Properties

Label 936.2.g.f.469.12
Level $936$
Weight $2$
Character 936.469
Analytic conductor $7.474$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [936,2,Mod(469,936)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("936.469"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(936, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 936 = 2^{3} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 936.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.47399762919\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 469.12
Character \(\chi\) \(=\) 936.469
Dual form 936.2.g.f.469.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.229270 + 1.39551i) q^{2} +(-1.89487 - 0.639895i) q^{4} -1.61588i q^{5} -1.38556 q^{7} +(1.32741 - 2.49759i) q^{8} +(2.25497 + 0.370474i) q^{10} +1.47970i q^{11} -1.00000i q^{13} +(0.317667 - 1.93355i) q^{14} +(3.18107 + 2.42504i) q^{16} -7.02308 q^{17} +8.02537i q^{19} +(-1.03400 + 3.06189i) q^{20} +(-2.06493 - 0.339252i) q^{22} +2.42604 q^{23} +2.38892 q^{25} +(1.39551 + 0.229270i) q^{26} +(2.62545 + 0.886611i) q^{28} +7.74359i q^{29} +9.19604 q^{31} +(-4.11348 + 3.88321i) q^{32} +(1.61018 - 9.80075i) q^{34} +2.23890i q^{35} +8.58159i q^{37} +(-11.1995 - 1.83998i) q^{38} +(-4.03582 - 2.14495i) q^{40} -9.35947 q^{41} +8.19056i q^{43} +(0.946855 - 2.80385i) q^{44} +(-0.556219 + 3.38556i) q^{46} -8.31410 q^{47} -5.08023 q^{49} +(-0.547708 + 3.33375i) q^{50} +(-0.639895 + 1.89487i) q^{52} +4.07306i q^{53} +2.39103 q^{55} +(-1.83921 + 3.46055i) q^{56} +(-10.8062 - 1.77537i) q^{58} -10.8609i q^{59} -1.38219i q^{61} +(-2.10838 + 12.8331i) q^{62} +(-4.47594 - 6.63068i) q^{64} -1.61588 q^{65} -3.44800i q^{67} +(13.3078 + 4.49404i) q^{68} +(-3.12439 - 0.513312i) q^{70} +13.4495 q^{71} +8.58159 q^{73} +(-11.9757 - 1.96750i) q^{74} +(5.13540 - 15.2070i) q^{76} -2.05021i q^{77} -7.01990 q^{79} +(3.91858 - 5.14024i) q^{80} +(2.14585 - 13.0612i) q^{82} +10.6471i q^{83} +11.3485i q^{85} +(-11.4300 - 1.87785i) q^{86} +(3.69570 + 1.96418i) q^{88} -4.76398 q^{89} +1.38556i q^{91} +(-4.59704 - 1.55241i) q^{92} +(1.90617 - 11.6024i) q^{94} +12.9681 q^{95} -9.47337 q^{97} +(1.16475 - 7.08949i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{4} - 8 q^{7} + 12 q^{10} - 4 q^{16} + 4 q^{22} - 24 q^{25} + 8 q^{28} + 40 q^{31} - 16 q^{34} - 36 q^{40} - 24 q^{46} + 24 q^{49} - 4 q^{52} - 16 q^{55} - 24 q^{58} + 8 q^{64} - 16 q^{70} - 16 q^{76}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/936\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(469\) \(703\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.229270 + 1.39551i −0.162118 + 0.986771i
\(3\) 0 0
\(4\) −1.89487 0.639895i −0.947435 0.319948i
\(5\) 1.61588i 0.722645i −0.932441 0.361323i \(-0.882325\pi\)
0.932441 0.361323i \(-0.117675\pi\)
\(6\) 0 0
\(7\) −1.38556 −0.523691 −0.261845 0.965110i \(-0.584331\pi\)
−0.261845 + 0.965110i \(0.584331\pi\)
\(8\) 1.32741 2.49759i 0.469312 0.883032i
\(9\) 0 0
\(10\) 2.25497 + 0.370474i 0.713086 + 0.117154i
\(11\) 1.47970i 0.446147i 0.974802 + 0.223074i \(0.0716090\pi\)
−0.974802 + 0.223074i \(0.928391\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 0.317667 1.93355i 0.0849000 0.516763i
\(15\) 0 0
\(16\) 3.18107 + 2.42504i 0.795267 + 0.606259i
\(17\) −7.02308 −1.70335 −0.851674 0.524073i \(-0.824412\pi\)
−0.851674 + 0.524073i \(0.824412\pi\)
\(18\) 0 0
\(19\) 8.02537i 1.84115i 0.390570 + 0.920573i \(0.372278\pi\)
−0.390570 + 0.920573i \(0.627722\pi\)
\(20\) −1.03400 + 3.06189i −0.231209 + 0.684660i
\(21\) 0 0
\(22\) −2.06493 0.339252i −0.440245 0.0723287i
\(23\) 2.42604 0.505865 0.252932 0.967484i \(-0.418605\pi\)
0.252932 + 0.967484i \(0.418605\pi\)
\(24\) 0 0
\(25\) 2.38892 0.477784
\(26\) 1.39551 + 0.229270i 0.273681 + 0.0449636i
\(27\) 0 0
\(28\) 2.62545 + 0.886611i 0.496163 + 0.167554i
\(29\) 7.74359i 1.43795i 0.695037 + 0.718974i \(0.255388\pi\)
−0.695037 + 0.718974i \(0.744612\pi\)
\(30\) 0 0
\(31\) 9.19604 1.65166 0.825828 0.563922i \(-0.190708\pi\)
0.825828 + 0.563922i \(0.190708\pi\)
\(32\) −4.11348 + 3.88321i −0.727167 + 0.686461i
\(33\) 0 0
\(34\) 1.61018 9.80075i 0.276144 1.68081i
\(35\) 2.23890i 0.378443i
\(36\) 0 0
\(37\) 8.58159i 1.41080i 0.708807 + 0.705402i \(0.249234\pi\)
−0.708807 + 0.705402i \(0.750766\pi\)
\(38\) −11.1995 1.83998i −1.81679 0.298484i
\(39\) 0 0
\(40\) −4.03582 2.14495i −0.638119 0.339146i
\(41\) −9.35947 −1.46170 −0.730852 0.682536i \(-0.760877\pi\)
−0.730852 + 0.682536i \(0.760877\pi\)
\(42\) 0 0
\(43\) 8.19056i 1.24905i 0.781005 + 0.624525i \(0.214707\pi\)
−0.781005 + 0.624525i \(0.785293\pi\)
\(44\) 0.946855 2.80385i 0.142744 0.422696i
\(45\) 0 0
\(46\) −0.556219 + 3.38556i −0.0820100 + 0.499173i
\(47\) −8.31410 −1.21274 −0.606368 0.795184i \(-0.707374\pi\)
−0.606368 + 0.795184i \(0.707374\pi\)
\(48\) 0 0
\(49\) −5.08023 −0.725748
\(50\) −0.547708 + 3.33375i −0.0774576 + 0.471463i
\(51\) 0 0
\(52\) −0.639895 + 1.89487i −0.0887375 + 0.262771i
\(53\) 4.07306i 0.559478i 0.960076 + 0.279739i \(0.0902479\pi\)
−0.960076 + 0.279739i \(0.909752\pi\)
\(54\) 0 0
\(55\) 2.39103 0.322406
\(56\) −1.83921 + 3.46055i −0.245774 + 0.462436i
\(57\) 0 0
\(58\) −10.8062 1.77537i −1.41893 0.233118i
\(59\) 10.8609i 1.41397i −0.707228 0.706986i \(-0.750054\pi\)
0.707228 0.706986i \(-0.249946\pi\)
\(60\) 0 0
\(61\) 1.38219i 0.176972i −0.996077 0.0884859i \(-0.971797\pi\)
0.996077 0.0884859i \(-0.0282028\pi\)
\(62\) −2.10838 + 12.8331i −0.267764 + 1.62981i
\(63\) 0 0
\(64\) −4.47594 6.63068i −0.559493 0.828835i
\(65\) −1.61588 −0.200426
\(66\) 0 0
\(67\) 3.44800i 0.421240i −0.977568 0.210620i \(-0.932452\pi\)
0.977568 0.210620i \(-0.0675483\pi\)
\(68\) 13.3078 + 4.49404i 1.61381 + 0.544982i
\(69\) 0 0
\(70\) −3.12439 0.513312i −0.373437 0.0613526i
\(71\) 13.4495 1.59616 0.798079 0.602552i \(-0.205850\pi\)
0.798079 + 0.602552i \(0.205850\pi\)
\(72\) 0 0
\(73\) 8.58159 1.00440 0.502200 0.864752i \(-0.332524\pi\)
0.502200 + 0.864752i \(0.332524\pi\)
\(74\) −11.9757 1.96750i −1.39214 0.228718i
\(75\) 0 0
\(76\) 5.13540 15.2070i 0.589071 1.74437i
\(77\) 2.05021i 0.233643i
\(78\) 0 0
\(79\) −7.01990 −0.789800 −0.394900 0.918724i \(-0.629221\pi\)
−0.394900 + 0.918724i \(0.629221\pi\)
\(80\) 3.91858 5.14024i 0.438111 0.574696i
\(81\) 0 0
\(82\) 2.14585 13.0612i 0.236969 1.44237i
\(83\) 10.6471i 1.16867i 0.811513 + 0.584334i \(0.198644\pi\)
−0.811513 + 0.584334i \(0.801356\pi\)
\(84\) 0 0
\(85\) 11.3485i 1.23092i
\(86\) −11.4300 1.87785i −1.23253 0.202494i
\(87\) 0 0
\(88\) 3.69570 + 1.96418i 0.393962 + 0.209382i
\(89\) −4.76398 −0.504981 −0.252490 0.967599i \(-0.581250\pi\)
−0.252490 + 0.967599i \(0.581250\pi\)
\(90\) 0 0
\(91\) 1.38556i 0.145246i
\(92\) −4.59704 1.55241i −0.479274 0.161850i
\(93\) 0 0
\(94\) 1.90617 11.6024i 0.196607 1.19669i
\(95\) 12.9681 1.33050
\(96\) 0 0
\(97\) −9.47337 −0.961875 −0.480938 0.876755i \(-0.659704\pi\)
−0.480938 + 0.876755i \(0.659704\pi\)
\(98\) 1.16475 7.08949i 0.117657 0.716147i
\(99\) 0 0
\(100\) −4.52669 1.52866i −0.452669 0.152866i
\(101\) 6.74133i 0.670788i −0.942078 0.335394i \(-0.891131\pi\)
0.942078 0.335394i \(-0.108869\pi\)
\(102\) 0 0
\(103\) −7.53160 −0.742110 −0.371055 0.928611i \(-0.621004\pi\)
−0.371055 + 0.928611i \(0.621004\pi\)
\(104\) −2.49759 1.32741i −0.244909 0.130164i
\(105\) 0 0
\(106\) −5.68398 0.933831i −0.552077 0.0907017i
\(107\) 1.76846i 0.170964i 0.996340 + 0.0854819i \(0.0272430\pi\)
−0.996340 + 0.0854819i \(0.972757\pi\)
\(108\) 0 0
\(109\) 1.02842i 0.0985051i 0.998786 + 0.0492525i \(0.0156839\pi\)
−0.998786 + 0.0492525i \(0.984316\pi\)
\(110\) −0.548191 + 3.33669i −0.0522680 + 0.318141i
\(111\) 0 0
\(112\) −4.40755 3.36003i −0.416474 0.317493i
\(113\) 6.28028 0.590799 0.295400 0.955374i \(-0.404547\pi\)
0.295400 + 0.955374i \(0.404547\pi\)
\(114\) 0 0
\(115\) 3.92020i 0.365561i
\(116\) 4.95509 14.6731i 0.460068 1.36236i
\(117\) 0 0
\(118\) 15.1565 + 2.49009i 1.39527 + 0.229231i
\(119\) 9.73087 0.892027
\(120\) 0 0
\(121\) 8.81048 0.800953
\(122\) 1.92886 + 0.316896i 0.174631 + 0.0286904i
\(123\) 0 0
\(124\) −17.4253 5.88450i −1.56484 0.528444i
\(125\) 11.9396i 1.06791i
\(126\) 0 0
\(127\) −2.25301 −0.199922 −0.0999611 0.994991i \(-0.531872\pi\)
−0.0999611 + 0.994991i \(0.531872\pi\)
\(128\) 10.2794 4.72598i 0.908575 0.417722i
\(129\) 0 0
\(130\) 0.370474 2.25497i 0.0324927 0.197774i
\(131\) 0.720508i 0.0629510i −0.999505 0.0314755i \(-0.989979\pi\)
0.999505 0.0314755i \(-0.0100206\pi\)
\(132\) 0 0
\(133\) 11.1196i 0.964192i
\(134\) 4.81170 + 0.790524i 0.415668 + 0.0682908i
\(135\) 0 0
\(136\) −9.32254 + 17.5408i −0.799401 + 1.50411i
\(137\) −18.6308 −1.59174 −0.795870 0.605468i \(-0.792986\pi\)
−0.795870 + 0.605468i \(0.792986\pi\)
\(138\) 0 0
\(139\) 12.1973i 1.03456i 0.855816 + 0.517280i \(0.173056\pi\)
−0.855816 + 0.517280i \(0.826944\pi\)
\(140\) 1.43266 4.24242i 0.121082 0.358550i
\(141\) 0 0
\(142\) −3.08356 + 18.7688i −0.258767 + 1.57504i
\(143\) 1.47970 0.123739
\(144\) 0 0
\(145\) 12.5127 1.03913
\(146\) −1.96750 + 11.9757i −0.162832 + 0.991112i
\(147\) 0 0
\(148\) 5.49132 16.2610i 0.451384 1.33665i
\(149\) 17.0258i 1.39481i 0.716679 + 0.697403i \(0.245661\pi\)
−0.716679 + 0.697403i \(0.754339\pi\)
\(150\) 0 0
\(151\) 14.6652 1.19344 0.596718 0.802451i \(-0.296471\pi\)
0.596718 + 0.802451i \(0.296471\pi\)
\(152\) 20.0441 + 10.6530i 1.62579 + 0.864072i
\(153\) 0 0
\(154\) 2.86108 + 0.470052i 0.230552 + 0.0378779i
\(155\) 14.8597i 1.19356i
\(156\) 0 0
\(157\) 2.49714i 0.199293i 0.995023 + 0.0996466i \(0.0317712\pi\)
−0.995023 + 0.0996466i \(0.968229\pi\)
\(158\) 1.60945 9.79631i 0.128041 0.779352i
\(159\) 0 0
\(160\) 6.27481 + 6.64690i 0.496068 + 0.525484i
\(161\) −3.36142 −0.264917
\(162\) 0 0
\(163\) 10.0942i 0.790641i −0.918543 0.395320i \(-0.870634\pi\)
0.918543 0.395320i \(-0.129366\pi\)
\(164\) 17.7350 + 5.98908i 1.38487 + 0.467669i
\(165\) 0 0
\(166\) −14.8581 2.44106i −1.15321 0.189463i
\(167\) 7.22273 0.558912 0.279456 0.960159i \(-0.409846\pi\)
0.279456 + 0.960159i \(0.409846\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) −15.8369 2.60187i −1.21463 0.199554i
\(171\) 0 0
\(172\) 5.24110 15.5201i 0.399630 1.18339i
\(173\) 2.45274i 0.186478i 0.995644 + 0.0932392i \(0.0297221\pi\)
−0.995644 + 0.0932392i \(0.970278\pi\)
\(174\) 0 0
\(175\) −3.30998 −0.250211
\(176\) −3.58834 + 4.70703i −0.270481 + 0.354806i
\(177\) 0 0
\(178\) 1.09224 6.64815i 0.0818667 0.498300i
\(179\) 8.77357i 0.655767i −0.944718 0.327884i \(-0.893665\pi\)
0.944718 0.327884i \(-0.106335\pi\)
\(180\) 0 0
\(181\) 20.3247i 1.51072i 0.655307 + 0.755362i \(0.272539\pi\)
−0.655307 + 0.755362i \(0.727461\pi\)
\(182\) −1.93355 0.317667i −0.143324 0.0235470i
\(183\) 0 0
\(184\) 3.22037 6.05927i 0.237408 0.446695i
\(185\) 13.8669 1.01951
\(186\) 0 0
\(187\) 10.3921i 0.759944i
\(188\) 15.7541 + 5.32015i 1.14899 + 0.388012i
\(189\) 0 0
\(190\) −2.97319 + 18.0970i −0.215698 + 1.31290i
\(191\) −0.514593 −0.0372347 −0.0186173 0.999827i \(-0.505926\pi\)
−0.0186173 + 0.999827i \(0.505926\pi\)
\(192\) 0 0
\(193\) −22.9585 −1.65259 −0.826294 0.563238i \(-0.809555\pi\)
−0.826294 + 0.563238i \(0.809555\pi\)
\(194\) 2.17196 13.2201i 0.155938 0.949151i
\(195\) 0 0
\(196\) 9.62639 + 3.25082i 0.687599 + 0.232201i
\(197\) 7.71400i 0.549600i −0.961501 0.274800i \(-0.911388\pi\)
0.961501 0.274800i \(-0.0886116\pi\)
\(198\) 0 0
\(199\) −4.24879 −0.301189 −0.150594 0.988596i \(-0.548119\pi\)
−0.150594 + 0.988596i \(0.548119\pi\)
\(200\) 3.17109 5.96655i 0.224230 0.421898i
\(201\) 0 0
\(202\) 9.40757 + 1.54559i 0.661914 + 0.108747i
\(203\) 10.7292i 0.753040i
\(204\) 0 0
\(205\) 15.1238i 1.05629i
\(206\) 1.72677 10.5104i 0.120310 0.732293i
\(207\) 0 0
\(208\) 2.42504 3.18107i 0.168146 0.220567i
\(209\) −11.8752 −0.821422
\(210\) 0 0
\(211\) 6.38535i 0.439585i 0.975547 + 0.219793i \(0.0705381\pi\)
−0.975547 + 0.219793i \(0.929462\pi\)
\(212\) 2.60633 7.71792i 0.179004 0.530069i
\(213\) 0 0
\(214\) −2.46790 0.405456i −0.168702 0.0277164i
\(215\) 13.2350 0.902620
\(216\) 0 0
\(217\) −12.7416 −0.864958
\(218\) −1.43517 0.235787i −0.0972020 0.0159695i
\(219\) 0 0
\(220\) −4.53069 1.53001i −0.305459 0.103153i
\(221\) 7.02308i 0.472423i
\(222\) 0 0
\(223\) 17.3498 1.16183 0.580914 0.813965i \(-0.302695\pi\)
0.580914 + 0.813965i \(0.302695\pi\)
\(224\) 5.69945 5.38040i 0.380811 0.359493i
\(225\) 0 0
\(226\) −1.43988 + 8.76417i −0.0957795 + 0.582984i
\(227\) 8.84746i 0.587226i 0.955924 + 0.293613i \(0.0948578\pi\)
−0.955924 + 0.293613i \(0.905142\pi\)
\(228\) 0 0
\(229\) 8.01094i 0.529378i −0.964334 0.264689i \(-0.914731\pi\)
0.964334 0.264689i \(-0.0852693\pi\)
\(230\) 5.47067 + 0.898786i 0.360725 + 0.0592642i
\(231\) 0 0
\(232\) 19.3403 + 10.2790i 1.26975 + 0.674846i
\(233\) −14.3800 −0.942068 −0.471034 0.882115i \(-0.656119\pi\)
−0.471034 + 0.882115i \(0.656119\pi\)
\(234\) 0 0
\(235\) 13.4346i 0.876378i
\(236\) −6.94985 + 20.5800i −0.452397 + 1.33965i
\(237\) 0 0
\(238\) −2.23100 + 13.5795i −0.144614 + 0.880227i
\(239\) 25.4651 1.64720 0.823600 0.567172i \(-0.191962\pi\)
0.823600 + 0.567172i \(0.191962\pi\)
\(240\) 0 0
\(241\) 18.8109 1.21172 0.605859 0.795572i \(-0.292830\pi\)
0.605859 + 0.795572i \(0.292830\pi\)
\(242\) −2.01998 + 12.2951i −0.129849 + 0.790357i
\(243\) 0 0
\(244\) −0.884459 + 2.61908i −0.0566217 + 0.167669i
\(245\) 8.20907i 0.524458i
\(246\) 0 0
\(247\) 8.02537 0.510642
\(248\) 12.2070 22.9680i 0.775142 1.45847i
\(249\) 0 0
\(250\) 16.6618 + 2.73740i 1.05379 + 0.173129i
\(251\) 20.0393i 1.26487i 0.774615 + 0.632434i \(0.217944\pi\)
−0.774615 + 0.632434i \(0.782056\pi\)
\(252\) 0 0
\(253\) 3.58982i 0.225690i
\(254\) 0.516547 3.14408i 0.0324111 0.197277i
\(255\) 0 0
\(256\) 4.23838 + 15.4284i 0.264899 + 0.964276i
\(257\) −13.3034 −0.829841 −0.414920 0.909858i \(-0.636191\pi\)
−0.414920 + 0.909858i \(0.636191\pi\)
\(258\) 0 0
\(259\) 11.8903i 0.738826i
\(260\) 3.06189 + 1.03400i 0.189890 + 0.0641258i
\(261\) 0 0
\(262\) 1.00547 + 0.165191i 0.0621183 + 0.0102055i
\(263\) 12.2893 0.757790 0.378895 0.925440i \(-0.376304\pi\)
0.378895 + 0.925440i \(0.376304\pi\)
\(264\) 0 0
\(265\) 6.58159 0.404304
\(266\) 15.5175 + 2.54939i 0.951437 + 0.156313i
\(267\) 0 0
\(268\) −2.20636 + 6.53351i −0.134775 + 0.399098i
\(269\) 9.03003i 0.550570i 0.961363 + 0.275285i \(0.0887723\pi\)
−0.961363 + 0.275285i \(0.911228\pi\)
\(270\) 0 0
\(271\) −7.08209 −0.430206 −0.215103 0.976591i \(-0.569009\pi\)
−0.215103 + 0.976591i \(0.569009\pi\)
\(272\) −22.3409 17.0312i −1.35462 1.03267i
\(273\) 0 0
\(274\) 4.27149 25.9994i 0.258050 1.57068i
\(275\) 3.53489i 0.213162i
\(276\) 0 0
\(277\) 25.6608i 1.54181i −0.636953 0.770903i \(-0.719805\pi\)
0.636953 0.770903i \(-0.280195\pi\)
\(278\) −17.0214 2.79647i −1.02087 0.167721i
\(279\) 0 0
\(280\) 5.59186 + 2.97195i 0.334177 + 0.177608i
\(281\) −4.50739 −0.268888 −0.134444 0.990921i \(-0.542925\pi\)
−0.134444 + 0.990921i \(0.542925\pi\)
\(282\) 0 0
\(283\) 17.5489i 1.04318i 0.853197 + 0.521588i \(0.174660\pi\)
−0.853197 + 0.521588i \(0.825340\pi\)
\(284\) −25.4850 8.60625i −1.51226 0.510687i
\(285\) 0 0
\(286\) −0.339252 + 2.06493i −0.0200604 + 0.122102i
\(287\) 12.9681 0.765481
\(288\) 0 0
\(289\) 32.3237 1.90139
\(290\) −2.86880 + 17.4616i −0.168462 + 1.02538i
\(291\) 0 0
\(292\) −16.2610 5.49132i −0.951603 0.321355i
\(293\) 30.7749i 1.79789i −0.438061 0.898945i \(-0.644335\pi\)
0.438061 0.898945i \(-0.355665\pi\)
\(294\) 0 0
\(295\) −17.5500 −1.02180
\(296\) 21.4333 + 11.3913i 1.24579 + 0.662108i
\(297\) 0 0
\(298\) −23.7596 3.90350i −1.37635 0.226124i
\(299\) 2.42604i 0.140302i
\(300\) 0 0
\(301\) 11.3485i 0.654116i
\(302\) −3.36229 + 20.4653i −0.193478 + 1.17765i
\(303\) 0 0
\(304\) −19.4618 + 25.5293i −1.11621 + 1.46420i
\(305\) −2.23346 −0.127888
\(306\) 0 0
\(307\) 22.1839i 1.26610i −0.774110 0.633051i \(-0.781802\pi\)
0.774110 0.633051i \(-0.218198\pi\)
\(308\) −1.31192 + 3.88488i −0.0747536 + 0.221362i
\(309\) 0 0
\(310\) 20.7368 + 3.40689i 1.17777 + 0.193498i
\(311\) −14.8795 −0.843740 −0.421870 0.906656i \(-0.638626\pi\)
−0.421870 + 0.906656i \(0.638626\pi\)
\(312\) 0 0
\(313\) −22.2093 −1.25534 −0.627671 0.778479i \(-0.715992\pi\)
−0.627671 + 0.778479i \(0.715992\pi\)
\(314\) −3.48477 0.572519i −0.196657 0.0323091i
\(315\) 0 0
\(316\) 13.3018 + 4.49200i 0.748285 + 0.252695i
\(317\) 9.62245i 0.540451i −0.962797 0.270225i \(-0.912902\pi\)
0.962797 0.270225i \(-0.0870982\pi\)
\(318\) 0 0
\(319\) −11.4582 −0.641537
\(320\) −10.7144 + 7.23260i −0.598954 + 0.404315i
\(321\) 0 0
\(322\) 0.770673 4.69088i 0.0429479 0.261412i
\(323\) 56.3628i 3.13611i
\(324\) 0 0
\(325\) 2.38892i 0.132513i
\(326\) 14.0865 + 2.31430i 0.780181 + 0.128177i
\(327\) 0 0
\(328\) −12.4239 + 23.3762i −0.685995 + 1.29073i
\(329\) 11.5196 0.635099
\(330\) 0 0
\(331\) 3.02387i 0.166207i −0.996541 0.0831034i \(-0.973517\pi\)
0.996541 0.0831034i \(-0.0264832\pi\)
\(332\) 6.81302 20.1748i 0.373913 1.10724i
\(333\) 0 0
\(334\) −1.65596 + 10.0794i −0.0906099 + 0.551518i
\(335\) −5.57157 −0.304407
\(336\) 0 0
\(337\) 7.68559 0.418661 0.209330 0.977845i \(-0.432872\pi\)
0.209330 + 0.977845i \(0.432872\pi\)
\(338\) 0.229270 1.39551i 0.0124707 0.0759055i
\(339\) 0 0
\(340\) 7.26184 21.5039i 0.393829 1.16621i
\(341\) 13.6074i 0.736882i
\(342\) 0 0
\(343\) 16.7378 0.903758
\(344\) 20.4567 + 10.8723i 1.10295 + 0.586194i
\(345\) 0 0
\(346\) −3.42281 0.562340i −0.184012 0.0302316i
\(347\) 32.9632i 1.76956i 0.466013 + 0.884778i \(0.345690\pi\)
−0.466013 + 0.884778i \(0.654310\pi\)
\(348\) 0 0
\(349\) 20.4696i 1.09571i −0.836573 0.547856i \(-0.815444\pi\)
0.836573 0.547856i \(-0.184556\pi\)
\(350\) 0.758880 4.61910i 0.0405638 0.246901i
\(351\) 0 0
\(352\) −5.74599 6.08672i −0.306263 0.324423i
\(353\) 15.1387 0.805753 0.402877 0.915254i \(-0.368010\pi\)
0.402877 + 0.915254i \(0.368010\pi\)
\(354\) 0 0
\(355\) 21.7328i 1.15346i
\(356\) 9.02712 + 3.04845i 0.478436 + 0.161567i
\(357\) 0 0
\(358\) 12.2436 + 2.01152i 0.647092 + 0.106312i
\(359\) 22.8971 1.20846 0.604230 0.796810i \(-0.293481\pi\)
0.604230 + 0.796810i \(0.293481\pi\)
\(360\) 0 0
\(361\) −45.4066 −2.38982
\(362\) −28.3633 4.65985i −1.49074 0.244916i
\(363\) 0 0
\(364\) 0.886611 2.62545i 0.0464710 0.137611i
\(365\) 13.8669i 0.725825i
\(366\) 0 0
\(367\) −23.2970 −1.21609 −0.608046 0.793902i \(-0.708047\pi\)
−0.608046 + 0.793902i \(0.708047\pi\)
\(368\) 7.71741 + 5.88325i 0.402298 + 0.306685i
\(369\) 0 0
\(370\) −3.17926 + 19.3513i −0.165282 + 1.00602i
\(371\) 5.64345i 0.292993i
\(372\) 0 0
\(373\) 8.34133i 0.431898i 0.976405 + 0.215949i \(0.0692844\pi\)
−0.976405 + 0.215949i \(0.930716\pi\)
\(374\) 14.5022 + 2.38259i 0.749890 + 0.123201i
\(375\) 0 0
\(376\) −11.0363 + 20.7652i −0.569151 + 1.07088i
\(377\) 7.74359 0.398815
\(378\) 0 0
\(379\) 5.95652i 0.305966i −0.988229 0.152983i \(-0.951112\pi\)
0.988229 0.152983i \(-0.0488880\pi\)
\(380\) −24.5728 8.29821i −1.26056 0.425689i
\(381\) 0 0
\(382\) 0.117981 0.718118i 0.00603643 0.0367421i
\(383\) −18.1470 −0.927267 −0.463634 0.886027i \(-0.653455\pi\)
−0.463634 + 0.886027i \(0.653455\pi\)
\(384\) 0 0
\(385\) −3.31290 −0.168841
\(386\) 5.26370 32.0387i 0.267915 1.63073i
\(387\) 0 0
\(388\) 17.9508 + 6.06197i 0.911315 + 0.307750i
\(389\) 0.172915i 0.00876713i 0.999990 + 0.00438357i \(0.00139534\pi\)
−0.999990 + 0.00438357i \(0.998605\pi\)
\(390\) 0 0
\(391\) −17.0383 −0.861664
\(392\) −6.74358 + 12.6884i −0.340602 + 0.640859i
\(393\) 0 0
\(394\) 10.7649 + 1.76859i 0.542329 + 0.0891002i
\(395\) 11.3433i 0.570746i
\(396\) 0 0
\(397\) 38.9446i 1.95457i −0.211920 0.977287i \(-0.567972\pi\)
0.211920 0.977287i \(-0.432028\pi\)
\(398\) 0.974120 5.92921i 0.0488282 0.297204i
\(399\) 0 0
\(400\) 7.59931 + 5.79322i 0.379966 + 0.289661i
\(401\) −5.51185 −0.275249 −0.137624 0.990485i \(-0.543947\pi\)
−0.137624 + 0.990485i \(0.543947\pi\)
\(402\) 0 0
\(403\) 9.19604i 0.458087i
\(404\) −4.31375 + 12.7740i −0.214617 + 0.635528i
\(405\) 0 0
\(406\) 14.9726 + 2.45988i 0.743079 + 0.122082i
\(407\) −12.6982 −0.629427
\(408\) 0 0
\(409\) 20.0099 0.989424 0.494712 0.869057i \(-0.335273\pi\)
0.494712 + 0.869057i \(0.335273\pi\)
\(410\) −21.1054 3.46744i −1.04232 0.171245i
\(411\) 0 0
\(412\) 14.2714 + 4.81943i 0.703101 + 0.237437i
\(413\) 15.0484i 0.740484i
\(414\) 0 0
\(415\) 17.2044 0.844533
\(416\) 3.88321 + 4.11348i 0.190390 + 0.201680i
\(417\) 0 0
\(418\) 2.72262 16.5719i 0.133168 0.810556i
\(419\) 7.04824i 0.344329i 0.985068 + 0.172164i \(0.0550760\pi\)
−0.985068 + 0.172164i \(0.944924\pi\)
\(420\) 0 0
\(421\) 8.21644i 0.400445i −0.979750 0.200222i \(-0.935834\pi\)
0.979750 0.200222i \(-0.0641664\pi\)
\(422\) −8.91078 1.46397i −0.433770 0.0712649i
\(423\) 0 0
\(424\) 10.1728 + 5.40664i 0.494037 + 0.262570i
\(425\) −16.7776 −0.813831
\(426\) 0 0
\(427\) 1.91511i 0.0926785i
\(428\) 1.13163 3.35101i 0.0546995 0.161977i
\(429\) 0 0
\(430\) −3.03439 + 18.4695i −0.146331 + 0.890679i
\(431\) −14.3766 −0.692499 −0.346249 0.938143i \(-0.612545\pi\)
−0.346249 + 0.938143i \(0.612545\pi\)
\(432\) 0 0
\(433\) −17.3512 −0.833846 −0.416923 0.908942i \(-0.636891\pi\)
−0.416923 + 0.908942i \(0.636891\pi\)
\(434\) 2.92127 17.7810i 0.140226 0.853515i
\(435\) 0 0
\(436\) 0.658083 1.94873i 0.0315165 0.0933272i
\(437\) 19.4699i 0.931372i
\(438\) 0 0
\(439\) −15.4286 −0.736367 −0.368183 0.929753i \(-0.620020\pi\)
−0.368183 + 0.929753i \(0.620020\pi\)
\(440\) 3.17389 5.97182i 0.151309 0.284695i
\(441\) 0 0
\(442\) −9.80075 1.61018i −0.466174 0.0765886i
\(443\) 15.6442i 0.743278i 0.928377 + 0.371639i \(0.121204\pi\)
−0.928377 + 0.371639i \(0.878796\pi\)
\(444\) 0 0
\(445\) 7.69803i 0.364922i
\(446\) −3.97779 + 24.2117i −0.188354 + 1.14646i
\(447\) 0 0
\(448\) 6.20167 + 9.18718i 0.293001 + 0.434054i
\(449\) 6.10007 0.287880 0.143940 0.989586i \(-0.454023\pi\)
0.143940 + 0.989586i \(0.454023\pi\)
\(450\) 0 0
\(451\) 13.8492i 0.652135i
\(452\) −11.9003 4.01872i −0.559744 0.189025i
\(453\) 0 0
\(454\) −12.3467 2.02846i −0.579458 0.0952003i
\(455\) 2.23890 0.104961
\(456\) 0 0
\(457\) −10.1476 −0.474684 −0.237342 0.971426i \(-0.576276\pi\)
−0.237342 + 0.971426i \(0.576276\pi\)
\(458\) 11.1793 + 1.83667i 0.522375 + 0.0858220i
\(459\) 0 0
\(460\) −2.50852 + 7.42828i −0.116960 + 0.346345i
\(461\) 19.8398i 0.924029i 0.886872 + 0.462015i \(0.152873\pi\)
−0.886872 + 0.462015i \(0.847127\pi\)
\(462\) 0 0
\(463\) 28.1588 1.30865 0.654324 0.756214i \(-0.272953\pi\)
0.654324 + 0.756214i \(0.272953\pi\)
\(464\) −18.7785 + 24.6329i −0.871770 + 1.14355i
\(465\) 0 0
\(466\) 3.29691 20.0674i 0.152727 0.929605i
\(467\) 12.6982i 0.587603i −0.955866 0.293801i \(-0.905080\pi\)
0.955866 0.293801i \(-0.0949204\pi\)
\(468\) 0 0
\(469\) 4.77740i 0.220600i
\(470\) −18.7481 3.08016i −0.864784 0.142077i
\(471\) 0 0
\(472\) −27.1262 14.4169i −1.24858 0.663594i
\(473\) −12.1196 −0.557260
\(474\) 0 0
\(475\) 19.1720i 0.879670i
\(476\) −18.4387 6.22674i −0.845138 0.285402i
\(477\) 0 0
\(478\) −5.83838 + 35.5367i −0.267041 + 1.62541i
\(479\) −36.8272 −1.68268 −0.841339 0.540508i \(-0.818232\pi\)
−0.841339 + 0.540508i \(0.818232\pi\)
\(480\) 0 0
\(481\) 8.58159 0.391287
\(482\) −4.31278 + 26.2507i −0.196442 + 1.19569i
\(483\) 0 0
\(484\) −16.6947 5.63779i −0.758851 0.256263i
\(485\) 15.3079i 0.695095i
\(486\) 0 0
\(487\) −0.484527 −0.0219560 −0.0109780 0.999940i \(-0.503494\pi\)
−0.0109780 + 0.999940i \(0.503494\pi\)
\(488\) −3.45216 1.83474i −0.156272 0.0830550i
\(489\) 0 0
\(490\) −11.4558 1.88209i −0.517520 0.0850244i
\(491\) 3.26565i 0.147377i −0.997281 0.0736883i \(-0.976523\pi\)
0.997281 0.0736883i \(-0.0234770\pi\)
\(492\) 0 0
\(493\) 54.3838i 2.44932i
\(494\) −1.83998 + 11.1995i −0.0827845 + 0.503887i
\(495\) 0 0
\(496\) 29.2532 + 22.3007i 1.31351 + 1.00133i
\(497\) −18.6350 −0.835894
\(498\) 0 0
\(499\) 0.338708i 0.0151627i 0.999971 + 0.00758133i \(0.00241323\pi\)
−0.999971 + 0.00758133i \(0.997587\pi\)
\(500\) −7.64012 + 22.6241i −0.341676 + 1.01178i
\(501\) 0 0
\(502\) −27.9649 4.59440i −1.24813 0.205058i
\(503\) 39.7613 1.77287 0.886435 0.462853i \(-0.153174\pi\)
0.886435 + 0.462853i \(0.153174\pi\)
\(504\) 0 0
\(505\) −10.8932 −0.484742
\(506\) −5.00962 0.823039i −0.222705 0.0365886i
\(507\) 0 0
\(508\) 4.26916 + 1.44169i 0.189413 + 0.0639646i
\(509\) 33.4538i 1.48281i −0.671055 0.741407i \(-0.734159\pi\)
0.671055 0.741407i \(-0.265841\pi\)
\(510\) 0 0
\(511\) −11.8903 −0.525995
\(512\) −22.5022 + 2.37741i −0.994465 + 0.105068i
\(513\) 0 0
\(514\) 3.05006 18.5649i 0.134533 0.818863i
\(515\) 12.1702i 0.536283i
\(516\) 0 0
\(517\) 12.3024i 0.541059i
\(518\) 16.5929 + 2.72609i 0.729052 + 0.119777i
\(519\) 0 0
\(520\) −2.14495 + 4.03582i −0.0940622 + 0.176982i
\(521\) 16.5479 0.724979 0.362489 0.931988i \(-0.381927\pi\)
0.362489 + 0.931988i \(0.381927\pi\)
\(522\) 0 0
\(523\) 28.4449i 1.24381i −0.783093 0.621905i \(-0.786359\pi\)
0.783093 0.621905i \(-0.213641\pi\)
\(524\) −0.461050 + 1.36527i −0.0201410 + 0.0596420i
\(525\) 0 0
\(526\) −2.81757 + 17.1498i −0.122852 + 0.747765i
\(527\) −64.5845 −2.81334
\(528\) 0 0
\(529\) −17.1143 −0.744101
\(530\) −1.50896 + 9.18465i −0.0655451 + 0.398956i
\(531\) 0 0
\(532\) −7.11538 + 21.0702i −0.308491 + 0.913509i
\(533\) 9.35947i 0.405404i
\(534\) 0 0
\(535\) 2.85763 0.123546
\(536\) −8.61170 4.57693i −0.371969 0.197693i
\(537\) 0 0
\(538\) −12.6014 2.07032i −0.543287 0.0892576i
\(539\) 7.51724i 0.323790i
\(540\) 0 0
\(541\) 13.0052i 0.559138i −0.960126 0.279569i \(-0.909808\pi\)
0.960126 0.279569i \(-0.0901916\pi\)
\(542\) 1.62371 9.88310i 0.0697444 0.424515i
\(543\) 0 0
\(544\) 28.8893 27.2721i 1.23862 1.16928i
\(545\) 1.66181 0.0711842
\(546\) 0 0
\(547\) 23.3847i 0.999859i −0.866066 0.499930i \(-0.833359\pi\)
0.866066 0.499930i \(-0.166641\pi\)
\(548\) 35.3030 + 11.9218i 1.50807 + 0.509273i
\(549\) 0 0
\(550\) −4.93296 0.810445i −0.210342 0.0345575i
\(551\) −62.1452 −2.64747
\(552\) 0 0
\(553\) 9.72646 0.413611
\(554\) 35.8097 + 5.88325i 1.52141 + 0.249955i
\(555\) 0 0
\(556\) 7.80499 23.1123i 0.331005 0.980179i
\(557\) 6.92263i 0.293321i 0.989187 + 0.146661i \(0.0468525\pi\)
−0.989187 + 0.146661i \(0.953147\pi\)
\(558\) 0 0
\(559\) 8.19056 0.346424
\(560\) −5.42941 + 7.12209i −0.229435 + 0.300963i
\(561\) 0 0
\(562\) 1.03341 6.29008i 0.0435917 0.265331i
\(563\) 21.7430i 0.916360i 0.888859 + 0.458180i \(0.151499\pi\)
−0.888859 + 0.458180i \(0.848501\pi\)
\(564\) 0 0
\(565\) 10.1482i 0.426938i
\(566\) −24.4897 4.02345i −1.02938 0.169118i
\(567\) 0 0
\(568\) 17.8530 33.5913i 0.749096 1.40946i
\(569\) 19.2824 0.808362 0.404181 0.914679i \(-0.367557\pi\)
0.404181 + 0.914679i \(0.367557\pi\)
\(570\) 0 0
\(571\) 37.4334i 1.56654i 0.621683 + 0.783269i \(0.286449\pi\)
−0.621683 + 0.783269i \(0.713551\pi\)
\(572\) −2.80385 0.946855i −0.117235 0.0395900i
\(573\) 0 0
\(574\) −2.97319 + 18.0970i −0.124099 + 0.755355i
\(575\) 5.79562 0.241694
\(576\) 0 0
\(577\) −6.89178 −0.286909 −0.143454 0.989657i \(-0.545821\pi\)
−0.143454 + 0.989657i \(0.545821\pi\)
\(578\) −7.41085 + 45.1078i −0.308251 + 1.87624i
\(579\) 0 0
\(580\) −23.7100 8.00685i −0.984505 0.332466i
\(581\) 14.7521i 0.612021i
\(582\) 0 0
\(583\) −6.02692 −0.249609
\(584\) 11.3913 21.4333i 0.471377 0.886917i
\(585\) 0 0
\(586\) 42.9466 + 7.05577i 1.77411 + 0.291471i
\(587\) 20.4244i 0.843007i 0.906827 + 0.421503i \(0.138497\pi\)
−0.906827 + 0.421503i \(0.861503\pi\)
\(588\) 0 0
\(589\) 73.8016i 3.04094i
\(590\) 4.02369 24.4911i 0.165653 1.00828i
\(591\) 0 0
\(592\) −20.8107 + 27.2986i −0.855314 + 1.12197i
\(593\) −14.2116 −0.583599 −0.291799 0.956480i \(-0.594254\pi\)
−0.291799 + 0.956480i \(0.594254\pi\)
\(594\) 0 0
\(595\) 15.7240i 0.644619i
\(596\) 10.8947 32.2616i 0.446265 1.32149i
\(597\) 0 0
\(598\) 3.38556 + 0.556219i 0.138446 + 0.0227455i
\(599\) −30.0038 −1.22592 −0.612960 0.790114i \(-0.710021\pi\)
−0.612960 + 0.790114i \(0.710021\pi\)
\(600\) 0 0
\(601\) 4.34999 0.177440 0.0887199 0.996057i \(-0.471722\pi\)
0.0887199 + 0.996057i \(0.471722\pi\)
\(602\) 15.8369 + 2.60187i 0.645463 + 0.106044i
\(603\) 0 0
\(604\) −27.7886 9.38419i −1.13070 0.381837i
\(605\) 14.2367i 0.578805i
\(606\) 0 0
\(607\) −15.0209 −0.609681 −0.304841 0.952403i \(-0.598603\pi\)
−0.304841 + 0.952403i \(0.598603\pi\)
\(608\) −31.1642 33.0122i −1.26387 1.33882i
\(609\) 0 0
\(610\) 0.512067 3.11681i 0.0207330 0.126196i
\(611\) 8.31410i 0.336352i
\(612\) 0 0
\(613\) 2.19625i 0.0887055i −0.999016 0.0443528i \(-0.985877\pi\)
0.999016 0.0443528i \(-0.0141226\pi\)
\(614\) 30.9578 + 5.08611i 1.24935 + 0.205259i
\(615\) 0 0
\(616\) −5.12059 2.72148i −0.206315 0.109652i
\(617\) 35.3729 1.42406 0.712030 0.702149i \(-0.247776\pi\)
0.712030 + 0.702149i \(0.247776\pi\)
\(618\) 0 0
\(619\) 25.4878i 1.02444i 0.858854 + 0.512221i \(0.171177\pi\)
−0.858854 + 0.512221i \(0.828823\pi\)
\(620\) −9.50867 + 28.1573i −0.381877 + 1.13082i
\(621\) 0 0
\(622\) 3.41143 20.7645i 0.136786 0.832579i
\(623\) 6.60076 0.264454
\(624\) 0 0
\(625\) −7.34848 −0.293939
\(626\) 5.09192 30.9932i 0.203514 1.23874i
\(627\) 0 0
\(628\) 1.59791 4.73175i 0.0637634 0.188817i
\(629\) 60.2692i 2.40309i
\(630\) 0 0
\(631\) 3.58602 0.142757 0.0713786 0.997449i \(-0.477260\pi\)
0.0713786 + 0.997449i \(0.477260\pi\)
\(632\) −9.31832 + 17.5329i −0.370663 + 0.697419i
\(633\) 0 0
\(634\) 13.4282 + 2.20614i 0.533301 + 0.0876170i
\(635\) 3.64060i 0.144473i
\(636\) 0 0
\(637\) 5.08023i 0.201286i
\(638\) 2.62703 15.9900i 0.104005 0.633050i
\(639\) 0 0
\(640\) −7.63664 16.6102i −0.301865 0.656578i
\(641\) 40.1221 1.58473 0.792363 0.610050i \(-0.208851\pi\)
0.792363 + 0.610050i \(0.208851\pi\)
\(642\) 0 0
\(643\) 25.3341i 0.999078i −0.866292 0.499539i \(-0.833503\pi\)
0.866292 0.499539i \(-0.166497\pi\)
\(644\) 6.36945 + 2.15096i 0.250992 + 0.0847595i
\(645\) 0 0
\(646\) 78.6546 + 12.9223i 3.09463 + 0.508422i
\(647\) 0.825159 0.0324404 0.0162202 0.999868i \(-0.494837\pi\)
0.0162202 + 0.999868i \(0.494837\pi\)
\(648\) 0 0
\(649\) 16.0709 0.630839
\(650\) 3.33375 + 0.547708i 0.130760 + 0.0214829i
\(651\) 0 0
\(652\) −6.45925 + 19.1272i −0.252964 + 0.749081i
\(653\) 37.6019i 1.47148i 0.677265 + 0.735739i \(0.263165\pi\)
−0.677265 + 0.735739i \(0.736835\pi\)
\(654\) 0 0
\(655\) −1.16426 −0.0454913
\(656\) −29.7731 22.6971i −1.16244 0.886172i
\(657\) 0 0
\(658\) −2.64111 + 16.0757i −0.102961 + 0.626697i
\(659\) 16.9728i 0.661165i 0.943777 + 0.330583i \(0.107245\pi\)
−0.943777 + 0.330583i \(0.892755\pi\)
\(660\) 0 0
\(661\) 41.0591i 1.59701i 0.601985 + 0.798507i \(0.294377\pi\)
−0.601985 + 0.798507i \(0.705623\pi\)
\(662\) 4.21982 + 0.693282i 0.164008 + 0.0269452i
\(663\) 0 0
\(664\) 26.5921 + 14.1331i 1.03197 + 0.548470i
\(665\) −17.9680 −0.696769
\(666\) 0 0
\(667\) 18.7863i 0.727408i
\(668\) −13.6861 4.62179i −0.529533 0.178823i
\(669\) 0 0
\(670\) 1.27739 7.77516i 0.0493501 0.300380i
\(671\) 2.04524 0.0789554
\(672\) 0 0
\(673\) 14.8665 0.573062 0.286531 0.958071i \(-0.407498\pi\)
0.286531 + 0.958071i \(0.407498\pi\)
\(674\) −1.76208 + 10.7253i −0.0678726 + 0.413122i
\(675\) 0 0
\(676\) 1.89487 + 0.639895i 0.0728796 + 0.0246114i
\(677\) 24.2997i 0.933913i 0.884280 + 0.466957i \(0.154650\pi\)
−0.884280 + 0.466957i \(0.845350\pi\)
\(678\) 0 0
\(679\) 13.1259 0.503725
\(680\) 28.3439 + 15.0641i 1.08694 + 0.577684i
\(681\) 0 0
\(682\) −18.9892 3.11977i −0.727134 0.119462i
\(683\) 5.98111i 0.228861i −0.993431 0.114430i \(-0.963496\pi\)
0.993431 0.114430i \(-0.0365043\pi\)
\(684\) 0 0
\(685\) 30.1053i 1.15026i
\(686\) −3.83749 + 23.3577i −0.146516 + 0.891803i
\(687\) 0 0
\(688\) −19.8624 + 26.0547i −0.757248 + 0.993328i
\(689\) 4.07306 0.155171
\(690\) 0 0
\(691\) 20.6198i 0.784414i −0.919877 0.392207i \(-0.871712\pi\)
0.919877 0.392207i \(-0.128288\pi\)
\(692\) 1.56950 4.64763i 0.0596634 0.176676i
\(693\) 0 0
\(694\) −46.0003 7.55747i −1.74615 0.286878i
\(695\) 19.7094 0.747620
\(696\) 0 0
\(697\) 65.7323 2.48979
\(698\) 28.5654 + 4.69306i 1.08122 + 0.177635i
\(699\) 0 0
\(700\) 6.27198 + 2.11804i 0.237059 + 0.0800544i
\(701\) 11.9063i 0.449694i −0.974394 0.224847i \(-0.927812\pi\)
0.974394 0.224847i \(-0.0721882\pi\)
\(702\) 0 0
\(703\) −68.8705 −2.59750
\(704\) 9.81144 6.62306i 0.369783 0.249616i
\(705\) 0 0
\(706\) −3.47086 + 21.1262i −0.130627 + 0.795094i
\(707\) 9.34049i 0.351285i
\(708\) 0 0
\(709\) 14.4805i 0.543828i 0.962322 + 0.271914i \(0.0876566\pi\)
−0.962322 + 0.271914i \(0.912343\pi\)
\(710\) 30.3282 + 4.98268i 1.13820 + 0.186997i
\(711\) 0 0
\(712\) −6.32377 + 11.8985i −0.236993 + 0.445914i
\(713\) 22.3100 0.835515
\(714\) 0 0
\(715\) 2.39103i 0.0894194i
\(716\) −5.61416 + 16.6248i −0.209811 + 0.621297i
\(717\) 0 0
\(718\) −5.24961 + 31.9530i −0.195914 + 1.19247i
\(719\) 25.6663 0.957191 0.478595 0.878036i \(-0.341146\pi\)
0.478595 + 0.878036i \(0.341146\pi\)
\(720\) 0 0
\(721\) 10.4355 0.388636
\(722\) 10.4104 63.3652i 0.387434 2.35821i
\(723\) 0 0
\(724\) 13.0057 38.5127i 0.483353 1.43131i
\(725\) 18.4988i 0.687028i
\(726\) 0 0
\(727\) 36.6958 1.36097 0.680486 0.732761i \(-0.261769\pi\)
0.680486 + 0.732761i \(0.261769\pi\)
\(728\) 3.46055 + 1.83921i 0.128257 + 0.0681656i
\(729\) 0 0
\(730\) 19.3513 + 3.17926i 0.716223 + 0.117670i
\(731\) 57.5230i 2.12756i
\(732\) 0 0
\(733\) 9.04187i 0.333969i −0.985960 0.166985i \(-0.946597\pi\)
0.985960 0.166985i \(-0.0534030\pi\)
\(734\) 5.34130 32.5111i 0.197151 1.20001i
\(735\) 0 0
\(736\) −9.97947 + 9.42083i −0.367848 + 0.347256i
\(737\) 5.10202 0.187935
\(738\) 0 0
\(739\) 25.6800i 0.944653i 0.881424 + 0.472327i \(0.156586\pi\)
−0.881424 + 0.472327i \(0.843414\pi\)
\(740\) −26.2759 8.87334i −0.965921 0.326190i
\(741\) 0 0
\(742\) 7.87547 + 1.29387i 0.289117 + 0.0474996i
\(743\) −10.0377 −0.368249 −0.184124 0.982903i \(-0.558945\pi\)
−0.184124 + 0.982903i \(0.558945\pi\)
\(744\) 0 0
\(745\) 27.5117 1.00795
\(746\) −11.6404 1.91242i −0.426184 0.0700186i
\(747\) 0 0
\(748\) −6.64984 + 19.6916i −0.243142 + 0.719997i
\(749\) 2.45031i 0.0895322i
\(750\) 0 0
\(751\) 22.3094 0.814083 0.407041 0.913410i \(-0.366560\pi\)
0.407041 + 0.913410i \(0.366560\pi\)
\(752\) −26.4477 20.1620i −0.964448 0.735232i
\(753\) 0 0
\(754\) −1.77537 + 10.8062i −0.0646553 + 0.393539i
\(755\) 23.6972i 0.862431i
\(756\) 0 0
\(757\) 14.9903i 0.544833i −0.962179 0.272416i \(-0.912177\pi\)
0.962179 0.272416i \(-0.0878228\pi\)
\(758\) 8.31236 + 1.36565i 0.301918 + 0.0496027i
\(759\) 0 0
\(760\) 17.2140 32.3890i 0.624418 1.17487i
\(761\) 44.0511 1.59685 0.798426 0.602093i \(-0.205666\pi\)
0.798426 + 0.602093i \(0.205666\pi\)
\(762\) 0 0
\(763\) 1.42494i 0.0515862i
\(764\) 0.975088 + 0.329286i 0.0352774 + 0.0119131i
\(765\) 0 0
\(766\) 4.16056 25.3242i 0.150327 0.915001i
\(767\) −10.8609 −0.392165
\(768\) 0 0
\(769\) −20.0678 −0.723665 −0.361833 0.932243i \(-0.617849\pi\)
−0.361833 + 0.932243i \(0.617849\pi\)
\(770\) 0.759550 4.62317i 0.0273723 0.166608i
\(771\) 0 0
\(772\) 43.5034 + 14.6910i 1.56572 + 0.528742i
\(773\) 17.6836i 0.636034i −0.948085 0.318017i \(-0.896983\pi\)
0.948085 0.318017i \(-0.103017\pi\)
\(774\) 0 0
\(775\) 21.9686 0.789135
\(776\) −12.5751 + 23.6606i −0.451420 + 0.849367i
\(777\) 0 0
\(778\) −0.241304 0.0396442i −0.00865116 0.00142131i
\(779\) 75.1132i 2.69121i
\(780\) 0 0
\(781\) 19.9012i 0.712122i
\(782\) 3.90637 23.7770i 0.139692 0.850265i
\(783\) 0 0
\(784\) −16.1606 12.3198i −0.577163 0.439991i
\(785\) 4.03508 0.144018
\(786\) 0 0
\(787\) 19.5587i 0.697194i 0.937273 + 0.348597i \(0.113342\pi\)
−0.937273 + 0.348597i \(0.886658\pi\)
\(788\) −4.93615 + 14.6170i −0.175843 + 0.520710i
\(789\) 0 0
\(790\) −15.8297 2.60069i −0.563195 0.0925284i
\(791\) −8.70168 −0.309396
\(792\) 0 0
\(793\) −1.38219 −0.0490831
\(794\) 54.3474 + 8.92884i 1.92872 + 0.316873i
\(795\) 0 0
\(796\) 8.05090 + 2.71878i 0.285357 + 0.0963646i
\(797\) 31.9695i 1.13242i 0.824262 + 0.566209i \(0.191591\pi\)
−0.824262 + 0.566209i \(0.808409\pi\)
\(798\) 0 0
\(799\) 58.3906 2.06571
\(800\) −9.82676 + 9.27667i −0.347428 + 0.327980i
\(801\) 0 0
\(802\) 1.26370 7.69181i 0.0446229 0.271607i
\(803\) 12.6982i 0.448110i
\(804\) 0 0
\(805\) 5.43166i 0.191441i
\(806\) 12.8331 + 2.10838i 0.452027 + 0.0742644i
\(807\) 0 0
\(808\) −16.8371 8.94854i −0.592327 0.314809i
\(809\) −9.62022 −0.338229 −0.169115 0.985596i \(-0.554091\pi\)
−0.169115 + 0.985596i \(0.554091\pi\)
\(810\) 0 0
\(811\) 19.6731i 0.690816i 0.938453 + 0.345408i \(0.112259\pi\)
−0.938453 + 0.345408i \(0.887741\pi\)
\(812\) −6.86555 + 20.3304i −0.240934 + 0.713457i
\(813\) 0 0
\(814\) 2.91132 17.7204i 0.102042 0.621100i
\(815\) −16.3111 −0.571353
\(816\) 0 0
\(817\) −65.7323 −2.29968
\(818\) −4.58767 + 27.9239i −0.160404 + 0.976336i
\(819\) 0 0
\(820\) 9.67766 28.6577i 0.337959 1.00077i
\(821\) 24.6282i 0.859532i −0.902940 0.429766i \(-0.858596\pi\)
0.902940 0.429766i \(-0.141404\pi\)
\(822\) 0 0
\(823\) −10.6160 −0.370052 −0.185026 0.982734i \(-0.559237\pi\)
−0.185026 + 0.982734i \(0.559237\pi\)
\(824\) −9.99755 + 18.8109i −0.348281 + 0.655308i
\(825\) 0 0
\(826\) −21.0001 3.45015i −0.730688 0.120046i
\(827\) 19.1241i 0.665009i 0.943102 + 0.332505i \(0.107894\pi\)
−0.943102 + 0.332505i \(0.892106\pi\)
\(828\) 0 0
\(829\) 15.6561i 0.543759i 0.962331 + 0.271879i \(0.0876452\pi\)
−0.962331 + 0.271879i \(0.912355\pi\)
\(830\) −3.94447 + 24.0089i −0.136914 + 0.833361i
\(831\) 0 0
\(832\) −6.63068 + 4.47594i −0.229878 + 0.155175i
\(833\) 35.6789 1.23620
\(834\) 0 0
\(835\) 11.6711i 0.403895i
\(836\) 22.5019 + 7.59886i 0.778245 + 0.262812i
\(837\) 0 0
\(838\) −9.83585 1.61595i −0.339774 0.0558221i
\(839\) 10.6255 0.366834 0.183417 0.983035i \(-0.441284\pi\)
0.183417 + 0.983035i \(0.441284\pi\)
\(840\) 0 0
\(841\) −30.9632 −1.06769
\(842\) 11.4661 + 1.88378i 0.395147 + 0.0649195i
\(843\) 0 0
\(844\) 4.08595 12.0994i 0.140644 0.416479i
\(845\) 1.61588i 0.0555881i
\(846\) 0 0
\(847\) −12.2074 −0.419452
\(848\) −9.87732 + 12.9567i −0.339189 + 0.444934i
\(849\) 0 0
\(850\) 3.84659 23.4132i 0.131937 0.803066i
\(851\) 20.8193i 0.713677i
\(852\) 0 0
\(853\) 2.79803i 0.0958027i −0.998852 0.0479013i \(-0.984747\pi\)
0.998852 0.0479013i \(-0.0152533\pi\)
\(854\) −2.67254 0.439077i −0.0914525 0.0150249i
\(855\) 0 0
\(856\) 4.41690 + 2.34748i 0.150967 + 0.0802354i
\(857\) 10.5004 0.358686 0.179343 0.983787i \(-0.442603\pi\)
0.179343 + 0.983787i \(0.442603\pi\)
\(858\) 0 0
\(859\) 53.6535i 1.83063i 0.402733 + 0.915317i \(0.368060\pi\)
−0.402733 + 0.915317i \(0.631940\pi\)
\(860\) −25.0786 8.46902i −0.855174 0.288791i
\(861\) 0 0
\(862\) 3.29614 20.0627i 0.112267 0.683338i
\(863\) 32.0861 1.09222 0.546111 0.837713i \(-0.316108\pi\)
0.546111 + 0.837713i \(0.316108\pi\)
\(864\) 0 0
\(865\) 3.96335 0.134758
\(866\) 3.97811 24.2137i 0.135182 0.822815i
\(867\) 0 0
\(868\) 24.1437 + 8.15331i 0.819491 + 0.276741i
\(869\) 10.3874i 0.352367i
\(870\) 0 0
\(871\) −3.44800 −0.116831
\(872\) 2.56858 + 1.36514i 0.0869832 + 0.0462296i
\(873\) 0 0
\(874\) −27.1703 4.46387i −0.919051 0.150993i
\(875\) 16.5430i 0.559257i
\(876\) 0 0
\(877\) 45.7566i 1.54509i 0.634960 + 0.772545i \(0.281017\pi\)
−0.634960 + 0.772545i \(0.718983\pi\)
\(878\) 3.53732 21.5307i 0.119379 0.726626i
\(879\) 0 0
\(880\) 7.60602 + 5.79833i 0.256399 + 0.195462i
\(881\) 38.0557 1.28213 0.641065 0.767486i \(-0.278493\pi\)
0.641065 + 0.767486i \(0.278493\pi\)
\(882\) 0 0
\(883\) 29.9690i 1.00854i −0.863547 0.504269i \(-0.831762\pi\)
0.863547 0.504269i \(-0.168238\pi\)
\(884\) 4.49404 13.3078i 0.151151 0.447591i
\(885\) 0 0
\(886\) −21.8315 3.58675i −0.733445 0.120499i
\(887\) −51.8916 −1.74235 −0.871174 0.490975i \(-0.836641\pi\)
−0.871174 + 0.490975i \(0.836641\pi\)
\(888\) 0 0
\(889\) 3.12167 0.104697
\(890\) −10.7426 1.76493i −0.360094 0.0591606i
\(891\) 0 0
\(892\) −32.8756 11.1020i −1.10076 0.371724i
\(893\) 66.7237i 2.23282i
\(894\) 0 0
\(895\) −14.1771 −0.473887
\(896\) −14.2426 + 6.54811i −0.475813 + 0.218757i
\(897\) 0 0
\(898\) −1.39856 + 8.51268i −0.0466707 + 0.284072i
\(899\) 71.2103i 2.37500i
\(900\) 0 0
\(901\) 28.6054i 0.952985i
\(902\) 19.3267 + 3.17522i 0.643508 + 0.105723i
\(903\) 0 0
\(904\) 8.33654 15.6856i 0.277269 0.521695i
\(905\) 32.8424 1.09172
\(906\) 0 0
\(907\) 7.37653i 0.244934i −0.992473 0.122467i \(-0.960919\pi\)
0.992473 0.122467i \(-0.0390805\pi\)
\(908\) 5.66145 16.7648i 0.187882 0.556359i
\(909\) 0 0
\(910\) −0.513312 + 3.12439i −0.0170161 + 0.103573i
\(911\) 21.2104 0.702732 0.351366 0.936238i \(-0.385717\pi\)
0.351366 + 0.936238i \(0.385717\pi\)
\(912\) 0 0
\(913\) −15.7545 −0.521398
\(914\) 2.32654 14.1610i 0.0769551 0.468405i
\(915\) 0 0
\(916\) −5.12617 + 15.1797i −0.169373 + 0.501551i
\(917\) 0.998304i 0.0329669i
\(918\) 0 0
\(919\) −22.2953 −0.735455 −0.367727 0.929934i \(-0.619864\pi\)
−0.367727 + 0.929934i \(0.619864\pi\)
\(920\) −9.79107 5.20374i −0.322802 0.171562i
\(921\) 0 0
\(922\) −27.6865 4.54866i −0.911806 0.149802i
\(923\) 13.4495i 0.442695i
\(924\) 0 0
\(925\) 20.5007i 0.674060i
\(926\) −6.45596 + 39.2957i −0.212156 + 1.29134i
\(927\) 0 0
\(928\) −30.0700 31.8531i −0.987095 1.04563i
\(929\) 21.6844 0.711442 0.355721 0.934592i \(-0.384235\pi\)
0.355721 + 0.934592i \(0.384235\pi\)
\(930\) 0 0
\(931\) 40.7708i 1.33621i
\(932\) 27.2483 + 9.20172i 0.892548 + 0.301412i
\(933\) 0 0
\(934\) 17.7204 + 2.91132i 0.579830 + 0.0952613i
\(935\) −16.7924 −0.549170
\(936\) 0 0
\(937\) 9.75513 0.318686 0.159343 0.987223i \(-0.449062\pi\)
0.159343 + 0.987223i \(0.449062\pi\)
\(938\) −6.66688 1.09531i −0.217681 0.0357633i
\(939\) 0 0
\(940\) 8.59675 25.4569i 0.280395 0.830311i
\(941\) 40.2886i 1.31337i −0.754165 0.656685i \(-0.771958\pi\)
0.754165 0.656685i \(-0.228042\pi\)
\(942\) 0 0
\(943\) −22.7065 −0.739425
\(944\) 26.3381 34.5493i 0.857234 1.12448i
\(945\) 0 0
\(946\) 2.77866 16.9130i 0.0903421 0.549888i
\(947\) 38.5068i 1.25130i −0.780103 0.625651i \(-0.784834\pi\)
0.780103 0.625651i \(-0.215166\pi\)
\(948\) 0 0
\(949\) 8.58159i 0.278570i
\(950\) −26.7546 4.39556i −0.868033 0.142611i
\(951\) 0 0
\(952\) 12.9169 24.3038i 0.418639 0.787689i
\(953\) −9.52795 −0.308641 −0.154320 0.988021i \(-0.549319\pi\)
−0.154320 + 0.988021i \(0.549319\pi\)
\(954\) 0 0
\(955\) 0.831523i 0.0269075i
\(956\) −48.2530 16.2950i −1.56061 0.527018i
\(957\) 0 0
\(958\) 8.44338 51.3926i 0.272793 1.66042i
\(959\) 25.8141 0.833580
\(960\) 0 0
\(961\) 53.5671 1.72797
\(962\) −1.96750 + 11.9757i −0.0634348 + 0.386111i
\(963\) 0 0
\(964\) −35.6442 12.0370i −1.14802 0.387686i
\(965\) 37.0983i 1.19424i
\(966\) 0 0
\(967\) 22.3293 0.718062 0.359031 0.933326i \(-0.383107\pi\)
0.359031 + 0.933326i \(0.383107\pi\)
\(968\) 11.6952 22.0050i 0.375897 0.707267i
\(969\) 0 0
\(970\) −21.3622 3.50964i −0.685900 0.112688i
\(971\) 59.7660i 1.91798i 0.283438 + 0.958991i \(0.408525\pi\)
−0.283438 + 0.958991i \(0.591475\pi\)
\(972\) 0 0
\(973\) 16.9000i 0.541790i
\(974\) 0.111088 0.676160i 0.00355948 0.0216656i
\(975\) 0 0
\(976\) 3.35187 4.39685i 0.107291 0.140740i
\(977\) 6.12704 0.196021 0.0980107 0.995185i \(-0.468752\pi\)
0.0980107 + 0.995185i \(0.468752\pi\)
\(978\) 0 0
\(979\) 7.04927i 0.225296i
\(980\) 5.25295 15.5551i 0.167799 0.496890i
\(981\) 0 0
\(982\) 4.55723 + 0.748716i 0.145427 + 0.0238925i
\(983\) −16.6436 −0.530849 −0.265424 0.964132i \(-0.585512\pi\)
−0.265424 + 0.964132i \(0.585512\pi\)
\(984\) 0 0
\(985\) −12.4649 −0.397166
\(986\) 75.8929 + 12.4686i 2.41692 + 0.397081i
\(987\) 0 0
\(988\) −15.2070 5.13540i −0.483800 0.163379i
\(989\) 19.8707i 0.631850i
\(990\) 0 0
\(991\) 30.5255 0.969673 0.484836 0.874605i \(-0.338879\pi\)
0.484836 + 0.874605i \(0.338879\pi\)
\(992\) −37.8277 + 35.7101i −1.20103 + 1.13380i
\(993\) 0 0
\(994\) 4.27245 26.0052i 0.135514 0.824836i
\(995\) 6.86555i 0.217653i
\(996\) 0 0
\(997\) 22.7042i 0.719049i −0.933136 0.359525i \(-0.882939\pi\)
0.933136 0.359525i \(-0.117061\pi\)
\(998\) −0.472669 0.0776556i −0.0149621 0.00245815i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 936.2.g.f.469.12 yes 24
3.2 odd 2 inner 936.2.g.f.469.13 yes 24
4.3 odd 2 3744.2.g.f.1873.21 24
8.3 odd 2 3744.2.g.f.1873.22 24
8.5 even 2 inner 936.2.g.f.469.11 24
12.11 even 2 3744.2.g.f.1873.2 24
24.5 odd 2 inner 936.2.g.f.469.14 yes 24
24.11 even 2 3744.2.g.f.1873.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.g.f.469.11 24 8.5 even 2 inner
936.2.g.f.469.12 yes 24 1.1 even 1 trivial
936.2.g.f.469.13 yes 24 3.2 odd 2 inner
936.2.g.f.469.14 yes 24 24.5 odd 2 inner
3744.2.g.f.1873.1 24 24.11 even 2
3744.2.g.f.1873.2 24 12.11 even 2
3744.2.g.f.1873.21 24 4.3 odd 2
3744.2.g.f.1873.22 24 8.3 odd 2