68.8705 −2.59750
\(704\) −9.81144 + 6.62306i −0.369783 + 0.249616i
\(705\) 0 0
\(706\) −3.47086 + 21.1262i −0.130627 + 0.795094i
\(707\) 9.34049i 0.351285i
\(708\) 0 0
\(709\) 14.4805i 0.543828i 0.962322 + 0.271914i \(0.0876566\pi\)
−0.962322 + 0.271914i \(0.912343\pi\)
\(710\) −30.3282 4.98268i −1.13820 0.186997i
\(711\) 0 0
\(712\) −6.32377 + 11.8985i −0.236993 + 0.445914i
\(713\) −22.3100 −0.835515
\(714\) 0 0
\(715\) 2.39103i 0.0894194i
\(716\) 5.61416 16.6248i 0.209811 0.621297i
\(717\) 0 0
\(718\) −5.24961 + 31.9530i −0.195914 + 1.19247i
\(719\) −25.6663 −0.957191 −0.478595 0.878036i \(-0.658854\pi\)
−0.478595 + 0.878036i \(0.658854\pi\)
\(720\) 0 0
\(721\) 10.4355 0.388636
\(722\) −10.4104 + 63.3652i −0.387434 + 2.35821i
\(723\) 0 0
\(724\) 13.0057 38.5127i 0.483353 1.43131i
\(725\) 18.4988i 0.687028i
\(726\) 0 0
\(727\) 36.6958 1.36097 0.680486 0.732761i \(-0.261769\pi\)
0.680486 + 0.732761i \(0.261769\pi\)
\(728\) −3.46055 1.83921i −0.128257 0.0681656i
\(729\) 0 0
\(730\) 19.3513 + 3.17926i 0.716223 + 0.117670i
\(731\) 57.5230i 2.12756i
\(732\) 0 0
\(733\) 9.04187i 0.333969i −0.985960 0.166985i \(-0.946597\pi\)
0.985960 0.166985i \(-0.0534030\pi\)
\(734\) −5.34130 + 32.5111i −0.197151 + 1.20001i
\(735\) 0 0
\(736\) −9.97947 + 9.42083i −0.367848 + 0.347256i
\(737\) −5.10202 −0.187935
\(738\) 0 0
\(739\) 25.6800i 0.944653i 0.881424 + 0.472327i \(0.156586\pi\)
−0.881424 + 0.472327i \(0.843414\pi\)
\(740\) 26.2759 + 8.87334i 0.965921 + 0.326190i
\(741\) 0 0
\(742\) 7.87547 + 1.29387i 0.289117 + 0.0474996i
\(743\) 10.0377 0.368249 0.184124 0.982903i \(-0.441055\pi\)
0.184124 + 0.982903i \(0.441055\pi\)
\(744\) 0 0
\(745\) 27.5117 1.00795
\(746\) 11.6404 + 1.91242i 0.426184 + 0.0700186i
\(747\) 0 0
\(748\) −6.64984 + 19.6916i −0.243142 + 0.719997i
\(749\) 2.45031i 0.0895322i
\(750\) 0 0
\(751\) 22.3094 0.814083 0.407041 0.913410i \(-0.366560\pi\)
0.407041 + 0.913410i \(0.366560\pi\)
\(752\) 26.4477 + 20.1620i 0.964448 + 0.735232i
\(753\) 0 0
\(754\) −1.77537 + 10.8062i −0.0646553 + 0.393539i
\(755\) 23.6972i 0.862431i
\(756\) 0 0
\(757\) 14.9903i 0.544833i −0.962179 0.272416i \(-0.912177\pi\)
0.962179 0.272416i \(-0.0878228\pi\)
\(758\) −8.31236 1.36565i −0.301918 0.0496027i
\(759\) 0 0
\(760\) 17.2140 32.3890i 0.624418 1.17487i
\(761\) −44.0511 −1.59685 −0.798426 0.602093i \(-0.794334\pi\)
−0.798426 + 0.602093i \(0.794334\pi\)
\(762\) 0 0
\(763\) 1.42494i 0.0515862i
\(764\) −0.975088 0.329286i −0.0352774 0.0119131i
\(765\) 0 0
\(766\) 4.16056 25.3242i 0.150327 0.915001i
\(767\) 10.8609 0.392165
\(768\) 0 0
\(769\) −20.0678 −0.723665 −0.361833 0.932243i \(-0.617849\pi\)
−0.361833 + 0.932243i \(0.617849\pi\)
\(770\) −0.759550 + 4.62317i −0.0273723 + 0.166608i
\(771\) 0 0
\(772\) 43.5034 + 14.6910i 1.56572 + 0.528742i
\(773\) 17.6836i 0.636034i 0.948085 + 0.318017i \(0.103017\pi\)
−0.948085 + 0.318017i \(0.896983\pi\)
\(774\) 0 0
\(775\) 21.9686 0.789135
\(776\) 12.5751 23.6606i 0.451420 0.849367i
\(777\) 0 0
\(778\) −0.241304 0.0396442i −0.00865116 0.00142131i
\(779\) 75.1132i 2.69121i
\(780\) 0 0
\(781\) 19.9012i 0.712122i
\(782\) −3.90637 + 23.7770i −0.139692 + 0.850265i
\(783\) 0 0
\(784\) −16.1606 12.3198i −0.577163 0.439991i
\(785\) −4.03508 −0.144018
\(786\) 0 0
\(787\) 19.5587i 0.697194i 0.937273 + 0.348597i \(0.113342\pi\)
−0.937273 + 0.348597i \(0.886658\pi\)
\(788\) 4.93615 14.6170i 0.175843 0.520710i
\(789\) 0 0
\(790\) −15.8297 2.60069i −0.563195 0.0925284i
\(791\) 8.70168 0.309396
\(792\) 0 0
\(793\) −1.38219 −0.0490831
\(794\) −54.3474 8.92884i −1.92872 0.316873i
\(795\) 0 0
\(796\) 8.05090 + 2.71878i 0.285357 + 0.0963646i
\(797\) 31.9695i 1.13242i −0.824262 0.566209i \(-0.808409\pi\)
0.824262 0.566209i \(-0.191591\pi\)
\(798\) 0 0
\(799\) 58.3906 2.06571
\(800\) 9.82676 9.27667i 0.347428 0.327980i
\(801\) 0 0
\(802\) 1.26370 7.69181i 0.0446229 0.271607i
\(803\) 12.6982i 0.448110i
\(804\) 0 0
\(805\) 5.43166i 0.191441i
\(806\) −12.8331 2.10838i −0.452027 0.0742644i
\(807\) 0 0
\(808\) −16.8371 8.94854i −0.592327 0.314809i
\(809\) 9.62022 0.338229 0.169115 0.985596i \(-0.445909\pi\)
0.169115 + 0.985596i \(0.445909\pi\)
\(810\) 0 0
\(811\) 19.6731i 0.690816i 0.938453 + 0.345408i \(0.112259\pi\)
−0.938453 + 0.345408i \(0.887741\pi\)
\(812\) 6.86555 20.3304i 0.240934 0.713457i
\(813\) 0 0
\(814\) 2.91132 17.7204i 0.102042 0.621100i
\(815\) 16.3111 0.571353
\(816\) 0 0
\(817\) −65.7323 −2.29968
\(818\) 4.58767 27.9239i 0.160404 0.976336i
\(819\) 0 0
\(820\) 9.67766 28.6577i 0.337959 1.00077i
\(821\) 24.6282i 0.859532i 0.902940 + 0.429766i \(0.141404\pi\)
−0.902940 + 0.429766i \(0.858596\pi\)
\(822\) 0 0
\(823\) −10.6160 −0.370052 −0.185026 0.982734i \(-0.559237\pi\)
−0.185026 + 0.982734i \(0.559237\pi\)
\(824\) 9.99755 18.8109i 0.348281 0.655308i
\(825\) 0 0
\(826\) −21.0001 3.45015i −0.730688 0.120046i
\(827\) 19.1241i 0.665009i −0.943102 0.332505i \(-0.892106\pi\)
0.943102 0.332505i \(-0.107894\pi\)
\(828\) 0 0
\(829\) 15.6561i 0.543759i 0.962331 + 0.271879i \(0.0876452\pi\)
−0.962331 + 0.271879i \(0.912355\pi\)
\(830\) 3.94447 24.0089i 0.136914 0.833361i
\(831\) 0 0
\(832\) −6.63068 + 4.47594i −0.229878 + 0.155175i
\(833\) −35.6789 −1.23620
\(834\) 0 0
\(835\) 11.6711i 0.403895i
\(836\) −22.5019 7.59886i −0.778245 0.262812i
\(837\) 0 0
\(838\) −9.83585 1.61595i −0.339774 0.0558221i
\(839\) −10.6255 −0.366834 −0.183417 0.983035i \(-0.558716\pi\)
−0.183417 + 0.983035i \(0.558716\pi\)
\(840\) 0 0
\(841\) −30.9632 −1.06769
\(842\) −11.4661 1.88378i −0.395147 0.0649195i
\(843\) 0 0
\(844\) 4.08595 12.0994i 0.140644 0.416479i
\(845\) 1.61588i 0.0555881i
\(846\) 0 0
\(847\) −12.2074 −0.419452
\(848\) 9.87732 12.9567i 0.339189 0.444934i
\(849\) 0 0
\(850\) 3.84659 23.4132i 0.131937 0.803066i
\(851\) 20.8193i 0.713677i
\(852\) 0 0
\(853\) 2.79803i 0.0958027i −0.998852 0.0479013i \(-0.984747\pi\)
0.998852 0.0479013i \(-0.0152533\pi\)
\(854\) 2.67254 + 0.439077i 0.0914525 + 0.0150249i
\(855\) 0 0
\(856\) 4.41690 + 2.34748i 0.150967 + 0.0802354i
\(857\) −10.5004 −0.358686 −0.179343 0.983787i \(-0.557397\pi\)
−0.179343 + 0.983787i \(0.557397\pi\)
\(858\) 0 0
\(859\) 53.6535i 1.83063i 0.402733 + 0.915317i \(0.368060\pi\)
−0.402733 + 0.915317i \(0.631940\pi\)
\(860\) 25.0786 + 8.46902i 0.855174 + 0.288791i
\(861\) 0 0
\(862\) 3.29614 20.0627i 0.112267 0.683338i
\(863\) −32.0861 −1.09222 −0.546111 0.837713i \(-0.683892\pi\)
−0.546111 + 0.837713i \(0.683892\pi\)
\(864\) 0 0
\(865\) 3.96335 0.134758
\(866\) −3.97811 + 24.2137i −0.135182 + 0.822815i
\(867\) 0 0
\(868\) 24.1437 + 8.15331i 0.819491 + 0.276741i
\(869\) 10.3874i 0.352367i
\(870\) 0 0
\(871\) −3.44800 −0.116831
\(872\) −2.56858 1.36514i −0.0869832 0.0462296i
\(873\) 0 0
\(874\) −27.1703 4.46387i −0.919051 0.150993i
\(875\) 16.5430i 0.559257i
\(876\) 0 0
\(877\) 45.7566i 1.54509i 0.634960 + 0.772545i \(0.281017\pi\)
−0.634960 + 0.772545i \(0.718983\pi\)
\(878\) −3.53732 + 21.5307i −0.119379 + 0.726626i
\(879\) 0 0
\(880\) 7.60602 + 5.79833i 0.256399 + 0.195462i
\(881\) −38.0557 −1.28213 −0.641065 0.767486i \(-0.721507\pi\)
−0.641065 + 0.767486i \(0.721507\pi\)
\(882\) 0 0
\(883\) 29.9690i 1.00854i −0.863547 0.504269i \(-0.831762\pi\)
0.863547 0.504269i \(-0.168238\pi\)
\(884\) −4.49404 + 13.3078i −0.151151 + 0.447591i
\(885\) 0 0
\(886\) −21.8315 3.58675i −0.733445 0.120499i
\(887\) 51.8916 1.74235 0.871174 0.490975i \(-0.163359\pi\)
0.871174 + 0.490975i \(0.163359\pi\)
\(888\) 0 0
\(889\) 3.12167 0.104697
\(890\) 10.7426 + 1.76493i 0.360094 + 0.0591606i
\(891\) 0 0
\(892\) −32.8756 11.1020i −1.10076 0.371724i
\(893\) 66.7237i 2.23282i
\(894\) 0 0
\(895\) −14.1771 −0.473887
\(896\) 14.2426 6.54811i 0.475813 0.218757i
\(897\) 0 0
\(898\) −1.39856 + 8.51268i −0.0466707 + 0.284072i
\(899\) 71.2103i 2.37500i
\(900\) 0 0
\(901\) 28.6054i 0.952985i
\(902\) −19.3267 3.17522i −0.643508 0.105723i
\(903\) 0 0
\(904\) 8.33654 15.6856i 0.277269 0.521695i
\(905\) −32.8424 −1.09172
\(906\) 0 0
\(907\) 7.37653i 0.244934i −0.992473 0.122467i \(-0.960919\pi\)
0.992473 0.122467i \(-0.0390805\pi\)
\(908\) −5.66145 + 16.7648i −0.187882 + 0.556359i
\(909\) 0 0
\(910\) −0.513312 + 3.12439i −0.0170161 + 0.103573i
\(911\) −21.2104 −0.702732 −0.351366 0.936238i \(-0.614283\pi\)
−0.351366 + 0.936238i \(0.614283\pi\)
\(912\) 0 0
\(913\) −15.7545 −0.521398
\(914\) −2.32654 + 14.1610i −0.0769551 + 0.468405i
\(915\) 0 0
\(916\) −5.12617 + 15.1797i −0.169373 + 0.501551i
\(917\) 0.998304i 0.0329669i
\(918\) 0 0
\(919\) −22.2953 −0.735455 −0.367727 0.929934i \(-0.619864\pi\)
−0.367727 + 0.929934i \(0.619864\pi\)
\(920\) 9.79107 + 5.20374i 0.322802 + 0.171562i
\(921\) 0 0
\(922\) −27.6865 4.54866i −0.911806 0.149802i
\(923\) 13.4495i 0.442695i
\(924\) 0 0
\(925\) 20.5007i 0.674060i
\(926\) 6.45596 39.2957i 0.212156 1.29134i
\(927\) 0 0
\(928\) −30.0700 31.8531i −0.987095 1.04563i
\(929\) −21.6844 −0.711442 −0.355721 0.934592i \(-0.615765\pi\)
−0.355721 + 0.934592i \(0.615765\pi\)
\(930\) 0 0
\(931\) 40.7708i 1.33621i
\(932\) −27.2483 9.20172i −0.892548 0.301412i
\(933\) 0 0
\(934\) 17.7204 + 2.91132i 0.579830 + 0.0952613i
\(935\) 16.7924 0.549170
\(936\) 0 0
\(937\) 9.75513 0.318686 0.159343 0.987223i \(-0.449062\pi\)
0.159343 + 0.987223i \(0.449062\pi\)
\(938\) 6.66688 + 1.09531i 0.217681 + 0.0357633i
\(939\) 0 0
\(940\) 8.59675 25.4569i 0.280395 0.830311i
\(941\) 40.2886i 1.31337i 0.754165 + 0.656685i \(0.228042\pi\)
−0.754165 + 0.656685i \(0.771958\pi\)
\(942\) 0 0
\(943\) −22.7065 −0.739425
\(944\) −26.3381 + 34.5493i −0.857234 + 1.12448i
\(945\) 0 0
\(946\) 2.77866 16.9130i 0.0903421 0.549888i
\(947\) 38.5068i 1.25130i 0.780103 + 0.625651i \(0.215166\pi\)
−0.780103 + 0.625651i \(0.784834\pi\)
\(948\) 0 0
\(949\) 8.58159i 0.278570i
\(950\) 26.7546 + 4.39556i 0.868033 + 0.142611i
\(951\) 0 0
\(952\) 12.9169 24.3038i 0.418639 0.787689i
\(953\) 9.52795 0.308641 0.154320 0.988021i \(-0.450681\pi\)
0.154320 + 0.988021i \(0.450681\pi\)
\(954\) 0 0
\(955\) 0.831523i 0.0269075i
\(956\) 48.2530 + 16.2950i 1.56061 + 0.527018i
\(957\) 0 0
\(958\) 8.44338 51.3926i 0.272793 1.66042i
\(959\) −25.8141 −0.833580
\(960\) 0 0
\(961\) 53.5671 1.72797
\(962\) 1.96750 11.9757i 0.0634348 0.386111i
\(963\) 0 0
\(964\) −35.6442 12.0370i −1.14802 0.387686i
\(965\) 37.0983i 1.19424i
\(966\) 0 0
\(967\) 22.3293 0.718062 0.359031 0.933326i \(-0.383107\pi\)
0.359031 + 0.933326i \(0.383107\pi\)
\(968\) −11.6952 + 22.0050i −0.375897 + 0.707267i
\(969\) 0 0
\(970\) −21.3622 3.50964i −0.685900 0.112688i
\(971\) 59.7660i 1.91798i −0.283438 0.958991i \(-0.591475\pi\)
0.283438 0.958991i \(-0.408525\pi\)
\(972\) 0 0
\(973\) 16.9000i 0.541790i
\(974\) −0.111088 + 0.676160i −0.00355948 + 0.0216656i
\(975\) 0 0
\(976\) 3.35187 4.39685i 0.107291 0.140740i
\(977\) −6.12704 −0.196021 −0.0980107 0.995185i \(-0.531248\pi\)
−0.0980107 + 0.995185i \(0.531248\pi\)
\(978\) 0 0
\(979\) 7.04927i 0.225296i
\(980\) −5.25295 + 15.5551i −0.167799 + 0.496890i
\(981\) 0 0
\(982\) 4.55723 + 0.748716i 0.145427 + 0.0238925i
\(983\) 16.6436 0.530849 0.265424 0.964132i \(-0.414488\pi\)
0.265424 + 0.964132i \(0.414488\pi\)
\(984\) 0 0
\(985\) −12.4649 −0.397166
\(986\) −75.8929 12.4686i −2.41692 0.397081i
\(987\) 0 0
\(988\) −15.2070 5.13540i −0.483800 0.163379i
\(989\) 19.8707i 0.631850i
\(990\) 0 0
\(991\) 30.5255 0.969673 0.484836 0.874605i \(-0.338879\pi\)
0.484836 + 0.874605i \(0.338879\pi\)
\(992\) 37.8277 35.7101i 1.20103 1.13380i
\(993\) 0 0
\(994\) 4.27245 26.0052i 0.135514 0.824836i
\(995\) 6.86555i 0.217653i
\(996\) 0 0
\(997\) 22.7042i 0.719049i −0.933136 0.359525i \(-0.882939\pi\)
0.933136 0.359525i \(-0.117061\pi\)
\(998\) 0.472669 + 0.0776556i 0.0149621 + 0.00245815i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.g.f.469.13 yes 24
3.2 odd 2 inner 936.2.g.f.469.12 yes 24
4.3 odd 2 3744.2.g.f.1873.2 24
8.3 odd 2 3744.2.g.f.1873.1 24
8.5 even 2 inner 936.2.g.f.469.14 yes 24
12.11 even 2 3744.2.g.f.1873.21 24
24.5 odd 2 inner 936.2.g.f.469.11 24
24.11 even 2 3744.2.g.f.1873.22 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.g.f.469.11 24 24.5 odd 2 inner
936.2.g.f.469.12 yes 24 3.2 odd 2 inner
936.2.g.f.469.13 yes 24 1.1 even 1 trivial
936.2.g.f.469.14 yes 24 8.5 even 2 inner
3744.2.g.f.1873.1 24 8.3 odd 2
3744.2.g.f.1873.2 24 4.3 odd 2
3744.2.g.f.1873.21 24 12.11 even 2
3744.2.g.f.1873.22 24 24.11 even 2